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Abstract: Unmanned aerial vehicles (UAVs) in the role of flying anchor nodes have been proposed
to assist the localisation of terrestrial Internet of Things (IoT) sensors and provide relay services in
the context of the upcoming 6G networks. This paper considered the objective of tracing a mobile
IoT device of unknown location, using a group of UAVs that were equipped with received signal
strength indicator (RSSI) sensors. The UAVs employed measurements of the target’s radio frequency
(RF) signal power to approach the target as quickly as possible. A deep learning model performed
clustering in the UAV network at regular intervals, based on a graph convolutional network (GCN)
architecture, which utilised information about the RSSI and the UAV positions. The number of
clusters was determined dynamically at each instant using a heuristic method, and the partitions
were determined by optimising an RSSI loss function. The proposed algorithm retained the clusters
that approached the RF source more effectively, removing the rest of the UAVs, which returned
to the base. Simulation experiments demonstrated the improvement of this method compared to
a previous deterministic approach, in terms of the time required to reach the target and the total
distance covered by the UAVs.

Keywords: unmanned aerial vehicles; deep learning; IoT; 6G; graph convolutional network; sensor
tracking; RSSI

1. Introduction

The advent of unmanned aerial vehicles (UAVs) has led to their recurrent deployment
as aerial communication platforms in wireless networks. Research in the domain of relay
networks has experienced a growing UAV initiative, with the incorporation of UAVs
providing a versatile and appealing solution, since they provide increased coverage, while
offering improved connectivity to devices on the ground. Courtesy of their high cost-
effectiveness and flexible deployment prospects, UAVs have a presiding effect in current
realisations of Fifth-Generation (5G) cellular networks [1], conceptualising demanding
networking techniques and covering all communication prerequisites [2]. In the near future,
it is expected that the era of UAV-assisted networks will emerge, through the deployment
of countless UAVs in every layer of human activities, enabling several smart applications
in the process [3].

The rapidly growing paradigm of the Internet of Things (IoT) is also an area in which
UAVs will play a dominant role [4]. Focusing on the incorporation of state-of-the-art
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technologies, the IoT describes a connection of several smart objects, which exchange
data over the Internet, targeting the enhancement of daily life. Devices in the IoT include
sensors that are often constrained by a limited battery and thus usually broadcast at short
ranges. In this context, UAVs can be employed as data-collection stations, which determine
the device’s location being out of transmission range from the destination and afterwards
establish a connection with the latter in order to re-transmit the collected data [5,6]. UAVs in
the role of aerial stations are expected to remarkably enhance IoT infrastructures, through
the dynamic provision of stable device connections, as opposed to terrestrial base stations
which may often be characterised by a lack of line-of-sight (LoS). As a result, using UAVs
can avoid shadowing effects in the wireless channel by ensuring LoS in the interconnections,
providing a cost-effective solution for serving ground devices in an efficient way [7].

With the current deployment of 5G networks being established globally, the research
community has already started to investigate ways to go beyond the 5G capabilities
and pave the way toward the Sixth-Generation (6G) of wireless communication systems.
Although precise requirements have not yet been defined, 6G architectures are expected to
offer wireless universal connectivity worldwide, targeting smart applications that require
bitrates on the scale of terabits per second, while achieving a sub-millisecond latency [8,9].
The paradigm of UAV-assisted localisation has recently started to emerge in 6G research,
in which UAVs assume the role of anchor nodes (ANs) and are used as a reference to
determine the position of ground devices [10]. Due to their high flying altitude, UAVs have
a higher probability of establishing LoS connections with terrestrial nodes, offering locali-
sation services when ground ANs are unavailable or unable to deliver reliable connections.
Following this paradigm, 6G technologies have the ambition of seamlessly integrating
ground and aerial wireless networks through the use of UAVs, establishing ubiquitous
connectivity in the process [11].

At the same time, ever since the introduction of machine learning (ML) as a key
artificial intelligence (AI) approach, extensive research has been conducted towards its
intensive adoption in wireless networks, aiming to provide computationally efficient
and robust algorithms [12]. In essence, ML focuses on the development of models that
target knowledge acquisition problems, by utilising learning procedures that improve
the capabilities of the corresponding systems through the detection of patterns in the
provided data [13,14]. The application of ML techniques in wireless sensor networks
can offer substantial benefits, mainly due to the dynamic nature of the environments
that these networks are used to monitor. For instance, nodes in such a network may be
mobile, or even if stationary, their location may differ over time due to changes in the
environment (e.g., soil erosion, sea turbulence). Another example comes from the smart
city paradigm, where AI techniques are applied to enhance transport in the new mobility
era [15]. In addition, wireless networks may be used for collecting data in hardly accessible
or hazardous locations, often characterised by unpredictable conditions, or in environments
where accurate mathematical models cannot be developed [16]. Robust systems relying on
ML can be utilised in these situations, enabling the network to reconfigure itself or to adapt
accordingly, utilising low-complexity approximations. As a result, ML approaches are
expected to be the key enabling technology for the efficient operation of wireless networks,
supporting several novel applications in this context.

Given the energy-constrained nature of IoT nodes, UAVs can help minimise the
transmission power required by target sensors by dynamically adjusting their altitude,
while at the same time ensuring robust coverage. As a result, they offer a versatile and
efficient solution towards locating sensors and providing relay services to remote IoT
infrastructures in the context of 6G. The approach presented in this paper targets such
an application and enables a group of UAVs to reach an IoT sensor node located in an
unknown position, by relying only on the radio frequency (RF) broadcast signal emitted by
the latter. The system utilises a deep learning (DL) model, which performs clusterisation
in the UAVs based on their received signal strength indicator (RSSI) and their current
location. At regular intervals, the proposed algorithm selects distant groups of UAVs
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based on the model’s outcome, returning them to the base in order to save energy and to
keep the clusters active that seem to have approached the target more effectively. The key
contributions of this work can be summarised as follows:

• We introduced a graph representation of the UAV network that enabled the utilisation
of graph convolutional network (GCN) architectures;

• The clusterisation was performed in the network at regular intervals based on the
RSSI and the current locations of the UAVs, with a dynamic number of clusters at each
phase;

• We utilised the optimisation of an RSSI deep learning loss function to determine the
final clusters;

• The introduced method allowed the UAVs to trace the target sensor node without
explicit knowledge of its location or the use of distance estimates.

Simulation experiments demonstrated the improvement of this method compared to
our previous deterministic approach [17] in terms of time efficiency when approaching the
target, but also in terms of distance covered by the UAVs, therefore denoting increased
energy efficiency as well.

The rest of the paper is structured as follows: Section 2 provides an overview of
the state-of-the-art in the localisation of RF sources. Section 3 presents the proposed DL
approach and describes the tracing algorithm. Section 4 discusses the test-bed devised
to evaluate the introduced method and outlines the considered scenarios, while Section 5
presents the results obtained through the evaluation experiments. Finally, Section 6 provides
concluding remarks.

2. Related Work

A common approach for the localisation of unknown nodes in wireless networks in-
volves the employment of ANs in tactical locations, aware of their position usually through
a Global Navigation Satellite System (GNSS) or through pre-defined information and
manual programming. Using the known locations of the ANs, the process of trilateration or
triangulation is traditionally used, relying on distance estimates from the unknown sensor
to approximate its position. In light of the inconsistent accuracy of the measurements
caused by signal fluctuations, estimation methods have more recently shifted towards
optimisation techniques in order to enhance the RSSI precision [18].

One of the key challenges that arises in RF source localisation using UAVs is the
optimal trajectory control in order to increase the accuracy of the target’s position estimates
and obtain high information measurements [19]. Several methods for solving this problem
involve model predictive control (MPC) algorithms, also referred to as receding horizon
control (RHC), for the path planning of the UAVs. The authors in [20] proposed a hierar-
chical MPC algorithm to control the trajectory of the UAVs with the goal of achieving the
required target estimation accuracy in the shortest time possible. Carrying direction-of-
arrival (DOA) sensors, the involved fixed-wing UAVs were tasked to detect and track the
RF source, which was either stationary or moving with a small velocity. By incorporating
the hierarchical variant in the MPC, the algorithm allowed optimising for long-term goals
with simulation experiments, demonstrating its effectiveness.

Relying on DOA sensors is not always convenient, especially when involving small
multi-rotor UAVs. As a result, simpler alternative methods such as passive RSSI sensors,
have been suggested for use in real-world applications. In this context, an RHC algorithm
governing the path planning of an RSSI sensor-equipped UAV swarm was proposed in [21],
towards the goal of localising a mobile RF transmitter. The UAVs determined the target
position estimate in cooperation, using an extended Kalman filter (EKF), and calculated
the optimal path, by maximising the determinant of the Fisher information matrix (FIM) of
the potential set of actions. The objective of multiple target tracking was achieved by the
RHC algorithm proposed in [22], which was distributable across multiple agents. Relying
on ergodic theory to study the search trajectory, the introduced technique utilised hybrid
systems theory to calculate control actions that improved the ergodicity in an MPC manner.



Sensors 2021, 21, 3936 4 of 16

The authors demonstrated both in a simulation environment using UAVs and in real-world
experiments using a commercial robot that the agents could reliably track the targets in
real time based on bearing-only measurements.

In the work presented in [23], the authors considered a scenario where the RF source
was only intermittently transmitting, in which case the RSSI measurements were not
continuously available. In the target application, the UAVs were set to patrol an area
of interest and had to locate the intermittent RF source, based on a two-stage technique.
The first stage involved the task of localisation, where the UAVs estimated the target
location, given the previous RSSI measurements, based on a recursive Bayesian estimator.
In the second stage, the optimal future trajectory was determined, with the goal of reducing
the localisation error by taking into consideration the current estimation, using a steepest
descent path-planning algorithm. Simulation results demonstrated that the recursive
Bayesian estimator slightly outperformed an EKF in the first stage, while the steepest
descent algorithm displayed major benefits in the second stage, when compared to a
bioinspired approach.

The scenario of localising intermittently transmitting mobile RF sources was also
examined in [24], using fixed-wing UAVs equipped with angle-of-arrival (AOA) sensors.
The proposed system relied on a decentralised architecture whereby each UAV determined
its path cooperatively based on the information received by neighbouring UAVs and on the
data provided by its sensor. Control actions were taken based on a cost function regarding
the distance that each UAV needed to cover to assist with the localisation, the number
of active UAVs assisting in the current target location and the number of adjacent UAVs.
In the case that the cost function went below zero, the corresponding UAV proceeded to
assist in the localisation; otherwise, it retained its current actions. To accommodate the
intermittent transmission, an efficient path-planning algorithm was proposed that governed
the revisiting process at every location. The authors investigated the performance of three
localisation techniques—triangulation, angle-rate and Kalman filtering—using simulation
experiments and concluded that a combination of these could yield a generally accurate
localisation method.

Employing the measurements of the Doppler frequency in the received signal, the
method in [25] managed to lead a UAV to a distant RF emitter, by continuously adjusting
the trajectory using bearing estimates. At a first stage, the UAV followed a random circular
trajectory, while storing frequency and bearing measurements. In order to filter the stored
values and minimise the effects of multipath fading, an outlier rejection technique was
applied to the frequency measurements. In the second stage, the UAV derived changes
in the Doppler frequency at regular intervals for a persistent trajectory control that led
it towards the RF source. The authors demonstrated the increased performance of this
method through simulation experiments; however, the required receiver operations were
more complex, when compared to simply extracting the RSSI.

The localisation of mobile phones through an ML approach was presented in [26].
Relying on the RF signal of intermittent probe requests sent by the devices on the ground,
a group of UAVs was used to capture these request messages from different locations and
estimate the phone’s position based on the RSSI. In order to classify the location zone
where the device belonged, the model had to be initially trained on the target area, using a
random forest algorithm, and then, the method was applied to locate the target zone with
a high accuracy.

The method proposed in this work differed from the aforementioned studies, in that it
aimed to cover critical aspects associated with real-world scenarios. Towards this goal, it
utilised simple RSSI sensors equipped on the UAVs, as opposed to more complex antennas,
such as DOA or AOA sensors, that have been proposed in other approaches. In addition, it
incorporated the use of small and flexible multi-rotor UAVs, in contrast to less versatile
and cost-effective fixed-wing UAVs that were often used in similar works. When it comes
to the tracking problem, the introduced method diverged from related studies, since it
did not involve the conversion of the received signal’s power to distance from the target,
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which would inevitably have errors due to signal fluctuations. Finally, the deep learning
model that was proposed did not require pre-training on a specific scenario to provide the
solution, but operated in an unsupervised manner.

3. Methodology

In the considered problem, the target node refers to an IoT gateway, which might be
located on or near an IoT device. The involved UAVs act as mobile relays, aiming to collect
measurements or status updates from the target sensor. These measurements have as the
destination a 6G cellular base station, which will receive them through the assistance of the
UAVs. The aim was to trace the IoT source node by exploiting wireless signal observations,
through omni-directional RSSI sensors equipped on the UAVs.

3.1. Tracing Algorithm

The goal of the proposed tracing algorithm was to lead the group of UAVs to the mobile
sensor’s unknown location, as quickly as possible. Since the UAVs are only equipped with
RSSI sensors, they have to rely solely on knowledge about the signal strength measured
at their antenna for the whole process. In short, the process relies on differences in RSSI
measurements over time, whereby increases in signal strength indicate increasing proximity
to the target, while decreases signify diversion. Instead of relying on the free-space path
loss, the proposed scheme relies on a more accurate model for the signal attenuation in
moving networks, as measured experimentally in [27] and comprehensively described
in [17]. Utilising that model, the RSSI at each UAV is calculated by the following formula:

RSSI = Px − [41.1log10(d) + 17.2 + 20log10( f /5)] + Gtx + Grx, (1)

where Px is the transmission power of the target sensor in dBm, the term inside the square
brackets is the path loss, where d is the distance between the transceiver and receiver, f is
the signal frequency and Gtx and Grx represent the transceiver’s and receiver’s antenna
gain, respectively.

In the considered scenario, all UAVs were deployed in a common location and started
moving towards random, constant directions, until a predefined threshold of the RSSI
difference between the two closest UAVs was measured. At regular intervals, the GCN
model performed clustering in the network and determined groups of UAVs based on their
proximity to the target and their corresponding locations. Following an unsupervised ap-
proach, the model was able to divide the UAVs into appropriate groups, without requiring
any prior training at any given location. The algorithm then ordered the clusters according
to the target proximity and removed those that appeared distant, with the associated
UAVs returning back to the base. Following this process, the model was able to retain the
groups of UAVs that seemed to approach the target more effectively, while minimising
the total energy expended by landing the unnecessary UAVs. The whole tracing process
is demonstrated in the flowchart of Figure 1. When the RSSI termination threshold was
reached, the remaining group switched to a cooperative mode, and the UAVs navigated
based on the distributed approach presented in [17], able to trail the sensor at a close
distance. The optimal interval at which the clustering process occurred was examined
through simulation evaluations, which determined that in general, lower intervals yielded
better performance. For the final implementation, the interval of 30 s was selected, since it
provided an adequate performance, while being appropriate for use in a realistic scenario.

3.2. Deep Learning Clustering for the Determination of UAV Groups

Deep learning methods can be used to offer powerful solutions in graph partitioning
problems, by utilising the implicit architecture of GCNs. The approach followed in this
work combined the GAP framework for graph partition [28], with a deep learning loss
function of the RSSI, aiming to group the UAVs into appropriate clusters based on their
proximity to the target. This method was selected as it was capable of generalisation and
allowed the joint optimisation for the target loss function, leading to the fine-tuning of the
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model for this specific graph structure. Following this process, the algorithm ordered the
clusters and retained those that achieved the highest proximity.

Figure 1. Flowchart demonstrating the proposed pipeline for approaching the mobile sensor.

Leveraging the capabilities of GCNs, the devised model relied on four such layers
to perform convolution on the graph data, each followed by a corresponding ReLU layer.
The architecture was completed by utilising two linear layers to scale the output to the selected
number of clusters, followed by a softmax output layer in the end, as demonstrated in Figure 2.
This specific setup allowed for better feature representations and correlations among the
input parameters in the considered clustering problem. The size of the network was selected
according to the involved data, aiming to avoid over-fitting issues. In order to provide the
clustering prediction, the DL model required the graph representation of the UAV network.
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Figure 2. Structure of the deep learning network. The input layer’s dimensions are n × 3, where n is
the number of UAVs in the UAV network. The output layer has k × 1 dimensions, with k being the
number of clusters.

3.2.1. Graph Representation of the Network

To effectively make use of the GCN layers and provide the required input to the
model, the system had to be defined using a graph representation. In the considered
network, all nodes interchanged information with each other, and thus, a fully connected
graph was constructed, representing the UAVs as vertices, while the edges denoted the
interconnections among the UAVs. Using this representation, the degree and adjacency
matrices were derived, allowing the deduction of the normalised Laplacian matrix of the
graph, as follows:

Lnormalised = I−D−
1
2 AD−

1
2 , (2)

where I is the identity matrix and D and A are the degree and adjacency matrices, re-
spectively. In addition, a new matrix was created, holding information about each UAV
pertaining to the location coordinates and the RSSI from the target. Using the above
matrices, the final GCN model was constructed and trained to provide the optimal clusters.

3.2.2. Deep Learning Loss Formulation

The training process utilised the following loss function that aimed to maximise the
RSSI at each cluster:

LRSSI =
1
N

N

∑
n=1
|Yr|, (3)

where Y is the output matrix from the neural network and r is a vector containing the RSSI
values. By optimising this loss function, the deep learning model determined the partitions
and where each node belonged. To ensure that the number of UAVs was balanced in each
cluster, an additional loss function was used:

Lbalance = max(0,
n
k
− σ1TY), (4)

where n is the number of UAVs, k is the number of clusters and σ is a hyperparameter for
adjusting the relief degree.

3.2.3. Determining Optimal Number of Clusters

The nature of the introduced tracing algorithm was such that the deep learning
model was called with different numbers of UAVs, located at varying positions each time.
Therefore, it became inherently arduous to decide the number of desired clusters the model
ought to produce in advance. Since this number affected the performance of the algorithm,
it was crucial that it be defined dynamically, according to the imminent situation. Even
though the intuition suggests that a higher number of clusters would lead to a better fit,
there was a point where diminishing returns stopped justifying the additional cost and the
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phenomenon of over-fitting appeared. This point can be deduced using several heuristic
methods, such as the “elbow” method, which was chosen in this work.

The performance of the proposed algorithm varied for different numbers of clusters,
but because in each clustering interval, the setup was unique for every experiment, it
was intrinsically difficult to deduce a universal correlation. For this reason, the “elbow”
method appeared exceptionally useful, since it helped to automate the whole process and
determine the appropriate number of clusters. Even though in certain cases, it might yield
a suboptimal solution, on most occasions, the result was optimal.

The concept behind the “elbow” method is to perform k-means clustering for a range
of k values, calculating the sum of squared errors (SSE) for each k. After plotting the SSE at
each value of k, the corresponding line chart appeared as an arm, as depicted in Figure 3,
where the elbow was the optimal k value, after which the inclusion of an additional cluster
did not result in significantly better modelling of the dataset. Mathematically, the “el-
bow” can be deduced by calculating the gradient of the graph between each pair of k
and determining where the highest change appears.

Figure 3. Example of a plot demonstrating the elbow method. The distortion score is computed
as the sum of squared distances from each point to its assigned centre. In this case, the number of
selected clusters should be 4.

4. Simulation Setup

A test-bed comprised of two tracing scenarios was developed in order to evaluate the
performance of the proposed algorithm:

1. In the first scenario, the speed of the UAVs was set to 40 km/h, and the target sensor
was placed in a random position, 2 km away from the UAV deployment location;

2. In the second scenario, the target was positioned 3 km away from the deployment
location, and the UAVs’ velocity was set to 50 km/h.

In both cases, the target sensor’s movement was based on a random waypoint model,
and the UAVs executed their flying routes using the proposed algorithm, as explained in
Section 3. Each experimental scenario was executed for different values of the standard
deviation of noise due to slow fading (σ) to examine the performance of the algorithm in
various conditions. The effect of fast fading was considered negligible since the involved
distances were large and the UAVs flew in an open environment with not many obstacles
that could result in multi-path propagation. In addition, the RSSI threshold at which the
clustering process was terminated was also examined. Finally, every experiment was
repeated 15 times, using a different random seed for the target location and the UAV
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directions each time, and the average result was used to determine the outcome with
higher confidence. The simulation parameters, including information about the sensor and
the UAVs, are outlined in Table 1.

Table 1. Parameters of the simulation for each examined scenario. The two scenarios are differentiated
in terms of the UAVs’ velocity and the target’s initial distance.

Parameter Scenario 1 Scenario 2

Number of UAVs 45 45
Cluster update interval 30 s 30 s
UAV altitude 100 m 100m
UAV velocity 40 km/h 50 km/h
Target velocity 5 km/h 5 km/h
Target distance 2 km 3 km
Target TX power 10 mW 10 mW
Target TX antenna gain 2 dBi 2 dBi
UAV RX antenna gain 2 dBi 2 dBi
Signal frequency 2400 MHz 2400 MHz
Total duration 1000 s 1000 s

The experiments were conducted using the simulator that was built in our previous
work, which was updated to integrate the developed DL model and obtain the clustering
result at each interval using the new algorithm. In the considered scenarios, the simulator
was set to export a file containing all the UAV positions and RSSI measurements every
30 s. The DL model used the exported file as the input and returned a set of integers,
indicating the indices of the UAVs corresponding to the cluster that had to be removed.
In the first execution, the input size of the DL model was 45 × 3, since there were initially
45 UAVs each with a unique RSSI measurement, as well as X and Y coordinates. The Z
coordinate was not required, as it corresponded to the flying altitude, which was the
same for all UAVs and therefore did not affect the clustering outcome. For subsequent
executions, the input size depended on the number of remaining UAVs. While conducting
the experiments, the simulator provided graphical representations of the simulated entities,
as well as numerical information regarding the parameters and current metrics, as depicted
in Figure 4. The final results were exported to the corresponding spreadsheets after all the
experiment finished.

Figure 4. Simulator instances at different timestamps of the simulation. The red square represents the
target sensor, and the dots indicate the UAVs. The left subfigure depicts the swarm 90 s after initiating
the algorithm. The middle subfigure corresponds to 120 s, while the last subfigure demonstrates the
tracing process after the threshold for terminating the DL procedure has been reached.
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5. Evaluation

This section presents the results of the experiments conducted for each of the two
scenarios. The key objective of the simulations was to determine whether our previous
deterministic approach could be efficiently replaced by the new clustering-based DL
method and offer a thorough evaluation of the two algorithms in various conditions.
The performance was quantified in terms of the time required for the UAV group to reach
the target sensor, the average distance covered per UAV throughout the tracing process
and, finally, the total distance covered by all UAVs.

5.1. Results

Figures 5 and 6 illustrate the time required in seconds for the sensor to be reached,
versus the standard deviation σ of the additive Gaussian noise, when the target was
positioned at a distance of 2 km and 3 km, respectively. The two plots depict the results of
the new method at different RSSI termination thresholds and the previous algorithm [17].
In the first case, the new method tended to perform best at a threshold of 20 dB, but on
average, a termination threshold of 15 dB seemed to be a better overall choice for both
scenarios. Nevertheless, the new method was able to outperform the previous approach
consistently at all thresholds, with a gained advantage of almost 60 s on some occasions.

Figure 5. Time required for the first UAV to reach the target sensor when placed at a distance of
2 km, versus the standard deviation σ of the additive noise. Comparison of the proposed method at
clustering termination thresholds of 20, 15 and 10 dB and the previous approach.
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Figure 6. Time required for the first UAV to reach the target sensor when placed at a distance of
3 km, versus the standard deviation σ of the additive noise. Comparison of the proposed method at
clustering termination thresholds of 20, 15 and 10 dB and the previous approach.

Figures 7 and 8 similarly present the results of the two methods in terms of the average
distance covered per UAV and the total distance covered by all UAVs, respectively, when
the target’s initial distance was 2 km, while Figures 9 and 10 depict the same results for
the target at an initial distance of 3 km. Overall, the new method displayed the highest
efficiency at a threshold of 20 dB, with each UAV covering on average approximately 1 km
less when compared to the previous approach. The advantage of the new method became
dominant when examining the total distance covered by all UAVs throughout the tracing
process, as demonstrated in Figures 8 and 10. This was expected, since the new algorithm
removed distant groups of UAVs at each clustering interval, keeping only the clusters that
displayed the highest effectiveness in approaching the target. In addition, observing the
values in these plots offered an indication of the number of UAVs that remained active,
with lower total distance implying fewer UAVs remaining in the end.

Table 2 offers an overview of the average results in the first scenario, for all values
of the standard deviation σ of the additive noise, both for the new DL method and the
previous approach, at all RSSI termination thresholds. The new method demonstrated
higher efficiency in all metrics, irrespective of the threshold, especially at reducing the
total distance covered by the UAVs. The results also revealed that the new method was
on average more efficient both in terms of the time required to reach the target and the
total distance covered when the threshold of 20 dB was selected. As a result, this choice
would be appropriate for a potential real deployment of this tracing scheme, managing to
outperform all other approaches and at the same time expending less total energy to do so,
by requiring a much shorter distance to be covered by the UAVs.
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Figure 7. Average distance covered per UAV when the target sensor is placed at a distance of 2 km,
versus the standard deviation σ of the additive noise. Comparison of the proposed method at
clustering termination thresholds of 20, 15 and 10 dB and the previous approach.

Figure 8. Total distance covered by all UAVs when the target sensor is placed at a distance of 2 km,
versus the standard deviation σ of the additive noise. Comparison of the proposed method at
clustering termination thresholds of 20, 15 and 10 dB and the previous approach.
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Figure 9. Average distance covered per UAV when the target sensor is placed at a distance of 3 km,
versus the standard deviation σ of the additive noise. Comparison of the proposed method at
clustering termination thresholds of 20, 15 and 10 dB and the previous approach.

Figure 10. Total distance covered by all UAVs when the target sensor is placed at a distance of
3 km, versus the standard deviation σ of the additive noise. Comparison of the proposed method at
clustering termination thresholds of 20, 15 and 10 dB and the previous approach.
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Table 2. Average results for all values of the standard deviation σ of the additive noise for the DL
method and the previous approach, at different thresholds. The target is placed at a 2 km distance.
Time is measured in seconds and distance in meters.

Threshold
Proposed Spyridis et al. [17]

Time Average Distance Total Distance Time Average Distance Total Distance

10 260 8661 249,032 332 9201 414,214
15 268 8351 126,716 295 9270 417,322
20 251 8222 99,191 268 9345 420,705

5.2. Ablation Study

To gain insight regarding the benefits of using the “elbow” method to determine the op-
timal number of clusters dynamically, instead of arbitrarily setting a desired number, the re-
sults in the first scenario without a dynamic cluster quantity were also examined. Figure 11
depicts the time required to reach the target in each case, when the RSSI termination
threshold was set at 20 dB and the number of clusters at four for the non-dynamic case.
As demonstrated in the graph, when using the “elbow” method, the algorithm performed
better and was able to approach the target in approximately 10 to 20 s less, depending
on the standard deviation of the additive noise. As a result, it was beneficial to include
a heuristic method that determines the optimal number of clusters, rather than setting a
constant number regardless of the number of available UAVs.

Figure 11. Time required for the first UAV to reach the target sensor when placed at a distance
of 2 km, versus the standard deviation σ of the additive noise. Results at clustering termination
thresholds of 20 dB, with and without using the elbow method to determine the number of clusters.

6. Conclusions

In this paper, a group of UAVs was tasked to trace an RF-emitting node, located at a
distant unknown location. Based on a graph structure that represented the UAV network,
a graph convolutional network architecture was used to determine clusters among the
UAVs, according to their proximity to the RF source and their current positions. By ordering
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these clusters and removing those that appeared ineffective at approaching the target,
the proposed algorithm was able to lead the remaining UAVs close to the RF source quickly,
while saving energy by landing the UAVs of the removed clusters. Due to the dynamic
number of UAVs, a heuristic method was utilised to determine the optimal number of
clusters at each instant. Furthermore, the GCN model used a deep learning formulation to
optimise the RSSI loss when performing the clusterisation process. Simulation experiments
demonstrated the increased performance of this method, when compared to our previous
deterministic approach, and indicated the applicability of deep learning architectures in
localisation problems.
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