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Abstract: In site-specific management, rapid and accurate identification of crop stress at a large scale
is critical. Radiometric ground-based data and satellite imaging with advanced spatial and spectral
resolution allow for a deeper understanding of crop stress and the level of stress in a given area.
This research aimed to assess the potential of radiometric ground-based data and high-resolution
QuickBird satellite imagery to determine the leaf area index (LAI), biomass fresh weight (BFW) and
chlorophyll meter (Chlm) of maize across well-irrigated, water stress and salinity stress areas in the
Nile Delta of Egypt. Partial least squares regression (PLSR) and multiple linear regression (MLR)
were evaluated to estimate the three measured traits based on vegetation spectral indices (vegetation-
SRIs) derived from these methods and their combination. Maize field visits were conducted during
the summer seasons from 28 to 30 July 2007 to collect ground reference data concurrent with the
acquisition of radiometric ground-based measurements and QuickBird satellite imagery. The results
showed that the majority of vegetation-SRIs extracted from radiometric ground-based data and
high-resolution satellite images were more effective in estimating LAI, BFW, and Chlm. In general,
the vegetation-SRIs of radiometric ground-based data showed higher R2 with measured traits
compared to the vegetation-SRIs extracted from high-resolution satellite imagery. The coefficient
of determination (R2) of the significant relationships between vegetation-SRIs of both methods and
three measured traits varied from 0.64 to 0.89. For example, with QuickBird high-resolution satellite
images, the relationships of the green normalized difference vegetation index (GNDVI) with LAI and
BFW showed the highest R2 of 0.80 and 0.84, respectively. Overall, the ground-based vegetation-SRIs
and the satellite-based indices were found to be in good agreement to assess the measured traits of
maize. Both the calibration (Cal.) and validation (Val.) models of PLSR and MLR showed the highest
performance in predicting the three measured traits based on the combination of vegetation-SRIs
from radiometric ground-based data and high-resolution QuickBird satellite imagery. For example,
validation (Val.) models of PLSR and MLR showed the highest performance in predicting the
measured traits based on the combination of vegetation-SRIs from radiometric ground-based data
and high-resolution QuickBird satellite imagery with R2 (0.91) of both methods for LAI, R2 (0.91–0.93)
for BFW respectively, and R2 (0.82) of both methods for Chlm. The models of PLSR and MLR showed
approximately the same performance in predicting the three measured traits and no clear difference
was found between them and their combinations. In conclusion, the results obtained from this study
showed that radiometric ground-based measurements and high spectral resolution remote-sensing
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imagery have the potential to offer necessary crop monitoring information across well-irrigated,
water stress and salinity stress in regions suffering lack of freshwater resources.

Keywords: maize; QuickBird imagery; spectral indices; water stress; salinity stress; PLSR and MLR

1. Introduction

Moisture and salinity stress are two of the most limiting factors in crop production.
Both are significant factors influencing crop growth and final productivity in arid and
semi-arid climates. In addition, climate change and global warming contribute to high
rates of evaporation and, thus, a shortage of fresh water supplies related to drought,
which is a challenge to global food security [1–3]. Subsequently, soil moisture and salinity
stress-induced disruption in plant function leads to a significant decrease in many morpho-
physiological plant characteristics, such as chlorophyll content, water status, photosynthetic
performance, stomatal conductance and biomass accumulation, which ultimately causes
significant losses in the quantity of grain yield [4–7]. Therefore, the timely detection of
water deficiency and salinity stress effects on large scales and the application of the right
amount of water at the right time is important for assuring high yields and minimizing
water loses.

Estimates of crop biophysical and biochemical traits, as well as other related properties,
from remotely sensed data are critical for avoiding crop yield losses [7,8]. Satellite platforms
of high spatial and spectral resolution and radiometric ground-based data capabilities are
suitable for estimating crop traits and many studies have demonstrated the potential of
remotely sensed data in mapping vegetation [3,7–9]. As monitoring plant status using the
sample-point technique at a regional scale is tedious, laborious, and expensive, several
studies have demonstrated the potential of remotely sensed data to assess plant traits.
Therefore, remote sensing can be a non-destructive technique that is simple, fast, and
inexpensive to perform [9–11].

Abiotic stress causes significant changes in the biophysical and biochemical properties
of vegetation canopies. The spectral signatures reflected from the canopy at particular
wavelengths in the visible (VIS) and near infrared (NIR) regions of the spectrum change
dramatically as a result of these effects [12–17].

In the developed world, airborne imagery is used to track various aspects of the
Earth’s surface, especially vegetation. Some studies have shown the ability of airborne
measurements to track vegetation and crop health [11,18,19]. However, obtaining airborne
images is extremely expensive per unit area of ground cover. When comparing coverage
areas, airborne images cover a smaller area than various satellite sensors. With the avail-
ability of free medium satellite images such as sentinel 1 and 2, the cost of monitoring
agricultural crops will be far cheaper in comparison to airborne missions [6]. Another
downside of airborne missions is that they are usually one-time operations, while satellite
missions allow for continuous monitoring of the Earth. Using this type of imagery is
difficult due to the high cost of continuous crop monitoring and the problems associated
with geometric correction using airborne remote sensing in management applications [11].

Satellites with high spatial and spectral resolution have been increasingly used in
precision farming in recent years. Higher-resolution satellite sensor technology (e.g., Quick-
Bird and GeoEye1 sensors) can provide a reliable tool in site-specific management. The
spatial resolution gap between satellite and airborne images has shrunk dramatically due to
these types of satellite sensors [18]. The low revisit duration (1–3 days) is one of the key ad-
vantages of these satellites, as it is difficult to achieve with many other satellite systems [20].
Previous studies used QuickBird satellite images to estimate plant traits such as biochemi-
cal and biophysical parameters in crops. These include for instance estimating chlorophyll
content [21], the estimation of grain yield [22,23], measuring leaf area index [24,25], the
identification of nitrogen status [26], estimating above-ground biomass [10,27], the detec-
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tion of crop disease [28,29], estimating crop evapotranspiration [30] and estimating dry
matter [31,32].

Several satellite-based vegetation spectral indices (vegetation-SRIs) have been used
to determine crop growth and final grain yield. For instance, the normalized difference
vegetation index (NDVI) is often used to evaluate crop growth and yield. Leaf area index
(LAI) and biomass fresh weight (BFW) were found to be responsive to the simple ratio
(SR) and the green NDVI (GNDVI) [31,33]. The red edge NDVI (NDVIre) and red edge
dependent vegetation indices like the red edge triangle vegetation index (RTVI) have been
found to be responsive to LAI and above-ground biomass [24]. Therefore, using high-
resolution satellite images such as QuickBird to measure these indices can be a reliable
method for mapping within-field variability at large scales. The application of remote
hyperspectral sensing, using these indices which include spectra band from the VIS and
NIR, offers an easy, fast, and non-destructive approach for assessing various related plant
traits compared to classical methods [15–20]. The indirect effects, which are manifested by
changes in reflectance in the VIS and NIR ranges, are linked to leaf and canopy properties
such as leaf pigments, leaf structure, and scattering, which change as a result of stress
factors [16,17].

Weather conditions in many regions worldwide may restrict the acquisition of satellite
images especially cloudy regions such as European countries which can be affected in the
performance of spectral indices when estimating the crop traits [20–24]. Also, it is difficult
sometimes to have both in situ measurements and satellite data on the same days which
lead to little difference of the relationship between extracted SRIs from both platforms.
However, such satellite imagery may offer farmers with better understanding the change
in crop traits in other countries like Egypt since the changes in solar illumination are not
that great around noon time [6].

Furthermore, in recent years, proximal remote-sensing technologies based on spectral
reflectance have been used to accurately track crops during their growing period to promote
good agricultural decision-making [34–39]. The advantage of proximal remote sensing is
that the spectral measurements are taken close to the plant canopy to eliminate the effect
of environmental conditions like the clouds and can be used as references for the satellite
measurements [40,41]. In this study, the performance of vegetation-SRIs extracted from
radiometric ground-based data and QuickBird satellite imagery were evaluated in full
irrigation, water and salinity stress conditions.

Multivariate regression models, such as the partial least square regression (PLSR) and
multiple linear regression (MLR), have substantially increased the efficiency of predicting
the plant traits based on spectrum data. The PLSR and MLR have been proposed to resolve
the strong multi-collinear and noisy variables in SRIs or spectral band data and to efficiently
assess the measured traits [36,42–44]. Both methods combine a large number of SRIs or
spectral bands into a single index to enhance the prediction of measured traits. Therefore,
using these methods, the measured trait of maize can be simultaneously estimated through
several vegetation-SRIs. PLSR can reduce a large number of calculated collinear spectral
factors to a few non-correlated latent factors, avoiding over-fitting or under-fitting the data,
and avoiding redundant data [45].

There is little information available to evaluate the PLSR and MLR methods based
on the combination vegetation-SRIs derived from both radiometric ground-based data
and QuickBird satellite imagery to predict the LAI, BFW and Chlm of maize. Therefore,
the purpose of this work was to (i) assess the effects of different stress conditions on
three measured traits (LAI, BFW and Chlm) of maize; (ii) evaluate the performance of
classification algorithms to map different crop types within the study area; (iii) evaluate
the efficiency of radiometric ground-based data and QuickBird satellite imagery based on
vegetation-SRIs to assess the three measured traits of maize across full irrigation, water
stress and salinity stress conditions; and (v) evaluate the performance of PLSR and MLR
models based on vegetation-SRI-derived radiometric ground-based data and QuickBird
satellite imagery and their combination to predict the three measured traits of maize.
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2. Materials and Methods
2.1. Study Site Description

The study area is located in south-west Alexandria, Egypt (latitude of 30◦55′50′′ and
longitude of 29◦53′35.6′′). To have different growing conditions for maize such as full
irrigation, water and salinity stress, 15 fields were chosen (Figure 1). The weather in this
region is characterized by hot summers and mild winters. The detailed climatic parameters
of the study area during the experimental periods are shown in Table 1. During field visits,
soil samples were collected from random fields to identify some soil chemical and physical
properties. The soil at these sites is mainly a sandy loam, as these sites have been recently
reclaimed from the Eastern Desert. Flood irrigation is the main irrigation system used
within the study area. In this region and with the system of traditional irrigation fields at
the end of an irrigation canal network, many fields suffer from water scarcity. Farmers at
the end of the irrigation network are forced to use agricultural drainage water with high
salinity levels as an alternative to fresh water to irrigate their crops, even with the risk of
salinity stress. Other farmers wait until fresh water is available to irrigate their crops and,
therefore, subject them to water stress, which leads to reductions in crop growth traits. In
the 15 different fields, the maize was sown in the first week of May and was harvested in
the last week of September.
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Table 1. Agro-climatological data for the study area recorded at Borg Alarab Station (latitude of 31.2◦

and longitude of 29.916◦). This data is just from the period of our experimentation.

Year Month Tmax
◦C Tmin

◦C U2 (km/Day) RH (%) SH (h)

2007

April 24.2 13.5 1.65 83.4 9.3
May 26.9 16.9 1.41 82.1 10.1
June 29.4 20.6 1.39 84.6 10.7
July 29.9 23.1 1.50 86.1 10.3

August 30.7 23.4 1.31 79.2 9.9
Tmax, Tmin, U2, RH, and SH indicate maximum temperature, minimum temperature, average wind speed, relative
humidity, and sunshine hours.

2.2. Measured Plant Traits of Maize

Three samples from each field of study were collected immediately following re-
flectance measurements from maize canopies to quantify different measured traits (LAI,
BFW and Chlm). Following the collection of the spectral data, a square area of 1 m length
from the same locations of spectra acquisition was sampled at the ground level, and its
above-ground biomass fresh weight was immediately identified. This was repeated three
times and the average values were used to keep variations at a minimum. LAI was calcu-
lated as the ratio between total leaf area of a certain number of harvested plants and the
area occupied by these plants. After calculating the leaf area for each sample point, the LAI
was calculated by dividing the total leaf area for each sample by the area occupied by these
plants according to Elmetwalli [6] as follows:

LAI = LA/OA (1)

where LAI is the leaf area index, LA is the leaf area per sample, and OA is the occupied
land area.

Chlorophyll was measured during field work visits using a hand-held SPAD (Soil
Plant Analysis Development)-502 m (Minolta, Osaka, Japan). Apical leaves were chosen
to measure Chlm. To reduce variability, Chlm was measured at three different locations
on each leaf from the leaf tip to the leaf base and the average of these three readings
was calculated.

2.3. Ground-Based Remote-Sensing Measurements

For maize, radiometric ground-based measurements were undertaken throughout
15 fields in the study area during the summer growing season of 2007, concurrent with
the acquisition of QuickBird satellite imagery. From June 28 to 30, spectra were obtained
from random fields, taking into account the scale of the field and the stress status of these
fields. The reflectance of crop canopies was measured using an ASD FieldSpec handheld
spectroradiometer. The ASD FieldSpec has two units, one connected to a diffuser to
measure the light radiation as a reference signal and the second unit captures the spectral
reflectance from the canopy at 300 and 1000 nm and is interpolated to a final spectral
resolution of 0.5 nm. The instrument was pointed at the same angle (nadir position) to
minimize changes. To keep illumination difference at a minimum, the canopy reflectance
was calculated by using a calibration factor obtained from a white reference standard which
was a custom built to correct readings from the spectrometer unit. This was done prior
collecting reflectance at every location. Finally, the spectral reflectance was smoothed to
eliminate noise at the beginning and end of the electromagnetic spectrum by passing it
through a 5 nm running mean filter over the whole spectrum. Spectral reflectance from the
visible (VIS) and near infrared (NIR) was used to calculate the selected spectral indices. To
keep consistent illumination over field work visits, spectra measurements were restricted
at noon to keep the variation at a minimum and to minimize the influence of changes in
solar zenith angle. During spectra collection, an iron stand of 3 m height was used to keep
the spectrometer at a consistent distance from the soil surface.
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2.4. Remote-Sensing Image Acquisition, Processing and Analysis

QuickBird high spatial resolution images of the maize crop within the study area
were acquired. The QuickBird satellite is a high spatial resolution satellite comprising four
multi spectral bands (blue, green, red and near infrared) of 2.4 m spatial resolution. The
QuickBird satellite image of maize fields was acquired at 09:13 h GMT on 29 June 2007.
The image was radiometrically corrected by the supplier of the image (Infoterra group
based in the UK). The images were geo-corrected using an image to image technique using
ground control points (GCP) collected for fixed points during various field visits cover-
ing the entire study site. The images were atmospherically corrected using the FLAASH
(Fast Line-of-sight Atmospheric Analysis of Hypercubes) module technique in ENVI v4.9.
FLAASH is considered to be more accurate than non-physics-based models such as QUAC
(QUick Atmospheric Correction) and is a remarkably established atmospheric compen-
sation algorithm and it is mainly supportive for the majority of multi and hyper spectral
remote-sensing platforms. Images were also classified using both unsupervised classifica-
tion (k-means) and supervised classification (MLC; Maximum Likelihood Classification) to
identify different crops in each image. K-means unsupervised and maximum likelihood
supervised algorithms were used to identify different crops in the study site. K-means
is one of the commonly used unsupervised classification algorithms and during the cal-
culation of overall classification efficiency and Kappa coefficient. We tried both k-means
and iso data algorithms and k-means produced higher efficiencies. These two algorithms
were performed on QuickBird using the ENVI v4.9 package. The advantage of the k-means
is that no additional ground reference points are required to perform the classification.
Unlike the k-means technique, MLC requires a reference dataset during imagery acquisition
to perform this algorithm. A confusion matrix was derived for both k-means and MLC
classifications of the QuickBird satellite imagery. To perform the supervised algorithm, a
validation dataset, which was independent from the training dataset, was created manually.
The validation dataset included at least 2000 pixels for each class to avoid interference
between various classes.

2.5. Calculating Vegetation Spectral Indices

Ten commonly used broad band vegetation-SRIs were derived from both radiometric
ground-based data and QuickBird satellite imagery to assess the ability of remote sensing
to detect maize traits. Table 2 summarizes the formulae of varying vegetation-SRIs along
with references. The vegetation-SRIs were selected based on their sensitivity to changes in
biomass, leaf pigmentation, leaf/tissue structure and plant water content.

Table 2. Formulae of selected spectral reflectance indices (SRIs) and references collected from the literature.

Vegetation-SRIs Formulae Reference

Stress index (SI) Red/NIR [46]
Infra-red percentage vegetation index (IPVI) NIR/(NIR+Red) [47]

Optimized soil adjusted vegetation index (OSAVI) ((NIR − Red)/(NIR + Red + L)) × (1 + L), L = 0.16 [48]
Green normalized difference vegetation index (GNDVI) (NIR − green)/(NIR + green) [18]

Difference vegetation index (DVI) NIR − Red [49]
Simple ratio (SR) NIR/Red [50]

Specific leaf area vegetation index (SLAVI) NIR/(Red + NIR) [51]
Normalized difference vegetation index (NDVI) (NIR − Red)/(NIR + Red) [52]

Vegetation index (VI) NIR/(green-1) [53]
Renormalized difference vegetation index (RDVI)

√
NDVI x VI [54]

2.6. Partial Least Squares Regression

Partial least squares regression (PLSR) is a versatile tool that can easily manage
data when the number of input variables is much greater than the number of target
variables, and the input variables have a lot of collinearity and noise [55,56]. In this
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study, to link the input variables (vegetation-SRIs listed in Table 1, which are derived
from both radiometric ground-based data and QuickBird satellite imagery) to the output
variables (three destructively measured traits), PLSR was combined with leave-one-out
cross-validation (LOOCV). An important step in PLSR analysis is to select the optimal
number of latent variables (LVs) in order to represent the calibration data without over-
fitting or under-fitting. LVs parameter was calculated using the (LOOCV) according to the
lowest value of the root means squared error (RMSE). Random 10-fold cross-validation
was applied on the datasets to increase the robustness of the results as indicated by
the software program Unscrambler X software version 10.2 (CAMO Software AS, Oslo).
The performance of PLSR models based on SRIs derived from two methods and their
combination were evaluated to predict the four measured traits of maize and wheat. The
best model for both calibration (Cal.) and validation (Val.) was chosen depending on the
lowest value of RMSE and mean absolute deviations (MAD) as well as the highest value
for R2.

2.7. Multiple Linear Regression

Multiple linear regression (MLR) is a regression technique that analyzes a dependent
parameter (destructively measured traits) using two or more independent parameters (SRIs
are listed in Table 1, which were derived from both radiometric ground-based data and
QuickBird satellite imagery). MLR attempts to model the linear relationship between the
independent and the response (dependent) variable [36–38]. In addition, MLR was used
to predict three measured traits as PLSR. The best model for both Cal. and Val. was also
chosen depending on the lowest value of RMSE and mean absolute deviations (MAD)
as well as the highest value for R2. The least squares approach was used to calculate the
parameters using the regression equation, which minimizes the sum of the errors squared.
The formula of MLR is:

Yi = β0 + β1xi1+ β2xi2 + . . . . . . . . . + βpxip + ε (2)

where, for i = n observations, Yi = dependent variable, xi = explanatory variables,
β0 = y-intercept (constant term), βp = slope coefficients for each explanatory variable,
ε = the model’s error term (also known as the residuals).

2.8. Statistical Analysis

This statistical analysis was performed using SPSS version 12.0 (SPSS Inc., Chicago,
IL, USA). Data were checked for normality using the Anderson–Darling method with 95%
significance level. Additionally, a simple linear regression of the relationship between the
selected SRIs and the three plant traits was performed using SigmaPlot version 11.0 (Systat
Software Inc., San Jose, CA, USA) to identify optimal SRIs based on the highest value for
R2. The significance level of the coefficients of determination (R2) for these relationships
was set at the 0.05 probability level.

3. Results and Discussion
3.1. Impact of the Full Irrigated and Different Stress Conditions on Three Measured Traits of Maize

Fifteen fields in this study, which were exposed to full irrigation and different stress
conditions such as water and salinity stress, were chosen to present the variation in the
values of LAI, BFW and Chlm of maize. There were clear differences in the values of the
three measured traits of maize between the different treatments. For example, LAI varied
from 2.38 to 3.13 for irrigation, 1.29 to 2.17 for water stress, and 0.27 to 0.99 for salinity
stress (Table 3). The BFW varied from 2.45 to 2.80 kg m−2 for irrigation, 1.20 to 1.83 kg m−2

for water stress, and 0.25 to 0.86 kg m−2 for salinity stress. The Chlm varied from 47.9 to
49.3 for irrigation, 42.8 to 50.1 for water stress, and 31.1 to 34.8 for salinity stress (Table 3).
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Table 3. Mean and standard deviation (SD) of leaf area index (LAI), biomass fresh weight (BFW) and chlorophyll meter
(Chlm) of maize.

Fields Field Code Treatment LAI SD BFW (kg m−2) SD (kg m−2) Chlm SD

Field 1 SA Irrigated 3.13 a 0.14 2.80 a 0.08 49.3 a 0.86
Field 2 FA Water stress 1.39 f 0.13 1.32 e 0.10 49.1 a 0.76
Field 3 SL Water stress 1.29 f 0.08 1.20 e 0.05 42.8 b 0.59
Field 4 FA Salinity stress 0.27 h 0.02 0.86 f 0.05 31.6 d 1.41
Field 5 HE Water stress 1.97 e 0.08 1.83 c 0.05 49.4 a 1.55
Field 6 RA Irrigated 2.55 bc 0.12 2.45 b 0.10 47.9 a 0.70
Field 7 HJ Water stress 2.17 de 0.20 1.60 d 0.03 50.1 a 2.11
Field 8 EZ Salinity stress 0.31 h 0.04 0.27 h 0.06 33.1 cd 1.41
Field 9 AH Salinity stress 0.43 h 0.05 0.28 h 0.05 31.9 d 1.50
Field 10 OM Salinity stress 0.34 h 0.07 0.25 h 0.02 33.0 cd 1.41
Field 11 ME Irrigated 2.67 b 0.27 2.79 a 0.09 49.0 a 1.86
Field 12 AB Irrigated 2.38 cd 0.18 2.55 b 0.12 48.8 a 0.67
Field 13 EZ Salinity stress 0.43 h 0.05 0.30 h 0.04 34.8 c 1.95
Field 14 RE Salinity stress 0.95 g 0.23 0.62 g 0.21 33.9 cd 1.63
Field 15 BA Salinity stress 0.99 g 0.08 0.70 g 0.09 33.0 cd 1.31

The mean values with the same letter are not statistically different (p > 0.05) between different treatments among different fields.

Water stress presented the second order in terms of affecting measured traits after
salinity stress treatments. The remarkable differences in LAI and biomass between water
stress and full irrigation may be related to the photosynthetic processes that are closely
linked to the growth of leaves and whole biomass. The efficiency of radiation transfer
to dry matter by photosynthesis is a major factor in total above-ground biomass accu-
mulation. Other studies agreed with our finding since they reported that water shortage
during the vegetative growth stage of maize plants could inhibit the growth and leaf area
of maize [57–61]. Insufficient available soil water weakens maize metabolism, reduces
biomass accumulation, and reduces photosynthetic rate by lowering chlorophyll content in
leaves, ultimately lowering maize yield [62–69].

The salinity stress strongly affected the measured traits of maize compared to the
other treatments. Salinity reduces BFW and LAI by inhibiting leaf initiation and expansion,
as well as internode development, and by accelerating leaf abscission [4,5]. Furthermore,
under salt stress, a decrease in photosynthetic pigments such as chlorophylls a and b, as
well as carotenoids, is related to a decrease in net photosynthesis rate in maize [5,70]. These
findings emphasize the importance of simultaneous and frequent assessment of measured
traits for improving the tolerance of maize to different stress conditions. However, im-
proving maize tolerance requires methods that allow for simple, fast, and non-destructive
evaluation of large-scale fields on a regular basis; these methods will be discussed in
detail below.

3.2. Identifying Different Crops in the Study Area

Both classification algorithms mainly produced five different classes including maize,
tomato, melon, water, and bare soil. A confusion matrix was derived for both algorithms to
evaluate their ability to show the overall accuracy, accuracy for classifying each class, Kappa
coefficient as a percentage, user’s accuracy, and producer’s accuracy as a percentage. The
results showed that the overall classification accuracy of the MLC algorithm for different
classes is high, ranging from 89.9% (for maize) to 96.8% (for water). Similar to the overall
accuracy, both user’s and producer’s accuracy were also high in MLC (>0.86). It can also
be seen that the classification accuracy for identifying maize crops using MLC was very
high (>0.80) with high classification accuracies for other classes (Table 4).
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Table 4. Confusion matrix results for the MLC (Maximum Likelihood Classification) algorithm of maize and other crops in
south-west Alexandria, Egypt.

Class
Ground Truth (%)

User’s Accuracy
Maize Tomato Melon Bare Soil Water Total

Unclassified 0.00 0.00 0.00 0.00 0.00 0.00 (%)
Maize 89.87 4.66 5.1 4.07 0.00 20.81 86.70

Tomato 3.28 93.67 1.67 0.19 0.00 19.98 94.82
Melon 2.06 0.19 92.40 0.00 0.09 19.25 97.55

Bare soil 4.78 1.49 0.46 95.74 3.12 20.60 90.40
Water 0.00 0.00 0.37 0.00 96.79 19.36 99.61
Total 100 100 100 100 100 100.00

Producer’s accuracy (%) 89.87 93.67 92.4 95.74 96.79
Kappa coefficient 0.921
Overall accuracy 93.67%

Although the k-means classifier algorithm produced very high classification accuracy
for maize (93.46) in Table 5, it showed less accuracy in identifying tomato crops, which
may lead to many misclassified pixels and thus low overall accuracy. Consequently,
the unsupervised classification algorithm produced very high accuracy for identifying
maize fields, but the overall accuracy and classification accuracy for single classes were
lower compared with the MLC algorithms. Moreover, kappa coefficient values in the
MLC algorithm were comparable to those obtained from the k-means classifier. The MLC
algorithm showed high overall accuracy and single classification accuracy at the same time
as identifying various classes in summer.

Table 5. Confusion matrix results for k-means algorithm of maize and other crops in south-west Alexandria, Egypt.

Class
Ground Truth (%)

User’s Accuracy
Maize Tomato Melon Bare Soil Water Total

Unclassified 0 0 0 0 0 0 (%)
Maize 93.46 41.88 3.6 0.67 1.67 26.56 61.91

Tomato 6.09 58.12 2.43 0.96 32.32 20.63 59.90
Melon 0.23 0.00 93.77 3.94 0.00 19.97 95.73

Bare soil 0.23 0.00 0.00 66.01 0.29 13.39 99.80
Water 0.00 0.00 0.19 0.00 94.13 19.46 99.26
Total 100 100 100 100 100 100

Producer’s accuracy (%) 93.46 58.12 93.77 94.13 66.01
Kappa coefficient 0.758
Overall accuracy 80.62%

3.3. Evaluation of Spectral Reflectance Indices (SRIs) Extracted from Radiometric Ground-Based
Data and High Resolution Satellite Imagery to Assess Plant Traits of Maize under Different
Stress Conditions

In this study, the performance of the selected vegetation-SRIs from both techniques
of radiometric ground-based data and high resolution satellite images were evaluated
to assess the three measured traits across well-irrigated, water stress and salinity stress
conditions. Vegetation-SRIs, such as those listed in Table 2, are useful for monitoring
changes in pigment content, photosynthetic efficiency, biomass accumulation, leaf area
index and other aspects of vegetation canopy growth and health [39–41,71,72]. The results
showed that the majority of SRIs extracted from radiometric ground-based data and high-
resolution QuickBird satellite imagery were more effective in estimating LAI, BFW, and
Chlm. The R2 of the significant relationships between vegetation-SRIs of radiometric
ground-based data and the three measured traits varied from 0.64 to 0.89 (Figure 2). As
well as with the high resolution QuickBird satellite imagery, R2 varied from 0.34 to 0.84
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(Figure 2). For radiometric ground-based data, the relationships between GNDVI and LAI
and BFW showed the highest R2, which was 0.98 and 0.86, respectively (Figure 2). With
high resolution QuickBird satellite imagery, the relationships between GNDVI and LAI and
BFW showed the highest R2, which was 0.80 and 0.84, respectively (Figure 2). The VI index
derived from radiometric ground-based data failed to estimate the three measured traits,
but the VI index derived from high-resolution QuickBird satellite imagery presented strong
relationships with LAI and BFW, and moderate relationships with Chlm. In agreement
with our results, many ground-based remote-sensing and satellite-based vegetation indices
perform well in assessing crop growth performance and chlorophyll meter. The simple
ratio (SR) and the GNDVI were noticed to be sensitive to greater LAI and BFW [31,33,73].
For example, Mzid et al. [73] found that LAI, NDVI, optimized soil adjusted vegetation
index (OSAVI), and enhanced vegetation index (EVI) regressions of wheat tended to have
high correlations with R2 values equal to or higher than 0.70. Shanahan et al. [74] found
that GNDVI had higher correlations with chlorophyll meter than NDVI, with overall
correlations of around 0.90 at the V15 growth stage.
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Figure 2. Coefficients of determination (R2) for the relationship between selected spectral reflectance
indices (SRIs) in Table 1 extracted from radiometric ground-based data and QuickBird satellite
imagery with leaf area index (LAI), biomass fresh weight (BFW) and chlorophyll meter (Chlm) of
maize under full irrigated and different stress conditions.

Several vegetation-SRIs in this study were calculated based on the NIR and red (R)
bands. In this trend, previous studies have shown that NIR and R band vegetation indices
are effective for estimating the BFW and biomass dry weight (BDW) [75–77]. In general,
the majority of vegetation-SRIs of radiometric ground-based data showed higher R2 with
measured traits compared to the vegetation-SRIs extracted from high-resolution QuickBird
satellite imagery (Figure 2). Overall, the ground-based vegetation indices and the satellite-
based indices were found to be in good agreement with the measured traits. The results
obtained from this study showed that radiometric ground-based measurements and high
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spectral resolution remote-sensing imagery have the potential to offer necessary crop
monitoring information across well-irrigated, water stress and salinity a stress. Combining
remote sensing and field data may be essential to optimize the plant response under
different stress conditions and boost agricultural production.

3.4. Performance of Partial Least Square Regression (PLSR) and Multiple Linear Regression
(MLR) Models to Predict the Measured Traits of Maize

Although SRIs are simple to calculate and several indices have been effective in
estimating measured traits, they are constrained by their use of just a few bands and are
affected by vegetation saturation or varying degrees, as well as timeliness and regional
specificity [38–41,78,79]. Multivariate regression models such as PLSR and MIR have
previously been shown to be alternative methods to SRIs for explaining the relationships
between plant-measured traits and spectral reflectance and perform equally well or better
than SRIs for estimating the changes in these traits [42,45]. In this study, the vegetation-SRIs
of radiometric ground-based measurements and the same vegetation-SRIs extracted from
QuickBird satellite imagery, and their combination were applied to PLSR and MLR in order
to predict the LAI, BFW and Chlm. To the best of our knowledge, data fusion from different
platform sensors adopted in the measured traits models and prediction of field trials has
not been used.

To reduce the strongly collinear independent variables to a small minority of orthogo-
nal factors, multivariate statistical techniques, PLSR models, based on the selected spectral
indices, were tested to measured traits of maize. PLSR techniques can be used to identify
optimized models that enhance the efficiency when searching for optimized relationships.
The number of latent variables is used. The calibration (Cal.) models of PLSR and MLR
showed the highest performance in predicting the measured traits based on the combina-
tion of vegetation-SRIs from two methods with R2 = 0.92–0.93 for LAI, R2 = 0.92–0.94 for
BFW, and R2 = 0.79–0.87 for SPA (Tables 6 and 7). Furthermore, validation (Val.) models
showed the highest performance in predicting the measured traits based on the combina-
tion of vegetation-SRIs from two methods with R2 = 0.91 for LAI, R2 = 0.91–0.93 for BFW,
and R2 = 0.82 for SPAD (Tables 6 and 7). The two models of PLSR and MLR presented ap-
proximately the same performance in predicting the three measurement traits and no clear
difference was found through the two methods and their combinations (Tables 6 and 7;
Figures S1–S3 (Supplementary Material) and Figures 3–5). The Cal. and Val. of PLSR
models based on vegetation-SRIs of radiometric ground-based measurements showed a
greater performance in predicting LAI, BFW and Chlm than the PLSR models of QuickBird
satellite imagery (Table 6; Figures 3–5).

Table 6. Results of calibration (R2
cal, RMSEC and MADc), and 10-fold cross-validation (R2

cal, RMSEv and MADv) partial
least square regression (PLSR) models of the relationship between selected spectral reflectance indices extracted in Table 1
from radiometric ground-based data, QuickBird satellite and both of them with leaf area index (LAI), biomass fresh weight
(BFW) and chlorophyll meter (Chlm) of maize.

SRIs Types
Measured
Variables LVs

Calibration Validation

R2
cal RMSEc MADc R2

val RMSEv MADv

Radiometric
ground-based data

LAI 2 0.89 *** 0.32 0.28 0.88 *** 0.34 0.29
BFW 1 0.91 *** 0.29 0.24 0.90 *** 0.30 0.25
Chlm 2 0.85 *** 3.07 2.29 0.85 *** 3.33 2.47

QuickBird satellite
LAI 2 0.79 *** 0.43 0.32 0.77 *** 0.45 0.34
BFW 2 0.84 *** 0.37 0.26 0.83 *** 0.39 0.28
Chlm 2 0.62 *** 4.92 3.92 0.57 *** 5.23 4.19

Both methods
LAI 3 0.92 *** 0.27 0.23 0.91 *** 0.29 0.25
BFW 1 0.92 *** 0.27 0.23 0.91 *** 0.29 0.25
Chlm 3 0.86 *** 3.05 2.26 0.82 *** 3.40 2.55

Levels of significance: ***: p < 0.001, RMSEc is root means squared error for calibration, MADc is mean absolute deviations for calibration,
RMSEv is root means squared error for validation, and MADv is mean absolute deviations for validation.
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Table 7. Results of calibration (R2
cal, RMSEC and MADc), and 10-fold cross-validation (R2

cal, RMSEv and MADv) of
multiple linear regression models (MLR) of the relationship between selected spectral reflectance indices extracted in Table 1
from radiometric ground-based data, QuickBird satellite and both of them with leaf area index (LAI), biomass fresh weight
(BFW) and chlorophyll meter (Chlm) of maize.

SRIs Types
Measured
Variables

Calibration Validation

R2
cal RMSEC MADc R2

val RMSEV MADv

Radiometric
ground-based data

LAI 0.89 *** 0.34 0.28 0.87 *** 0.35 0.30
BFW 0.91 *** 0.29 0.24 0.89 *** 0.30 0.25
Chlm 0.85 *** 3.18 2.29 0.82 *** 3.37 2.47

QuickBird satellite
LAI 0.80 *** 0.45 0.32 0.77 *** 0.46 0.34
BFW 0.84 *** 0.38 0.27 0.83 *** 0.39 0.28
Chlm 0.62 *** 5.09 3.91 0.57 *** 5.26 4.17

Both methods
LAI 0.93 *** 0.28 0.22 0.91 *** 0.29 0.24
BFW 0.94 *** 0.24 0.19 0.93 *** 0.26 0.21
Chlm 0.85 *** 3.18 2.31 0.82 *** 3.41 2.61

Levels of significance: ***: p < 0.001.

For example, the calibration (Cal.) models showed the highest performance in predict-
ing the measured traits based on vegetation-SRIs from radiometric ground-based measure-
ments, with R2 = 0.89, root means squared error for calibration (RMSEc) = 0.32, and mean
absolute deviations (MADc) = 0.28 for LAI, R2 = 0.91, RMSEc = 0.29, and MADc = 0.24
for BFW, and R2 = 0.85, RMSEc = 3.07, and MADc = 2.29 for Chlm (Table 6; Figures 3–5).
Ge et al. [35] found that PLSR based on spectral reflectance gave higher prediction accuracy
for leaf chlorophyll content, specific leaf area and leaf water content of maize compared
to vegetation indices. Hansen and Schjoerring [42] obtained a better estimate of green
biomass and leaf nitrogen concentration of winter wheat in a field experiment when using
PLSR rather than the best of narrow-band SRIs. In addition, Sharabian et al. [43] found
that PLSR models could improve the assessment of the GY dataset (R2 = 0.87, RMSE = 301)
and chlorophyll meter (R2 = 0.84, RMSE 1.94) since strong relationships exist between the
predicted and measured values for a validation.

The Cal. and Val. of PLSR and MLR models based on vegetation-SRIs of radio-
metric ground-based measurements showed a higher performance in predicting LAI,
BFW and Chlm compared to the PLSR and MLR models of QuickBird satellite imagery
(Tables 6 and 7; Figures S1–S3 and Figures 3–5). For example, the Cal. models showed
the highest performance in predicting the measured traits based on vegetation-SRIs from
radiometric ground-based measurements, with R2 = 0.87, RMSEc = 0.35, and MADc = 0.30
for LAI, R2 = 0.89, RMSEc = 0.30, and MADc = 0.25 for BFW, and R2 = 0.82, RMSEc = 3.37,
MADc = 2.47 for Chlm (Table 7). Han et al. [78] found that MLR based on remote-sensing
spectral data produced acceptable accuracy in predicting above-ground biomass. In addi-
tion, Luo et al. [79] found that both the MLR and support vector machine (SVR) models
based on spectral data showed the accuracy estimation of LAI and biomass of maize at the
flowering stage since the growth and development of a maize canopy reaches a plateau at
flowering, and LAI and biomass no longer grow as quickly. The overall results indicate
that the proposed PLSR and MLR models based on the combination of vegetation-SRIs
from two methods can improve the accuracy of plant trait estimates.
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using the PLSR models based on selected vegetation-(SRIs) extracted from (a) radiometric ground-based data, (b) extracted
from QuickBird satellite imagery and, (c) extracted from both methods.
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Figure 4. Comparison between measuring series, calibrating series and validating series for biomass fresh weight (BFW)
of maize using the PLSR models based on selected vegetation-(SRIs) extracted from (a) radiometric ground-based data,
(b) extracted from QuickBird satellite imagery, and (c) extracted from both methods.



Sensors 2021, 21, 3915 15 of 19
Sensors 2021, 21, x FOR PEER REVIEW 15 of 20 
 

 

(a) Radiometric ground-based data

Number of samples

0 10 20 30 40 50

C
h

lm

25

30

35

40

45

50

55

60
Measured Chlm

Calibrated Chlm

Validated Chlm

Measured Chlm

25 30 35 40 45 50 55 60

P
re

d
ic

te
d

 C
h

lm

25

30

35

40

45

50

55

60

Cal. y = 0.8507x + 6.154

Val.  y = 0.8376x + 6.733

 

(b) QuickBird satellite imagery

Number of samples

0 10 20 30 40 50

C
h

lm

30

40

50

60
Measured Chlm

Calibrated Chlm

Validated Chlm

Measured Chlm

25 30 35 40 45 50 55 60

P
re

d
ic

te
d

 C
h

lm

25

30

35

40

45

50

55

60

Cal. y = 0.6164x + 15.810

Val.  y = 0.5898x + 16.893

(c) Both methods

Number of samples

0 10 20 30 40 50

C
h

lm

30

40

50

60
Measured Chlm

Calibrated Chlm

Validated Chlm

Measured Chlm

25 30 35 40 45 50 55 60

P
re

d
ic

te
d

 C
h

lm

25

30

35

40

45

50

55

60

Cal. y = 0.853x + 6.063

Val.  y = 0.8309x + 6.910

 

Figure 5. Comparison between measuring series, calibrating series and validating series for chlorophyll meter (Chlm) of 

maize using the PLSR models based on selected vegetation-(SRIs) extracted from (a) radiometric ground-based data, (b) 

extracted from QuickBird satellite imagery, and (c) extracted from both methods. 

The Cal. and Val. of PLSR and MLR models based on vegetation-SRIs of radiometric 

ground-based measurements showed a higher performance in predicting LAI, BFW and 

Figure 5. Comparison between measuring series, calibrating series and validating series for chlorophyll meter (Chlm)
of maize using the PLSR models based on selected vegetation-(SRIs) extracted from (a) radiometric ground-based data,
(b) extracted from QuickBird satellite imagery, and (c) extracted from both methods.
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4. Conclusions

In this study, the performance of vegetation-SRIs extracted from radiometric ground-
based data and high-resolution QuickBird satellite imagery to assess the leaf area index
(LAI), biomass fresh weight (BFW) and chlorophyll meter (Chlm) of maize across full
irrigation, water stress and salinity stress in the Nile Delta of Egypt was investigated.
The performance of partial least squares regression (PLSR) and multiple linear regression
(MLR) were evaluated to estimate the three measured traits based on vegetation-SRIs
extracted from two methods and their combination. Our results indicated that the majority
of vegetation-SRIs extracted from both methods could assess plant traits. In general, the
vegetation-SRIs of radiometric ground-based data showed higher R2 with measured traits
compared to the vegetation-SRIs extracted from high resolution satellite imagery. Overall,
the ground-based vegetation-SRIs and the satellite-based indices were found to be in
good agreement to assess the measured traits. The calibration (Cal.) and validation (Val.)
of PLSR and MLR models based on vegetation-SRIs of radiometric ground-based data
showed a higher performance in predicting LAI, BFW and Chlm compared to the PLSR
and MLR models of QuickBird satellite imagery. Both Cal. and Val. models of PLSR and
MLR showed the highest performance in predicting the three measured traits based on the
combination of vegetation-SRIs from radiometric ground-based data and high resolution
QuickBird satellite imagery. Finally, this work’s main conclusion is that both methods of
ground-based remote sensing and high-resolution QuickBird satellite imagery can provide
a useful tool for estimating maize crop traits. Our models are simple and can be used
in non-destructive and large-scale methods to assess plant morpho-physiological traits
quickly and accurately.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s21113915/s1, Figure S1: Comparison between measuring series, calibrating series and
validating series for leaf area index (LAI) of maize using the MLR models based on selected vegetation-
SRIs extracted from (a) radiometric ground-based data, (b) extracted from QuickBird satellite imagery
and (c) extracted from both methods, Figure S2: Comparison between measuring series, calibrating
series and validating series for biomass fresh weight (BFW) of maize using the MLR models based
on selected vegetation-SRIs extracted from (a) radiometric ground-based data, (b) extracted from
QuickBird satellite imagery and (c) extracted from both methods, Figure S3: Comparison between
measuring series, calibrating series and validating series for Chlorophll meter (Chlm) of maize using
the MLR models based on selected vegetation-SRIs extracted from (a) radiometric ground-based
data, (b) extract from QuickBird satellite imagery and (c) extracted from both methods.
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