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Abstract: Volatile organic compounds (VOCs) are chemicals emitted by various groups, such as
foods, bacteria, and plants. While there are specific pathways and biological features significantly
related to such VOCs, detection of these is achieved mostly by human odor testing or high-end
methods such as gas chromatography–mass spectrometry that can analyze the gaseous component.
However, odor characterization can be quite helpful in the rapid classification of some samples
in sufficient concentrations. Lower-cost metal-oxide gas sensors have the potential to allow the
same type of detection with less training required. Here, we report a portable, battery-powered
electronic nose system that utilizes multiple metal-oxide gas sensors and machine learning algorithms
to detect and classify VOCs. An in-house circuit was designed with ten metal-oxide sensors and
voltage dividers; an STM32 microcontroller was used for data acquisition with 12-bit analog-to-
digital conversion. For classification of target samples, a supervised machine learning algorithm
such as support vector machine (SVM) was applied to classify the VOCs based on the measurement
results. The coefficient of variation (standard deviation divided by mean) of 8 of the 10 sensors
stayed below 10%, indicating the excellent repeatability of these sensors. As a proof of concept,
four different types of wine samples and three different oil samples were classified, and the training
model reported 100% and 98% accuracy based on the confusion matrix analysis, respectively. When
the trained model was challenged against new sets of data, sensitivity and specificity of 98.5% and
98.6% were achieved for the wine test and 96.3% and 93.3% for the oil test, respectively, when the
SVM classifier was used. These results suggest that the metal-oxide sensors are suitable for usage in
food authentication applications.

Keywords: metal-oxide sensor; olfactory; portable instrument; food authentication; machine-learning;
electronic nose

1. Introduction

Among the human senses, olfaction is a sensitive method involving the detection of
small numbers of molecules in the environment. There are many applications of olfaction in
everyday life; however, in many of these areas, such as food analysis, the use of odors has
been limited since humans have several limitations when discriminating between different
smells. For example, a high amount of experience and training is required, sensory results
can be subjective rather than objective, and the nose is subject to sensory fatigue with time
and has a limited ability to distinguish between very similar odors. Until relatively recently,
there have been few electronic sensors sensitive or selective enough to replace operators
trained to discriminate between different odors. Electronic noses have the ability to offer
improvements in all of these aspects.

There are several types of sensors and instruments for sensing odors. Gas chromatog-
raphy (GC) passes the sample through a small tube filled with a stationary phase in order
to separate components by retention time [1]. This method can easily separate some com-
pounds, while others produce overlapping peaks. Mass spectrometry (MS) also achieves
high selectivity and, when combined with gas chromatography, is able to separate and
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identify most compounds. Despite the advantages of this technique (GC–MS), analysis is
time-consuming and the equipment itself requires capital investment as well as extensive
training to operate and interpret the results, all of which prevents its widespread deploy-
ment in portable and resource-limited environments [2,3]. Another type of sensor is the
quartz crystal microbalance (QCM), which consists of a quartz crystal resonating at its
resonant frequency [3–6]. When gas from a sample is passed over the QCM, the change in
the resonant peak can be used to detect specific gases. Since the odors need only to stick to
the coating, a wide variety of coatings can be used, meaning that this technique is sensitive
to a large range of compounds. However, the circuitry to operate these sensors can be
complicated, because the resonant frequencies are in the megahertz range and simultane-
ous detection of multiple types of gases requires a complicated manufacturing process [7].
Metal-oxide semiconductors are more commonly used than any other class of gas sensors
to provide arrays for odor sensing [8]. This type of sensor detects gases by measuring the
conductivity change due to the adsorption of gas molecules on the surface of a metal-oxide
semiconductor [9]. Tin oxide is typically used as the sensitive layer. When heated, oxygen
is adsorbed, changing the charge within the crystalline structure and thus changing the
resistance. Reducing gases decrease the amount of oxygen in the layer, lowering the resis-
tance [10]. Tin-oxide sensors have overlapping sensitivities and not very high selectivity,
similarly to biological systems [4]. This is not a problem because the combination of output
from an array of sensors can be used to determine the characteristic odors, and the sensor
arrays can be tailored to a range of applications owing to the large number of varieties on
the market. Moreover, for their simplicity, light weight, and relatively low cost compared
to other sensing technologies, portable-type sensors that utilize metal-oxide detectors have
already been reported in many applications [11].

Applications for a low-cost, widely available electronic nose include various food
safety applications such as detecting food adulteration [12], food spoilage [13], or drugs [14].
Qi et al. reported a liquor discrimination sensor that can distinguish fake and real liquors [12].
While interesting, this sensor does not provide a concentration limit, requires a pump, must
be washed out after every sample, and can report only binary classification results with
four sensors. A series of TGS sensors have been used to differentiate cannabis samples;
the system is still computer-controlled, with a large footprint, and also requires a pump to
circulate the cannabis samples [14]. Other e-noses that have been reported commonly use a
benchtop system with wall power and require a pump (or motor) and valves to operate the
system [10,15,16]. Amari et al. reported using metal-oxide sensors to classify the age of raw
milk using principal component analysis (PCA) and support vector machines (SVM) [17].
This design employed nitrogen to sample the headspace of each sample. Chen et al. used
metal-oxide sensors to estimate the concentration of gases, but had the entire apparatus in a
temperature- and humidity-controlled chamber [18]. Xu et al. used metal-oxide sensors to
classify pecans; a purge of the system was required between samples [19]. Li et al. sampled
the headspace of an enclosed container using multiple sensors with temperature cycling
to obtain more data [20]. A portable power pack was also an option for running their
electronic nose. Most sampling methods used an evaporation chamber and air flow from
a pump, which increased the total system complexity and cost. It has been known for
some time that bacteria emit different odors that can be used as biomarkers. This has been
extensively explored with techniques such as GC–MS. Although applications of electronic
nose technology have been limited by the low dimensionality of traditional metal-oxide
sensor arrays, practical results have been achieved for the classification of a small number
of bacterial and fungal species [21–26].

Several main techniques are used to classify different odors once data have been
collected. The most common technique for electronic noses is principal component analysis.
PCA has the ability to reduce high-dimensional data to much lower-dimensional data,
significantly simplifying further analysis. Each principal component is orthogonal to other
components and contains a fraction of the variance found in the original dataset. While
PCA is useful for reducing the dimensionality of the data, it cannot be used to classify
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data on its own. For this task, support vector machines or neural networks, similar to
biological systems, are used [7]. An SVM attempts to find a hyperplane that best separates
the data [16]. K nearest neighbors (KNN) can also be used to classify odors.

Recognizing the growing interest in portable electronic noses and previously reported
systems, this paper presents a portable metal-oxide sensor-based electronic nose that
consists of ten different metal-oxide sensors. The battery-powered system has a fan to
control the air flow, and the overall size fits within an adult’s palm, making it suitable for
field-deployable applications. For validation of the proposed device, four wine and three
oil samples were tested and the classification performance was compared among 24 types
of machine learning classifiers.

2. Materials and Methods
2.1. Sensor Selection

Since the goal was to build a low-cost, portable electronic nose, metal-oxide sensors
were chosen. These sensors have small footprints, have low power consumption, and still
provide high sensitivity for certain VOCs. Since VOCs are compounds that indicate the
presence of certain types of biochemical activity, a matrix of potential sensors with their
sensitivities was composed to assess the potential of the list of commercially available
sensors (Figure 1). These data were obtained from the datasheets for each of the 10 sensors.
Each sensor’s data were normalized based on the maximum sensitivity of each sensor,
which was the slope of the concentration versus resistance change. In addition, they also
showed the cross-sensitivities and response graphs of each sensor, allowing for more
detailed responses for each sensor to be predicted. From this information, a list of sensors
was selected in order to detect the maximum number of VOCs while limiting overlap
between the sensors. The final set of sensors used were MQ-2 for flammable gases, MQ-5
for natural gas, MICS-5524 for carbon monoxide and natural gas, SGAS-707 for VOCs,
MQ-3 for alcohol, MQ-4 for natural gas, MQ-6 for flammable gases, TGS-822 for VOCs,
and TGS-2602 for air contaminants, based on Figure 1. Supplementary Materials Table
S1 shows detailed information of the full list of surveyed sensors and the boldface row
displays the selected sensors.
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detectability of 17 chemical species. Sensor selection was determined based on wider selection of
chemical species with strongest sensitivities.
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2.2. Circuit Design

The main controller was chosen to be STM32F031 (STMicroelectronics, Geneva,
Switzerland). This CPU utilizes ARM Corex-M0 with 48 MHz frequency and operates on
3.3 V input. It also provides a 12-bit analog to digital converter (ADC) with input range of
0–3.6 V with several standard communication interfaces, such as universal asynchronous
receiver transmitter (UART), serial port interface (SPI), and I2C protocol. Sensors chosen
(see Section 2.1) were designed in a voltage divider arrangement from voltage common
collector (VCC) of 5 V and ground. Metal-oxide sensors change their respective resistances,
RS, as target VOCs adsorb to the sensor surface, and connecting to a precision resistor of
R0 in series generates a voltage division as

Vout =
1

Rs
R2

+ 1
VCC

where Vout is the voltage read by the controller ADC channel. With this arrangement,
an increase in gas concentration decreases RS, which in turn increases the voltage at the out-
put so that a positive correlation between voltage and concentration is formed. In addition,
the baseline voltage output for each sensor can be adjusted. Rather than designing an
individual PCB board for each sensor, the sensor package was mounted in a 3D-printed
case with custom-designed sockets for the sensors, and the breakout boards were soldered
together. Potentiometers of various values were exposed in the top of the electronic nose in
order to allow the baseline value for each sensor to be adjusted.

The programming and serial port of the microcontroller were exposed to allow for easy
programming and data transfer. A fan (MC20080V1-000U-A99, DigiKey Electronics, Thief
River Falls, MN, USA) was also included in order to draw the odors into the electronic nose.

Two 2600 mAh, 3.7 V battery cells (18,650 size, Sparkfun Electronics, Niwot, CO,
USA) were serially connected. A functional diagram of the overall system is shown
in Figure 2, with the electronic wiring diagram provided in Figure 3 and Figure S1.
The portable instrument developed was named electronic nose modules with machine
learning algorithm (EMLA).
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that controls the fan and the heater by pulse width modulation (PWM). The 12-bit ADC receives the
senso- array readings and transfers the data to the Raspberry Pi4 via a USB serial adapter.
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(B) Each sensor is powered by a 5 V signal and enable pin, while a potentiometer (R2) is used to provide a voltage divider
circuit. Shown here is the MICS-5524 sensor, which, unlike other sensors, requires a heater to operate. (C) The voltage
regulator part is responsible for charging the battery. (D) The proportional control of heater and fan via transistors.

2.3. Data Acquisition

The sensors responded slowly, in the order of tens of seconds, to changes in the envi-
ronment. Since the ADC of the microcontroller used was capable of one mega-sample per
second, oversampling was used to increase the effective resolution of the sensors. For every
n times the sensor was oversampled, assuming white noise, there was a

√
N times increase

in resolution and a decrease in noise [14]. Since the steady-state readings of the sensors
were used for classification, only a low sampling rate was required. One sample per
second was chosen as the sample rate. With 10 sensors, this allows for an oversampling
rate of 5556×. With a 12-bit ADC, this gives approximately 18 bits of resolution from the
STM32F0 series. The very simple software running on the microcontroller performed the
oversampling and sent the data over the logic level serial port.

2.4. Calibration

To provide sensor selectivity and a quantitative response curve, calibration was
performed with isopropyl alcohol. Then, 70% stock solution was diluted to 50, 35, and 15%,
and approximately 100 µL of each solution was deposited on the 3D-printed sample tray.
EMLA was turned on for 3 min, fan speed was set to the 16/255 level, and the heater to
the maximum level (255/255). Once the baseline response was confirmed, 3D-printed
sample tray was inserted under the fan. Data were collected for five minutes, recording
one reading per second for all 10 sensors. Each sample challenge was repeated three times
for statistical calculation. For plotting the calibration data, mean and standard deviation
of the sensor responses for three replica were calculated and peak ADC output of each
concentration for sensors that responded to isopropyl alcohol was plotted to check the
response linearity.
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2.5. Sample Preparation

For wine samples, four different wine samples were purchased from a local store:
cabernet sauvignon (Central Valley, Chile, 2015), merlot (Columbia Valley, WA, USA, 2017),
pinot noir (Sonoma County, CA, USA, 2018), and Zinfandel (Mendocino County, CA, USA,
2017). Each wine sample was kept in a refrigerator (4 ◦C) and pipetted with the volume of
approximately 5 mL to be evaluated. Terminal was opened for serial port connection and
the ASCII data stream was recorded in the computer. The same experiment was repeated
four times on different days. Three different oil samples were used to challenge the e-nose
module. Approximately 2 mL oil was poured into a paper cup and heated to 50 ◦C on a
hotplate. After approximately 30 s, data collection began for all ten sensor modules for the
next 300 s, with data acquisition every seconds. The terminal was opened for serial port
connection and the ASCII data stream recorded in the computer. The same experiment was
repeated four times on different dates.

2.6. Data Analysis

Analysis was conducted in two steps: training and testing. For training the model,
160 sensor readings from the ADC for each oil (total of 480 data points) were imported
into the Matlab® classifier learner app. All 24 classifiers were trained simultaneously,
and accuracy was reported as an output. The top five classifiers (fine tree, quadratic
discriminant, quadratic support vector machine, cubic support vector machine, and k
nearest neighbor) were selected, and their individual performance was checked by the
confusion matrix and the receiver operating characteristic (ROC) curve. Once validated,
each model was exported as an executable command in Matlab and challenged by a new
testing dataset (360 data points; 120 each). Each classifier exported the true positive (TP),
true negative (TN), false positive (FP), and false negative (FN) results. These values were
used to report the statistical parameter as follows:

Sensitivity =
TP

TP + FN
(1)

Specificity =
TN

TN + FP
(2)

Positive predictive value =
TP

TP + FP
(3)

Negative predictive value =
TN

TN + FN
(4)

Accuracy =
TP + TN

TP + FP + TN + FN
(5)

3. Results
3.1. E-Nose System

The final prototype is shown in Figure 4. Output from the sensor voltage dividers
was fed directly into the microcontroller, greatly reducing the complexity and part count
of this electronic nose. A fan was used to circulate the odors through the electronic nose,
an arrangement much less complex than the system of pumps and valves used by most
others. The compact size and light weight of this system gave it excellent portability.
Because the data were sent over a standard USB serial adapter, there was less restriction
regarding the type of data collection module needed.
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3.2. Calibration Experiment

The time-dependent sensor response to isopropyl alcohol concentration is shown in
Figure 5. Among the 10 sensors, only four of them showed a significant response to the
calibration sample (MQ4, MQ5, MQ6, TGS2602). Figure 5A shows ADC counts increasing
steeply for the first minute or so after sample insertion, except for TGS2602, whose response
gradually increased for 170 s. After reaching peak values, all sensor outputs gradually
decreased, since the amount of diffused VOCs was limited by the droplet volume. Line
elements representing the average and shaded areas show the standard deviation for the
triplicate experimental samples. Figure 5B shows the correlation between the isopropyl
concentration and ADC count; a good linear relationship was achieved, with R2 values of
0.9999 (MQ6), 0.9722 (MQ5), 0.9999 (MQ4), and 0.8945 (TGS2602), respectively.



Sensors 2021, 21, 3923 8 of 13Sensors 2021, 21, x FOR PEER REVIEW 8 of 13 
 

 

 
Figure 5. Calibration results using isopropyl alcohol. (A) Time-dependent sensor output for four modules (MQ4, MQ5, 
MQ6, and TGS2602) that showed significant response to the volatile sample of 35% isopropyl alcohol. The sample tray is 
positioned under the e-nose unit at time 0. (B) The response curve for three different concentrations. MQ6 and MQ4 show 
good linearity, with R2 values of 0.998 and 0.997, respectively. 

3.3. Wine Experiment 
Figure 6A displays the experimental setup. The EMLA unit was positioned on top of 

the temperature-controlled plate heater. Figure 6B shows the dynamic sensor response 
when a cabernet sauvignon sample was moved in and out of the interrogation position. 
While the sample insertion generated a quick response, removal displayed a typical first-
order time response, so any subsequent sample interrogation was conducted after an in-
terval of at least 10 min so that each sensor module was initialized. Figure 6C,D display 
the schematic diagram of the EMLA unit, 3D-printed platform, and sample holders. Fig-
ure S2 displays the survey of the classifiers conducted on the Matlab classifier learner 
while Figure S3 shows an example of training model from linear SVM. Using the test-set 
data, all 24 classifiers were challenged, and their cross-validation results tabulated. Here, 
accuracy was plotted against all classifiers and the six best performers were selected for 
the testing phase. The performance of the trained model is shown in Figure 7 via the cross-
validation matrix and ROC curve. Table 1 shows the testing results for classifiers chal-
lenged with a new dataset of wine samples; statistical results were reported using Equa-
tions (1)–(5). Among the models tested, both linear and quadratic SVM classifiers pro-
vided the best performance, including sensitivity and specificity. 

Figure 5. Calibration results using isopropyl alcohol. (A) Time-dependent sensor output for four modules (MQ4, MQ5,
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good linearity, with R2 values of 0.998 and 0.997, respectively.

3.3. Wine Experiment

Figure 6A displays the experimental setup. The EMLA unit was positioned on top
of the temperature-controlled plate heater. Figure 6B shows the dynamic sensor response
when a cabernet sauvignon sample was moved in and out of the interrogation position.
While the sample insertion generated a quick response, removal displayed a typical first-
order time response, so any subsequent sample interrogation was conducted after an
interval of at least 10 min so that each sensor module was initialized. Figure 6C,D dis-
play the schematic diagram of the EMLA unit, 3D-printed platform, and sample holders.
Figure S2 displays the survey of the classifiers conducted on the Matlab classifier learner
while Figure S3 shows an example of training model from linear SVM. Using the test-set
data, all 24 classifiers were challenged, and their cross-validation results tabulated. Here,
accuracy was plotted against all classifiers and the six best performers were selected for
the testing phase. The performance of the trained model is shown in Figure 7 via the
cross-validation matrix and ROC curve. Table 1 shows the testing results for classifiers
challenged with a new dataset of wine samples; statistical results were reported using
Equations (1)–(5). Among the models tested, both linear and quadratic SVM classifiers
provided the best performance, including sensitivity and specificity.

Figure S2 shows the representative scatter plot of sensor readings for a sensor combi-
nation (TGS822 and MQ2). As expected, some sensors showed overlapping sensitivities to
secondary chemical species, so these results were displayed to provide the group separation
by different wine types.
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Table 1. Testing results from six different classifier models for wine samples.

Classifier Type Sensitivity Specificity PPV NPV Accuracy

Linear
discriminant

Zinfandel 1 1 1 1 1
Cabernet sauvignon 1 1 1 1 1

Pinot noir 1 0.8889 1 0.9643 0.9722
Merlot 0.963 1 0.9 1 0.9722

Quadratic
discriminant

Zinfandel 1 1 1 1 1
Cabernet sauvignon 1 1 1 1 1

Pinot noir 1 0.5 1 0.8571 0.875
Merlot 0.833 1 0.6667 1 0.875

Linear
SVM

Zinfandel 1 1 1 1 1
Cabernet sauvignon 1 1 1 1 1

Pinot noir 1 0.944 1 0.9818 0.9861
Merlot 0.9815 1 0.9474 1 0.9861

Quadratic
SVM

Zinfandel 1 1 1 1 1
Cabernet sauvignon 1 1 1 1 1

Pinot noir 1 0.944 1 0.9818 0.9861
Merlot 0.9815 1 0.9474 1 0.9861

Bayes
Gaussian

Zinfandel 1 1 1 1 1
Cabernet sauvignon 1 0.5 1 0.8571 0.875

Pinot noir 1 0.833 1 0.9474 0.9583
Merlot 0.7778 1 0.6 1 0.8333

KNN
fine

Zinfandel 1 1 1 1 1
Cabernet sauvignon 1 0.5 1 0.8571 0.875

Pinot noir 1 0.9444 1 0.9818 0.9861
Merlot 0.8148 1 0.6429 1 0.8611

3.4. Oil Experiment

The EMLA unit was positioned on top of the plate heater and the temperature was
set to 50 deg Celsius to enhance the amount of volatile organic compounds available to
the sensor. As with the wine sample, training sets were captured, and several models
were trained (Figure S2). The top five classifier models (fine tree, quadratic discriminant,
quadratic SVM, cubic SVM, and fine KNN) among the 24 tested were challenged by the
testing set. The performance of the training set is shown in Figure S4. The overall results
for the testing set varied widely. Except for the quadratic SVM classifier, the methods
showed a sensitivity or specificity of less than 50% for an oil sample. Overall results are
summarized in Table 2.

Table 2. Testing results using six different classifier models for oil samples.

Classifier. Type Sensitivity Specificity PPV NPV Accuracy

Quadratic
discriminant

Grapeseed oil 1 0.2 1 0.7143 0.7333
Peanut oil 0.115 0.95 0.3493 0.8214 0.3933
Olive oil 0.96 0 0 0.6575 0.64

Quadratic
SVM

Grapeseed oil 1 1 1 1 1
Peanut oil 0.945 0.91 0.8922 0.9545 0.9333
Olive oil 0.955 0.89 0.9082 0.9455 0.9333

Cubic
SVM

Grapeseed oil 1 1 1 1 1
Peanut oil 0.855 0.4 0.5797 0.7403 0.7033
Olive oil 0.7 0.71 0.542 0.8284 0.7033

Fine
Tree

Grapeseed oil 1 1 1 1 1
Peanut oil 0.57 0.86 0.5 0.8906 0.6667
Olive oil 0.93 0.14 0.5 0.6838 0.6667

KNN
fine

Grapeseed oil 1 0.89 1 0.9479 0.9633
Peanut oil 0.86 0.54 0.6585 0.789 0.7533
Olive oil 0.715 0.72 0.5581 0.8363 0.7167



Sensors 2021, 21, 3923 11 of 13

4. Discussion

In the field of portable and field-deployable detection systems, smartphone-based
systems have been recently highlighted, for the most part focusing on optical transduc-
tion [27–29]. However, for odor detection, metal-oxide sensors provide better options
in terms of sensor availability and simple transduction of volatile organic compounds
into voltage signals. The proposed e-nose design was implemented based on the limited
choice of available metal-oxide chemical sensors. While cost reduction and miniaturization
were possible by employing this type of sensor, there were a few limitations as well. First,
as shown in Table S1, many sensors provide a primary response to certain chemical species
along with a large number of secondary (weak) responses that overlap among various sen-
sor types and vendors. This makes the deterministic approach less effective, since EMLA
will not generate a unique response when a single species of chemical is present. However,
the relative sensor response was not directly comparable among different vendors, so a
statistical learning method was employed to teach the sensors to acquire the characteristics
of each sample under investigation.

While the calibration experiment was performed observing the sensitivity and dy-
namics from a single chemical species, some sensor dynamics could be explored. Based on
the calibration experiment with isopropyl alcohol, the sensors MQ6 (R2 = 0.9999), MQ5
(R2 = 0.9722), MQ4 (R2 = 0.9999), and TGS2602 (R2 = 0.8945) resulted in a linear relationship
between concentration and ADC count. This means that the EMLA unit has potential
for measuring the concentration of compounds and mixtures of foods with quantitation.
One of the second characteristics observed in using the metal-oxide sensor module was
that the sensors have different response times and cooling times. Based on Figure 6, all the
sensors responded with a typical first-order system response, having time constants of
30–40 s, depending on the sensor type. However, one sensor module (SGAS 707) showed
an extremely slow response and cool down; for future system development, this mod-
ule will be replaced by another with similar characteristics and a faster response time.
As noted from other reviews, metal-oxide-type sensors’ reactions can be affected by local
temperature and humidity levels [30,31]. One of the limitations of the proposed device is
the passive control of the environment. Therefore, signal fluctuation could be generated
from the passive nature of the temperature and humidity control.

For the circuit readout, oversampling was used to improve the effective resolution
of the ADC. This allows for the internal ADC to be used, reducing the part count of the
e-nose. However, oversampling came at the cost of some extra processing and a reliance
on uncorrelated noise in order for oversampling to work properly.

The use of a fan instead of pumps and valves allowed for a simpler system compared
to other electronic noses. However, this means that the electronic nose cannot precisely
control the sampling conditions. Despite this drawback, the electronic nose was able
to successfully distinguish between different brands and types of wine and oil samples.
Matlab’s classifier learner app provided a quick and broad spectrum of the classification
models. A total of 24 linear classifiers can be directly implemented, with the additional help
of principal component analysis to reduce the dimensionality. The current EMLA system
relies on Matlab-based offline analysis of the captured data. Final implementation of EMLA
as a field-deployable unit will require porting the trained model into the micro-processor
unit so that on-board analysis can be conducted.

5. Conclusions

A metal-oxide sensor-based electronic nose system called EMLA was presented.
This system utilizes ten metal-oxide sensors that were selected based on their availabil-
ity and the scope of their response to chemical species. A portable unit was designed
to be battery-operated and a fan was used to control the flow rate of the sample inlet.
A Matlab-based machine learning algorithm was implemented. The best results overall
were achieved by a quadratic SVM classifier, with a minimum classification accuracy of
97% for four wine samples and 93% for three oil samples.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s21113923/s1. Table S1. List of candidate sensors. Bold face sensors were selected to be
used in the EMLA unit (10 different sensors). They were selected based on the wide variety of
primary responses to the chemical species. Figure S1: Full electronic CAD diagram for the EMLA
unit. Four major components were microcontroller unit, sensors unit, heater and fan control unit,
and power switch unit. Figure S2: Survey of accuracy for 24 different classification methods. Tree
(6 types), discriminant analysis (2), Baysian (2), SVM (6), and KNN (7). (A) Wine sample (B) Oil
sample. Figure S3: Scatterplot of four different wine samples depicted by two sensors: TGS822
and MQ2. Figure S4: (A) Confusion matrix and (B) area under the curve graph for classification of
wine samples.
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