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Abstract: At present, synthetic aperture radar (SAR) automatic target recognition (ATR) has been
deeply researched and widely used in military and civilian fields. SAR images are very sensitive to
the azimuth aspect of the imaging geomety; the same target at different aspects differs greatly. Thus,
the multi-aspect SAR image sequence contains more information for classification and recognition,
which requires the reliable and robust multi-aspect target recognition method. Nowadays, SAR
target recognition methods are mostly based on deep learning. However, the SAR dataset is usually
expensive to obtain, especially for a certain target. It is difficult to obtain enough samples for deep
learning model training. This paper proposes a multi-aspect SAR target recognition method based
on a prototypical network. Furthermore, methods such as multi-task learning and multi-level feature
fusion are also introduced to enhance the recognition accuracy under the case of a small number of
training samples. The experiments by using the MSTAR dataset have proven that the recognition
accuracy of our method can be close to the accruacy level by all samples and our method can be
applied to other feather extraction models to deal with small sample learning problems.

Keywords: synthetic aperture radar (SAR); automatic target recognition (ATR); multi-aspect SAR;
prototypical network; small number of training sample

1. Introduction

SAR (synthetic aperture radar) is an active microwave remote sensing device that
images an object by transmitting electromagnetic waves and receiving corresponding
echoes from the object [1]. SAR can work at night and in bad weather conditions, and
can also penetrate the shallow surface and detect concealed targets. It has all-day and
all-weather working capability [2]. After decades of development, SAR has become an
important method in remote sensing technologies, and it is widely used in military and
civilian fields [3].

SAR images are quite different from optical images, due to the mechanism of elec-
tromagnetic scattering and coherent imaging. SAR images are the mapping of the three-
dimensional geometry and radiation information of the target into the two-dimensional
images, which have overlap and shadow, and contain coherent speckle noise. This makes
SAR images more difficult to interpret and understand visually than optical images, and
thus has a greater impact on target detection and recognition. Therefore, SAR automatic
target recognition (SAR ATR) has become a hot research topic.

ATR is used to identify the true attributes of the targets from SAR images. According
to the different methods adopted by SAR ATR, the technology can be divided into two
classes: classical methods and deep learning methods. Classical methods usually per-
form feature extraction manually, and then use template matching and machine learning
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methods for classification, the representative methods of which are given in [4–6]. Deep
learning methods usually use convolutional neural networks to extract the features of SAR
images and then to classify them, the representative methods of which are given in [7–9].
Comparing the two types of methods, because of powerful representation capabilities, the
ATR methods based on deep learning often have stronger recognition performance. These
methods have achieved some good results in target recognition based on single-angle
SAR images.

In actual conditions, the performance of the SAR device will be affected by many
factors, such as the attitude of platform, the parameters of the radar system, the envi-
ronment, and the attitude angle of target, which will cause fluctuations to SAR image
quality [10]. Due to the side-view imaging geometry, SAR is very sensitive to elevation and
azimuth angles of imaging [11]. For the same target, even if the observation angle has a
small change, the obtained SAR image of the target may be quite different. Meanwhile, for
different targets under a certain observation angle, there may be greater similarity. This
makes the target recognition of single-aspect SAR images quite difficult.

Figure 1 shows the images of the airborne SAR in MSTAR (Moving and Stationary
Target Acquisition and Recognition) dataset [12], observing the same target (T72 tank) at
different azimuth angles. Figure 1(2),(6) can clearly show the barrel of T72, while other
images are not observed or not obvious. Therefore, the single-aspect SAR target recognition
method may fluctuate in performance as the azimuth angle changes, and it is often difficult
to achieve the requirements of high-precision recognition.

Optical 

image
(1) (2) (3)

(4) (5) (6)

Figure 1. Comparison of the same target’s SAR images in different azimuth angles. Sub-figures
(1)–(6) are SAR images of T72 tank in different azimuth angles.

With the development of SAR system technology, advanced SAR can continuously
observe the same target at different azimuth angles. The SAR images of the same target at
multiple azimuth angles have more information for identification [13]. Multi-aspect SAR
target recognition uses the image sequence of the same target at different azimuth angles,
where the scattering characteristics of different angles are helpful for target recognition.
Compared with single-aspect target recognition, it has some advantages [14,15]:

1. SAR image sequence with multiple azimuth angles can make up for the lack of infor-
mation in a single image, and further increase the information for target recognition.

2. There is a certain correlation involved in multi-aspect SAR images, which provides
another dimensional of information for target recognition.

In recent years, with the development of deep learning, multi-aspect SAR target recog-
nition methods based on deep learning have also been developed. Pei et al. proposed the
multi-view deep convolutional neural network (MVDCNN), which uses a parallel network
to extract features from SAR images of different views, and further fuses these features
through pooling [16]. Zhao et al. proposed the multi-stream convolutional neural network
(MS-CNN) and designed a Fourier feature fusion framework derived from kernel approx-
imation based on random Fourier features to unravel the highly nonlinear relationship
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between images and classes [17]. Zhang et al. proposed a multi-aspect ATR architecture
based on ResNet and LSTM, which achieves good recognition performance [18].

Although these methods have provided satisfactory results, they all require large-scale
training data to train the deep learning model. Once the size of the dataset is reduced, the
performance of target recognition will also decrease.

In addition, the SAR dataset of a specific target in a different azimuth angle is usually
expensive to obtain and requires a lot of manpower and material resources to label sufficient
samples for image annotation. Therefore, multi-aspect SAR target recognition under a
small number of samples is the current development trend.

At present, single-apect SAR target recognition under the small number of training
samples has been studied [19–21]. However, there are relatively few studies on multi-apect
SAR target recognition with a small number of training samples. Therefore, this paper
proposes a recognition method based on a prototypical network [22], which uses a deep
learning model as a feature extraction module, and further uses methods such as multi-task
learning and multi-level feature fusion based on attention mechanism.

The advantages of the method in this paper are as follows:

1. Experiments show that this method can significantly improve the recognition perfor-
mance of the model with a small number of training samples.

2. This method can be applied to different deep learning feature extraction models.

The remainder of the paper is organized as follows. Section 2 introduces the target
recognition method under the small number of training samples proposed in this paper
in detail; Section 3 presents the experimental details and results; Section 4 discusses the
advantages and generality of the method in this paper; Section 5 summarizes the full paper.

2. Methods
2.1. Prototypical Network

Prototypical network [22] is a classical method for few-shot learning. The basic idea
of the prototypical network is: For classification tasks, the prototypical network maps the
samples of each class to a specific space, and uses the center point of each class in the
specific space as the prototype of the class. The prototypical network uses the Euclidean
distance to measure the distance between the sample and the prototype. During the
training process, the sample is gathered in a specific mapping space, so that it is close to
the prototype of its own class and far away from other prototypes. During the testing
process, the Euclidean distance in the feature space from each test sample to each prototype
is calculated, and the softmax classifier is used to classify the test samples according to
the distance.

This paper has made some modifications to the prototypical network method, in
which the classes of training set and test set are consistent.

The training of the prototypical network method is shown in Figure 2. There are N
classes of training set and test set. During training, each training episode randomly
puts forward KS samples from each of N classes of training set as support set S =
{(x1, y1), (x2, y2), ..., (xN∗KS , yN∗KS)}, as well as randomly putting forward KQ samples
as query set Q = {(x1, y1), (x2, y2), ..., (xN∗KQ , yN∗KQ)}, where xi is the multi-aspect SAR
images and yi is the sample label. Through the deep learning feature extract model
fφ : RD→RM, each D-dimensional training sample is mapped to a high-dimensional space
of dimension M, and ck is calculated by SK, where SK is the support set of class k, and ck is
the prototype of class k, ck is obtained by taking the average value of all samples in SK in
the high-dimensional space, as in Formula (1).

ck =
1

SK
∑

(xi ,yi)∈SK

fφ(xi) (1)
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After calculating the prototype, the prototypical network uses the Softmax function
to calculate the distance between the samples in the query set Q and each prototype, as
shown in Formula (2), where it is the Euclidean distance, as shown in Formula (3).

pφ(y = k|x) =
exp(−d( fφ(x), ck))

∑kexp(−d( fφ(x), ck))
(2)

d(X, Y) =

√
n

∑
i=1

(xi − yi) (3)

The deep learning model is optimized by reducing the distance between the sample
in the query set Q and the center of the class prototype. The training loss is shown in
Formula (4), where k is the true label of training sample.

Lp = −logpφ(y = k|x) (4)

In the testing process, first we use all the training set samples to calculate the prototype
of each class, and then calculate the distance from each test sample to each prototype
through Formula (2). The test sample is divided into the class with the closest prototype.

Feature extraction model

Feature extraction mode

Support set input sample

Query set input sample

Feature Vector

Feature Vector

Calculate prototype loss
pL

Calculate prototype kc

Euclidean distance vector

Prototype calculated by support set

Calculate each prototype to

Euclidean distance of Feature Vector

d

Figure 2. Schematic diagram of method training.

2.2. Multi-Task Learning

The prototypical network method proposed in Section 2.1 can measure the distance
between the test sample and the center of prototype, but cannot directly classify a single
sample. Therefore, we try to add a fully connected layer after the deep learning model
to classify the samples on the basis of the prototypical network method, and construct
an additional classification task based on cross-entropy loss to form a multi-task learning
model, as shown in Figure 3.

Feature 

extraction model

Input sample

Feature Vector

FC Layer

FC Layer output

Calculate the prototype or 

measure the distance from 

prototype

Prototype 

Loss

Cross entropy 

Loss
Task2

Task 1

Total Loss

l

Figure 3. Multi-task learning model.
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Through the learning model shown in Figure 3, the distance measurement task and
the classification task of the prototypical network can assist each other, so that the model
can learn effective information from the classification task that is helpful for the distance
measurement task, and further improve the performance of prototypical network.

In addition, since each task has a different noise mode, the measurement task and
classification task at the same time can average the impact of noise and share the overfitting
risk of each task, thus improving the generalization performance of the model and reducing
the impact of SAR image speckle noise on classification [19].

The multi-task learning model includes a distance measurement task of prototypical
network and a classification task. The classification task uses cross-entropy loss to optimize
the model. Therefore, the joint loss of the model is shown in Formula (5), which is divided
into two parts. L is total loss, LCE represents the cross-entropy loss, LP is the distance
metric loss, and λ is the hyperparameter.

L = LP + λ ∗ LCE (5)

2.3. Feature Extraction Model

The prototypical network method requires a feature extraction model to map the
sample to a specific space. This paper uses a multi-channel convolutional neural network
as a feature extraction model. That is, we use multiple weight-sharing CNNs to extract
the features of a single SAR image, and then use the fully connected layer to classify the
features of multiple SAR images.

This paper mainly inroduces the NLECA-EfficientNet model into the feature extraction
model for experiments. The model uses multi-channel EfficientNet-B0 [23] as the backbone
network, and adds the NLECA channel attention module to recalibrate the multi-aspect
SAR image features. It can enhance the more useful features for classification, so as to
achieve high accuracy for multi-aspect SAR target recognition. In addition, this paper
also uses multi-channel ResNet [24], VGGNet [25] and AlexNet [26] as feature extraction
models in experiments (Section 4) to verify the generality of the method in this paper.

2.3.1. EfficientNet

The EfficientNet series model is one of the deep learning classification models with the
best classification performance at present, and its basic network is obtained through neural
network architecture search technology [23]. In this paper, EfficientNet-B0 is selected. This
model has the least parameters and the fastest inference speed among the EfficientNet
series models. It is more suitable for small-scale datasets such as the SAR dataset. The
structure of EfficientNet-B0 is shown in Table 1,where k is the number of classes.

Table 1. EfficientNet-B0 network structure in this paper, MBConv is Mobile Inverted Bottleneck
Convolution [23].

Stage Operator Channels Layers

1 Conv3 × 3 32 1
2 MBConv1 16 1
3 MBConv6 24 2
4 MBConv6 40 2
5 MBConv6 80 3
6 MBConv6 112 3
7 MBConv6 192 4
8 MBConv6 320 1
9 Conv1d&Pooling&FC k 1

2.3.2. NLECA Module

NLECA (Non-Local Efficient Channel Attention) module is a channel attention module
improved from ECA (Efficient Convolution Attention) module [27].
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The ECA module captures the local cross-channel interaction by considering each
channel and its k neighboring channels, this module implements the above operations
through a one-dimensional convolution with the convolution kernel of k. If the ECA module
is directly added to the multi-channel CNN for multi-aspect SAR target recognition tasks,
the current feature channel can only perform cross-channel information interaction with
nearby k feature channels, and these feature channels usually come from the same SAR
target image, which cannot realize information interaction among multi-aspect SAR images.
For example, Figure 4 is a schematic diagram of the NLECA module with the number
of input multi-aspect images is 4, the image features from 4 CNNs are concentrated and
pooled to obtain a feature vector with a dimension of 1 ∗ 4C, where C is the number of
feature channels and is usually much larger than the size of the convolution kernel k. If only
one-dimensional convolution is performed, the current k convolution values usually come
from the same input image. Therefore, the use of one-dimensional convolution cannot
realize information interaction among different input images, and thus cannot make full
use of multi-aspect SAR information.

The NLECA module adopts non-local one-dimensional convolution (Non-Local
Conv1d) to obtain non-local information. Non-local one-dimensional convolution is an
one-dimensional implementation of Deformable Convolution Net [28]. The diagram of
one-dimensional convolution is shown on the left side of Figure 5. If the size of the con-
volution kernel is k, it can only perform convolution operations on local k values. Instead
of non-local one-dimensional convolution, any k values in the vector can be selected for
convolution operation by learning, which makes up for the shortcomings of the ECA
module and realizes the feature information interaction among multi-aspect SAR images.

The structure of non-local one-dimensional convolution is shown in Figure 6. It first
obtains a set of offsets of the current convolution position through a one-dimensional con-
volution operation which kernel size is k, and then uses this set of offsets to find k non-local
convolution values, thus realizing a non-local one-dimensional convolution operation.

GAP

Conv1d

Non-Local

Conv1d

Add

Sigmoid

1*1*4C

1*1*4C

1*1*4C

1*1*4C 1*1*4C

H*W*4C

Mutli-channel 

Feature

Concat

H*W*C

Mutli-channel 

Feature

H*W*C

H*W*4C

Split

Figure 4. Schematic diagram of NLECA module.

1*1*C 1*1*C 1*1*C 1*1*C

1-d Convolution
Non-Local 1-d 

Convolution

Figure 5. Conv1d and Non-Local Conv1d.
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1d

Conv

Offset

Current 

Convolution 

Position

Feature 

Vector

1d

Conv

Convolution 

Output 

Find the new value to be 

convolved on the vector 

according to the offset

Figure 6. Non-local one-dimensional convolution structure diagram.

About the calculation process of the NLECA module, first, the features of size
H×W×C obtained by 4 CNN channels are concatenated into feature F of size H×W×4C.
Then, the global average pooling on the feature F is performed to obtain a global feature
vector F, and one-dimensional convolution and non-local one-dimensional convolution on
the feature vector V is performed to obtain two weight vectors W1 and W2. The two weight
vectors are added and normalized by the Sigmoid function to obtain the final weight vector
W. After that, the feature F and the weight vector W are dotted to calculate the output
feature Fout. Finally, Fout is split into feature vectors of size H×W×C and sent back to the
multi-channel CNN.

Through the combination of one-dimensional convolution and non-local one-dimensional
convolution, the NLECA module not only has the ability of ECA module to improve
classification performance from local channel information, but also has the ability of non-
local information interaction. When NLECA module is inserted into a multi-channel CNN
for multi-aspect SAR image recognition tasks, information interaction among multi-aspect
SAR images can be further realized, thereby improving the recognition performance.

2.3.3. NLECA-EfficinentNet

The NLECA-EfficienctNet model used in the experiment is shown in Figure 7. The
NLECA module is inserted before and after the last MBConv stage of EfficientNet-B0 at the
same time. The model uses the channel attention mechanism to re-calibrate the features
of the multi-channel image, by enhancing the information useful for classification among
the global information, as well as suppressing the information useless for classification,
so as to achieve high accuracy in multi-aspect SAR target recognition. The recognition
performance of the method under the MSTAR dataset is shown in Section 3.

When used as a feature extraction model, this paper removes the fully connected layer
part of the model.

2.4. Multi-Level Feature Fusion

In deep convolutional neural networks, low-level image features have high resolution
and more detailed information, but low-level image features are more noisy and have poor
semantics; while high-level image features have higher-level semantics, but its resolution
is lower, the detailed information are less, and the high-level features are more prone to
over-fitting; the middle-level image features are in-between the high-level and low-level
features [20,21]. Effective fusion of these three features can improve the classification
performance and make the model more robust.
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EifficentNet-B0

Stage 1-7

EifficentNet-B0

Stage 1-7

EifficentNet-B0

Stage 1-7

EifficentNet-B0

Stage 1-7

Input Multi-aspect

SAR Images

Multi-Channel

EfficientNet-B0

(Stage 1-7)

NLECA

Module

EifficentNet-B0

Stage 8

EifficentNet-B0

Stage 8

EifficentNet-B0

Stage 8

EifficentNet-B0

Stage 8

Multi-channel 

EfficientNet-B0

(Stage 8)

NLECA

Module

Conv1d&Pooli

ng&FC

NLECA Module
NLECA

Module

Conv1d&

Pooling&FC
output

Figure 7. Multi-channel EfficientNet-B0 embedded with NLECA module.

This paper uses multi-level feature fusion to improve the accuracy of multi-aspect
SAR target recognition under a small number of samples. Thus, the low-, medium- and
high- levels image features of the multi-aspect SAR images are integrated to classify.

As shown in Figure 8, NLECA-EfficientNet is used as a feature extraction model, and
its backbone network is EfficientNet-B0. The feature maps output from the 5th MBConv
Stage, the 10th MBConv Stage, and the last layer of EfficientNet-B0 are low-, middle-, and
high-level features separately. The dimensions of the low-level, middle-level, and high-level
feature maps, which are given by FL, FM, and FH , are (N, HL, WL, CL), (N, HM, WM, CM),
and (N, HH , WH , CH), respectively. N, H, W, and C are the batch sizes of the input sam-
ples, the height, the width, and the channel number of the feature map. However, due
to the different heights, widths, and channel numbers of low, medium, and high-level
feature maps, they cannot be directly concatenated.Therefore, we perform global aver-
age pooling on FL, FM, and FH to obtain feature vectors VL, VM and VH with dimensions
(N, CL),(N, CM) and (N, CH) respectively. Then we concatenate the feature vectors to
obtain a vector V whose dimension is (N, C), C = CL + CN + CH . The calculation process
is given in Formulas (6) and (7), where GAP means global average pooling, and CONCAT
means vector concatenation. 

VL = GAP(FL)
VM = GAP(FM)
VH = GAP(FH)

(6)

V = CONCAT(VL, VM, VH) (7)

It should be noted that the vector V contains not only the features of multi-aspect SAR
images, but also the three-level features of high-, medium- and low- levels. These types of
features have different effects on classification results, so we use the NLECA module to
recalibrate the vector V to enhance the useful features, and thus obtain the final output Vout.

Multi-channel

EfficientNet-B0

(MBConv 1-5)

Input Sample

Multi-channel

EfficientNet-B0

(MBConv 6-10)

Multi-channel

EfficientNet-B0

(last part)

GAP

Low-level feature map

GAP

Mid-level feature map

Mid-level feature vector
GAP

High-level feature vector

High-level feature map

Low-level feature vector

CONCAT

Multi-level feature vector

NLECA

Attention Module

Figure 8. Schematic diagram of multi-level feature extraction and fusion.
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After passing through the NLECA module, Vout is further used for direct classification,
calculation, and measurement of the prototype. The operation of the attention mechanism
here not only realizes the information interaction of low-, medium-, and high-levels, but
also realizes the information interaction among multi-aspect SAR images, which makes
full use of the feature information and thus improves the performance and the generality
of the model.

2.5. Training and Testing Tricks

In addition, this paper also uses some tricks to improve the performance of multi-
aspect SAR ATR under the small number of training samples.

2.5.1. Image Preprocessing

Since the SAR imaging angle of target has a great influence on the image feature, it is
not proper to use large-angle rotation, mirroring and other optical image augmentation
methods to augment the SAR samples. With reference to the method in [19], after con-
structing a multi-aspect SAR images dataset, each image of the training set is rotated by
±10◦, hereby increasing the training set by three times. In addition, for coherent speckle
noise reduction, this paper also uses the refined Lee filter [29] for preprocessing.

2.5.2. Label Smoothing

Label smoothing is a regularization method in machine learning. It changes the one
hot encoding of the label vector y into soft one-hot encoding, thereby adding some noise to
the label, reducing the weight of the correct class and the overfitting problem of the model.
After using label smoothing, the classification loss changes from cross-entropy LCE to LB,
as shown in Formula (8), where ε is a small hyperparameter, the value of ε is usually 0.1,
and target represents the class of current samples [30].

LB =

{
(1− ε)×LCE, if(i = target)

ε×LCE, if(i 6=target)
(8)

2.5.3. Test Time Augmentation

The same augmentation method for testing dataset, as that for training dataset, can
also effectively improve the test accuracy.

Each test sample is first rotated by ±10◦ to add up one sample to three samples. Then,
the three samples are produced by feature extraction model to obtain three corresponding
feature vectors. These three vectors are averaged to obtain a new vector, which is then used
to measure the distance from test sample to the prototype.

This method is similar to the bagging method in machine learning. It can effectively
generalize the model.

2.6. Multi-Aspect SAR ATR Method with Small Number of Training Samples

Combining the above methods and using NLECA-EfficientNet as the feature extraction
model, the multi-aspect SAR ATR training framework proposed in this paper under the
small number of samples is shown in Figure 9.

The training process has multiple epochs, and each epoch is divided into multiple
episodes, as shown in Figure 9. The training steps for each episode are as follows:

1. Randomly select KS samples from each of the N classes in the training set as the
support set S = {(x1, y1), (x2, y2), ..., (xN∗KS , yN∗KS)}, and select KQ samples as the
query set Q = {(x1, y1), (x2, y2), ..., (xN∗KQ , yN∗KQ)}, where xi is the multi-aspect SAR
images, yi is the sample label, and there are a total of N×(KS + KQ) training samples
participate in each training episode.

2. Use the training samples in the support set to calculate the prototype of each class.That
is, the support set samples of each class are used to obtain multi-level feature vectors
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through the multi-aspect SAR feature extraction model, and the multi-level feature
vectors of each class are averaged to obtain the prototype.

3. The samples of the query set are used to obtain the feature vector through the fea-
ture extraction model, which is used to calculate the Euclidean distance from each
prototype. The loss LP is calculated using Formulas (2) and (4).

4. Use the multi-level feature vectors of all samples in the support set and the query set
to perform the classification task, and obtain the classification loss LB by Formula (8).

5. Perform a weighted addition on the prototype loss LP and the classification loss LB to
get the total loss, while backpropagates to adjust the model parameters.

NLECA-EfficientNet

NLECA-EfficientNet

Support set sample

Query set sample

Feature Vector

Distance Vector

Prototype calculated on support set sample

Calculate the Euclidean distance from each 

prototype to the feature vector

d

Feature Vector

NLECA Calculate prototype kc

Feature Vector

NLECA

Feature Vector

FC Layer
Label

Smoothing

Total Loss

l

Prototype Loss pL

LBL

Classification 

Loss

Figure 9. Schematic diagram of model training process.

The test method is shown in Figure 10. The test steps for a single sample are as follows:

1. Use the trained feature extraction model and use the entire training set to calculate
the prototype of each class.

2. Rotate each image of the test sample by ±10◦, and extend the test sample by three
times, obtain three feature vectors by the trained feature extraction model, and average
the three feature vectors to obtain a new feature vector.

3. Use the feature vector in step 2 and the prototype in step 1 to calculate the Euclidean
distance and obtain the distance vector, and then use the Softmax classifier to classify
the distance vector.

rotate

NLECA-

EfficientNet

NLECA-

EfficientNet

NLECA-

EfficientNet

Mean feature vectot

Mean

Distance Vector

Prototype

Calculate Euclidean 

distance

d Softmax

Output

All support set 

sample 

Calculate prototype 
k
c

Test 

Calculate 

prototype

NLECA

NLECA

NLECA

NLECA-

EfficientNet

Feature Vector

NLECA

Feature Vector

Feature Vector Feature Vector

Feature Vector Feature Vector

Feature Vector Feature Vector

Figure 10. Schematic diagram of model test.
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3. Experiments and Results
3.1. Experimental Dataset
3.1.1. MSTAR Dataset

The moving and stationary target acquisition and recognition (MSTAR) dataset is
used in our experiments. The azimuth angle of the target in MSTAR dataset is in the range
of 0◦–360◦, so it is suitable as the multi-aspect target recognition dataset [12].

According to the dataset construction proposed in [19], considering the azimuth angle
coverage of SAR, we select 4 images withtheazimuth angle variation within 45◦ (which can
be realized by satellite SAR system) as a set of multi-aspect SAR image sequence.

We constructed 4 datasets, SOC, EOC1, EOC2, and EOC3 dataset. In SOC (Standard
operating condition) dataset, the acquirements of training and testing samples by SAR
sensors are similar, where the training data is captured at depression angle of 17◦ and the
testing data is captured at 15◦, and the number of classes is 10. In EOC (Extended operating
condition) datasets, the acquirements of training and testing samples are dissimilar, because
the SAR images are very sensitive to depression angle. The training data of EOC1 is
captured at depression angle of 17◦ and the testing data is captured at 30◦, and the number
of classes is 4. The size of SOC dataset is shown in Table 2 and the size of EOC1 dataset is
shown in Table 3.

Table 2. The size of SOC dataset.

Target Train Dataset Size Test Dataset Size

2S1 1162 1034
BMP2 883 634

BRDM_2 1158 1040
BTR70 889 649
BTR60 978 667

D7 1162 1037
T62 1162 1032
T72 874 642

ZIL131 1162 1034
ZSU_234 1162 1040

Total 10,592 8809

Table 3. The size of EOC1 dataset.

Target Train Dataset Size Test Dataset Size

2S1 1166 1122
BRDM_2 1162 1118

T72 913 1122
ZSU_234 1166 1122

Total 4407 4484

EOC2 and EOC3 datasets refer to vehicle version changes and vehicle configuration
changes, respectively. Version changes refer to the functional changes of the vehicles, that
is, the original vehicles changes to ambulances, transport vehicles, reconnaissance vehicles,
etc. Configuration changes refer to the addition or removal of some parts of the vehicles,
such as the oil tank removal of T72.

In the experiments, BMP2, BRDM_2, BTR70 and T72 in SOC training set are selected
as the training set for both EOC2 and EOC3. Five types of version changes of T72, including
S7, A32, A62, A63, and A64, are the testing set of EOC2. Two types of configuration changes
of BMP2, including 9566 and C21, and five types of configuration changes of T72, including
812, A04, A05, A07, and A10, are the testing set of EOC3 [17].

The total number of training sets of EOC2 and EOC3 is 4473.The total number of
testing sets of EOC2 and EOC3 are 9996 and 12,969, respectively.
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3.1.2. Small Number of Training Datasets

Based on the dataset on Section 3.1.1, this paper performs uniform under-sampling to
obtain some small number of training datasets, which are given as follows:

1. SOC training set: This paper establishes two under-sampled SOC datasets, SOC-
150 and SOC-250. SOC-150 has 10 classes with only 15 samples per class, a total of
150 training samples; SOC-250 has 10 classes with only 25 samples per class, a total
of 250 training samples. The two datasets only account for 1.42% and 2.36% of the
original training set size, respectively.

2. EOC1 training set: After under-sampled from original EOC1 training set, two datasets,
EOC1-100 and EOC1-200, are obtained. There are only 25 samples in each of the four
classes of EOC1-100, a total of 100 training samples.There are only 50 samples in each
of the 4 classes in EOC1-200, a total of 200 training samples. The two datasets account
for 2.26% and 4.53% of the original training set size, respectively.

3. EOC2 and EOC3 training sets: After under-sampled from original EOC2 training set
(the same as original EOC3 training set), two datasets, EOC23-100 and EOC23-200 are
obtained. The EOC23-100 data set has 4 classes with only 25 samples per class, a total
of 100 training samples. There are 50 samples in each of the 4 classes in E0C23-200
dataset, a total of 200 training samples. The two datasets account for 2.23% and 4.47%
of the original training set size, respectively.

3.2. Experimental Environment

All experiments in this paper are conducted under Ubuntu 18.04 system, using the
deep learning framework Pytorch 1.6. Intel i9-9900 CPU and NVIDIA RTX 2080Ti GPU are
used as the key hardware.

3.3. Experimental Parameters

The experiments in this paper are performed in two categories:

1. Use a small number of samples to train and test the model directly. In this part, center
loss is used as the training loss [31], and the cosine decay is used as the learning rate
reduction strategy. Other parameters are shown in Table 4.

2. Use the method proposed in this paper for training and testing. The Epochs for
training are all set to 100, where each epoch trains 200 episodes, the Adam optimizer
is used for learning, the learning rate is 1e-3, and the learning rate for each 20 epoch
is reduced to 1/2. For SOC-150 training set, the number of support sets KS for each
episode is 5, and the number of query sets KQ is 10. For SOC-250 training set, the
number of support sets KS is 10, and the number of query sets KQ is 15. For the
training sets of the EOC1 (EOC1-100, EOC1-200) and EOC23 (EOC23-100, EOC23-
200), the number of support sets KS for each episode is 10, and the number of query
sets KQ is 10.

Table 4. Direct training parameter settings.

Type Parameter

Batch Size 32
Optimizer Adam

Adam’s Learning Rate 0.001
Center Loss’ Optimizer SGD

SGD’s Learning Rate 0.5
Center Loss’ Hyper-Parameter 0.01

Cosine Decay Max Epoch 100
Epoch 100

In addition, for the NLECA attention mechanism, the convolution kernel size is 7; the
addition ratio of one-dimensional convolution and non-local one-dimensional convolution
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is 2:1. For the loss function of multi-task learning in Formula (5), the value of λ is set to be
0.2 for experiments.

3.4. Results of NLECA-EfficientNet Experiments

We use NLECA-EfficientNet as the feature extraction model. We conduct experiments
on small number of training datasets, and compare their results with the experimental
results of complete dataset, as shown in Tables 5–8.

Table 5. SOC datasets experimental results.

Dataset Direct Training Acc. Our Method Acc. Increase in Acc.

SOC-150 77.06% 99.84% 21.34%
SOC-250 88.65% 99.97% 11.32%

Complete SOC Dataset 100% - -

The experimental results of SOC datasets are shown in Table 5. The recognition
accuracy improvement of this method on SOC-150 dataset is 21.34%, and that on SOC-250
dataset is 11.32%. This method uses only 2.2% of the complete training dataset to obtain
the recognition accuracy of 99.97%, which is only 0.03% behind the recognition accuracy of
the complete training dataset.

Table 6. EOC1 datasets experimental results.

Dataset Direct Training Acc. Our Method Acc. Increase in Acc.

EOC1-100 68.58% 98.38% 29.80%
EOC1-200 84.30% 99.26% 14.96%

Complete EOC1 Dataset 99.45% - -

The experimental results of EOC1 datasets are shown in Table 6. Since this method
uses the distance measurement of prototype to classify, the improvement of this method is
significantly improved, especially when the EOC1 dataset has only 4 classes. The accuracy
improvement of this method on EOC1-100 dataset reaches 29.80%, and that on EOC1-200
dataset is 11.32%.

Table 7. EOC2 datasets experimental results.

Dataset Direct Training Acc. Our Method Acc. Increase in Acc.

EOC23-100 92.56% 99.39% 6.83%
EOC23-200 96.47% 99.67% 3.20%

Complete EOC23 Dataset 99.96% - -

Table 8. EOC3 datasets experimental results.

Dataset Direct Training Acc. Our Method Acc. Increase in Acc.

EOC23-100 99.03% 99.28% 0.25%
EOC23-200 99.54% 99.69% 0.15%

Complete EOC23 Dataset 99.78% - -
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The experimental results of EOC2 and EOC3 are shown in Tables 7 and 8. This method
has certain improvement in both datasets. In EOC3, the direct training results have high
accuracy, so the improvement of this method is relatively limited.

This method has different degrees of improvement on each dataset of MSTAR; more-
over, the recognition accuracy of this model in the case of a small number of training
samples is very close to the recognition accuracy of the direct training and testing model in
case of a complete training dataset.

3.5. Results of Ablation Experiments

In order to verify their own improvement of each method proposed above, this section
conducts ablation experiments by parts of the methods combination on the SOC-150
training set and SOC-250 training set. The results are shown in Table 9.

Table 9. Recognition accuracy of ablation experiments.

SOC-150 Dataset SOC-250 Dataset
Index Accuracy Increase in Accuracy Accuracy Increase in Accuracy

1 77.06% - 88.65% -%
2 86.30% 9.24% 95.45% 6.80%
3 90.62% 4.32% 96.34% 0.89%
4 94.74% 4.12% 98.49% 2.15%
5 97.60% 2.86% 99.42% 0.93%
6 97.91% 0.31% 99.56% 0.14%
7 98.40% 0.49% 99.97% 0.41%

As the baseline, we use the NLECA-Efficient model as the feature extraction model,
and directly train the model to obtain the experimental results. On this basis, the prototypi-
cal network, the multi-task learning method, the multi-feature fusion method, the attention
mechanism, the Label Smoothing method, and the test time augmentation are added one
by one in sequence. The results correspond to numbers 1–7 are shown in Table 9. Moreover,
the time costs are shown in Table 10.

It can be seen from Table 9 and Figure 11 that each method proposed in this paper has
a certain effect on improving the performance of target recognition.The use of prototypical
network has the greatest improvement in performance, increasing by 9.24% and 6.80% on
the SOC-150 and SOC-250 datasets, respectively. Secondly, the multi-feature fusion method
also significantly improves the performance, increasing by 4.12% and 2.15% on two datasets
respectively. After adding the attention mechanism on the basis of multi-feature fusion,
the performance has been further improved, and the two datasets have been improved by
2.86% and 0.93% respectively; In addition, other methods have also played a certain role
in improving the performance. Multi-task learning method has greatly improvement on
SOC-150 dataset, increasing the recognition accuracy by 4.32%. Label Smoothing method
and test time augmentation have also improved the performance to a certain extent, but
have a relatively small impact.
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Figure 11. Diagram of recognition accuracy of ablation experiments.

In Table 10, the increased time cost of prototypical network compared with the time
cose of the direct training method is 0.667 ms for each sample, and then the total time cost
is almoste doubled. In particular, because the test time augmentation increases the single
test sample to three test samples, the reasoning time reaches 2.968 ms. The addition of
other methods has less impact on time cost.

Table 10. Time costs of ablation experiment.

Index Time Costs Increase in Time Costs

1 0.774 ms -
2 1.441 ms 0.667 ms
3 1.519 ms 0.078 ms
4 1.602 ms 0.083 ms
5 1.702 ms 0.100 ms
6 1.739 ms 0.037 ms
7 2.968 ms 1.229 ms

In addition, we use t-SNE [32] to visualize the test set output of index 1, index 2, and
index 7 in Table 9, correspond to the direct training method, the prototypical network,
and the complete method proposed in this paper, respectively. As shown in Figure 12a,b,
in the direct training method, the 2S1, BMP2, BTR70, and BTR60 are mixed and difficult
to distinguish, which leads to low recognition accuracy. As shown in Figure 12c,d, the
black dots are the prototypes calculated by the training set for each class. Compared with
the direct training method, the output of the model trained by prototypical network is
more tightly gathered to the prototypes. The output of SOC-250 dataset basically form an
independent “island”, but there are still a few samples misclassified in SOC-150. As shown
in Figure 12e,f, after applying the other methods and obtaining the complete method, the
samples of each class are gathered more compactly in the prototype, and there are basically
no test samples that have been classified incorrectly.
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(a)Train directly 

on the SOC-150 dataset

(b)Train directly 

on the SOC-250 dataset

(c)Prototypical network

on the SOC-150 dataset

(d)Prototypical network

on the SOC-250 dataset

(e)Completed method in this paper

on the SOC-150 dataset

(f)Completed method in this paper

on the SOC-250 dataset

Figure 12. t-SNE visualization of testing dataset output.

4. Discussion
4.1. Advantages

It can be seen from the experiments in Section 3 that compared with the direct training
method, the method proposed in this paper can achieve higher recognition accuracy with a
small number of training samples. The recognition performance has great improvement
on a small number of training sample datasets of SOC1, EOC1 and EOC2, and slight
improvement on a small number of training sample dataset of EOC3. This proves the
advantages of the whole mothod in case of small datasets.

The ablation experiment in Section 3 verify the advantages of each part of the whole
method. Among them, the prototypical network improves the recognition accuracy the
most, the multi-task learning and the multi-level feature fusion methods improve the
recognition accuracy secondly and thirdly. The NLECA module processes multi-level
feature vectors and thus makes full use of the information of multi-aspect SAR images,
which improves the recognition accuracy fourthly.

4.2. Generality

The experiments in Section 3 is conducted by using NLECA-EfficientNet as the feature
extraction model. However, the method proposed in this paper has a certain degree of
generality, and thus some other CNNs can be used as feature extraction models.
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In order to prove the generality, this section uses three different CNNs: ResNet18 [24],
VGG11 [25] and AlexNet [26] as feature extraction models to conduct experiments on the
SOC-150 and SOC-250 datasets. The experimental results are shown in Table 11.

Table 11. Experimental results under different CNN models.

Model Dataset Direct Training Acc. Our Method Acc. Increase in Acc.

ResNet18 SOC-150 87.10% 98.25% 11.15%
SOC-250 92.85% 99.95% 7.10%

VggNet11 SOC-150 80.87% 99.13% 18.26%
SOC-250 90.35% 99.80% 9.45%

AlexNet SOC-150 85.52% 96.17% 10.65%
SOC-250 94.15% 98.20% 4.05%

It can be seen from the experimental results that the method proposed in this paper
can significantly improve the performance of target recognition when different CNNs are
used as the feature extraction model, which proves that the method has a good generality.

5. Conclusions

Aimed at the problems of the multi-aspect SAR target recognition issue based on
deep learning model under the small number of training samples, this paper proposes a
small training dataset learning method based on the prototypical network. This method is
classified by calculating the distance between the test sample and the prototype, and on
this basis, methods such as multi-task learning, multi-level feature fusion and attention
mechanism are added.

Experiments based on the MSTAR dataset show that this method can significantly
improve the recognition performance of the deep learning model under a small number of
samples, and thus the recognition accuracy can be close to that under the complete training
set. In addition, the experiments also prove that this method has a certain generality and
can be applied to a lot of deep learning feature extraction models. Therefore, this method is
very meaningful and can be generally used for multi-aspect SAR target recognition issues
with a small number of training samples.

Subsequent research can be carried out in the future. This method uses the amplitude
SAR images for training and testing. The complex SAR images may make up for the lack
of information in the case of a small number of training samples. Here, we refer to the
CV-CNN method proposed in [33] to extend CNN to the complex domain, so as to make
full use of SAR image information, and try to further improve the recognition accuracy
under a small number of training samples.
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