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Abstract: The concept of an intelligent reflecting surface (IRS) has recently emerged as a promising
solution for improving the coverage and energy/spectral efficiency of future wireless communication
systems. However, as the number of reflecting elements in an IRS increase, the beam training protocol
in IRS-assisted millimeter-wave (mmWave) cellular systems requires a large beam training time
because it needs to find the best beam pairs for the link between the base station (BS) and the IRS,
as well as the link between the IRS and the mobile station (MS). In this paper, a fast beam training
technique for IRS-assisted mmWave cellular systems with a uniform rectangular array is proposed
for detecting the best beam pairs of BS-IRS and IRS-MS links simultaneously. Two different types of
beam training signals (BTSs) are proposed to distinguish simultaneously transmitted beams from
the BSs in multi-cell multi-beam environments: the Zadoff–Chu sequence based BTS (ZC-BTS) and
m-sequence based BTS (m-BTS). The correlation properties of ZC-BTSs and m-BTSs are analyzed in
multi-cell multi-beam environments. In addition, the effect of symbol time offset on the ZC-BTS and
m-BTS is analyzed. Finally, simulation results reveal that the proposed technique can significantly
reduce the beam training time for IRS-assisted mmWave cellular systems.

Keywords: intelligent reflecting surface; beam training signal; uniform rectangular array

1. Introduction

As 5G cellular systems are deployed on a commercial scale, technologies for next-
generation (6G) communications are being explored to achieve faster and more reliable
data transmission. Among these technologies, the intelligent reflective surface (IRS) has
garnered significant interest because of its ability to improve spectral and energy efficiencies.
The IRS is constructed by planar surfaces consisting of a large number of low-cost passive
reflecting elements that are adjustable by a smart controller. These elements introduce phase
shifts and amplitude variations of the incident signals so that the incident electromagnetic
wave can be directed in the desired directions. Because the IRS eliminates the use of active
RF elements, it consumes almost no additional power [1–3].

Furthermore, millimeter-wave (mmWave) and terahertz (THz) communications are
being investigated because they can yield a significant increase in mobile data traffic for
an advanced broadband cellular communication. For mmWave/THz communications,
highly directional beamforming antennas are required at both the base station (BS) and
mobile station (MS) to compensate for the high attenuation in the mmWave/THz frequency
band and extend the transmission range. With a small wavelength of an mmWave/THz
frequency, antenna arrays can be easily installed at the MS. The IRS is particularly useful
for coverage extension in the mmWave/THz communications that are highly vulnerable
to blockage. In this case, the IRS can provide an alternative path between the BS and the
MS [4–7].

Narrow beam transmission and reception are effective for improving the link budget
in mmWave/THz frequencies. However, the beam training protocol in a cellular system
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requires a large amount of training time because it needs to find the best beam pair in the
BS-MS link to gain maximum beamforming efficiency. The overhead for beam training
in an IRS-assisted mmWave/THz cellular system increases further because the best beam
pairs in the BS-IRS-MS link should be found. The overhead increases exponentially when
sharp pencil beams generated by a massive number of reflecting elements are used in the
IRS. The beam training technique developed for the BS-MS link cannot be directly applied
to the BS-IRS link for the best beam pair between the BS and IRS, and the IRS-MS link for
the best beam pair between the IRS and MS. Normally, the best beam pair between the
BS and the IRS cannot be obtained at the IRS because the IRS simply reflects the received
signal. Full RF chains and baseband processing units are required at the IRS for detection
of the best beam pair between the BS and the IRS. In addition, the best beam pair between
the IRS and the MS cannot be obtained at the MS without the BS because the IRS consists
of passive reflecting elements. Unlike the BS with an active power source [8–12], the IRS
cannot transmit training signals. Consequently, it is difficult to find the best beam pair
separately for the BS-IRS link and IRS-MS link. In this paper, we propose a fast beam
training technique that can simultaneously detect the best beam pairs (BS-IRS-MS) in
IRS-assisted cellular systems.

The authors in [13] proposed a fast beamforming algorithm for multi-group multi-cast
beamforming design in large-scale wireless systems. The alternating direction method of
multipliers (ADMM) and convex-concave procedure (CCP) based low complexity and high
performance algorithm is proposed in this paper considering channel state information
(CSI) is known at the transmitter. However, since our fast 3D beamforming technique is
developed for beam search in the initialization stage, it is assumed that no information on
CSI is available at the BS in our paper. In [14], iterative procedure with variable step sizes
was proposed with distributed antenna systems for fast beamforming. This paper proposed
the creation of virtual subarray using two or more distributed antennas. The virtual array
can align transmitted signal phases at the intended user. The major drawback for this
technique is about coordination of sources (information sharing, timing synchronization,
carrier synchronization) among elements of virtual array. However, this problem does not
occur in our case because the beams are transmitted from the same source (3D beamformer).
The beams transmitted from multiple ULAs at the BS are all synchronized in time and
frequency. The authors in [15] proposed a statistics based fast initial access procedure. This
paper also proposed an online implementation method which acquires the MS statistics
and adapts the initial access scanning procedure. However, the past user statistics of MS
behavior is not exploited in our fast 3D beamforming technique. In our beamforming
technique, Tx and Rx beams are determined by calculating the correlation value between
the received signal at the MS and reference signal.

In [16], the concept of RF focus (RFocus) including 2D surface with simple elements
and a software-based controller was introduced. This surface reflects the signal and prop-
erties of surface can be controlled using a software controller. It focuses the RF power
in the desired direction improving the link-budget at the receiver. The RFocus surface
can be manufactured as an inexpensive thin wallpaper, requiring no wiring. In [17], the
authors introduced the concept of massive backscatter communication with programmable
meta-surfaces at the transmitter, which modulates the propagation environment of stray
ambient waves. The resulting wave control enables focusing and multi-channel schemes,
which allowed them to demonstrate unprecedented data rates on the order of hundreds
of kbps and communication security—without requiring an active radiofrequency chain,
energy, and spectral resources to generate a carrier signal. In [18], an architecture based
on time-domain digital-coding meta-surface was proposed for new wireless communi-
cation systems. By dynamically modulating the local phase of surface reflectivity in the
meta-surface-based system, the authors can achieve accurate control of different harmonics
in a highly programable and dynamic fashion. Compared to conventional systems, the
hardware complexity of the metasurface-based system is greatly simplified without de-
grading the system performance. In [19], the concept of intelligent wall was proposed as an
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autonomous part of a smart indoor environment for cognitive wireless networks. Artificial
neural networks were employed in the cognitive engine to make each node capable of learn-
ing from past experiences. The smart environment can react to the immediate demands
of an indoor wireless system, control radio coverage, and, consequently, influence overall
system performance. In [20], the authors proposed programmable coding meta-surfaces to
directly transmit “0”s and “1”s into space, eliminating the requirement for analog-digital
convertor and a series of active and passive microwave devices. The authors built the
prototype to validate the new architecture experimentally, which may find promising appli-
cations where information security is highly demanded. In [21], it was shown that optimal
channel diversity can be achieved by physically shaping the propagation medium with
a reconfigurable meta-surface placed inside a random environment. Enhanced wireless
image transmission was demonstrated in an office room by reducing channel cross-talk
and obtaining orthogonality of wireless channels with a reconfigurable meta-surface.

Various beamforming optimization techniques have also been proposed for IRS-
assisted communication systems [22–29]. Recently, a fast beam training technique for
IRS-assisted multi-user communications was proposed that could significantly reduce
the beam training time for the IRS-MS link using multi-beam transmission and multi-
beam codebook design [30]. The optimal IRS beam directions were detected with a high
probability, without compromising the IRS passive performance for data transmission.
Although the technique is practical and effective in IRS-assisted communication systems,
it can be applied to single cell environments. In multi-cell environments, beam training
signals (BTSs) are transmitted simultaneously from neighboring cells to the MSs in their
cells during the initialization period. Therefore, BTSs transmitted from neighboring cells act
as interference, particularly for MSs located at the cell boundary. If the MS cannot identify
the source BS of the BTS from the received signal, it cannot find the best beam direction for
the serving BS with the IRS. In [30], the beam training technique was developed for the
IRS-MS link, assuming that the BS-IRS link (beam pair) had already been established.

In this paper, a fast beam training technique is proposed to simultaneously detect the
best beam pairs (BS-IRS-MS) in mmWave cellular systems with an IRS. In the proposed
technique, it is assumed that mmWave beamforming is performed at the BS, IRS, and MS,
all using a uniform rectangular array (URA). The URA is considered to be a set of uniform
linear arrays (ULAs). The URA at the BS is divided into ULAs that transmit beams in
different directions simultaneously. The URA at the IRS is also divided into ULAs, which
reflect the incoming signals in different directions. Because multiple beams are received
in multi-cell environments, the MS must be capable of identifying its cell ID (CID) and
beam ID (BID) from the received signals. In this paper, two BTSs are proposed to facilitate
joint detection of the CID and BID at the MS: Zadoff–Chu sequence based BTS (ZC-BTS)
and m-sequence based BTS (m-BTS) [31]. The properties of the ZC-BTS and m-BTS are
analyzed in a multi-cell environment, where time delays exist among the signals received
from neighboring BSs. Simulation results reveal that the proposed BTSs can be used to find
the best beam pairs (BS-IRS-MS) in mmWave cellular systems with a significant reduction
in beam training time.

The remainder of this paper is organized as follows: Section 2 describes the proposed
beam training technique for IRS-assisted cellular systems. In Section 3, two different types
of BTSs are discussed and their correlation properties are analyzed in a multi-cell multi-
beam environment. In Section 4, the performance of the proposed technique is evaluated
using a simple IRS-assisted cellular system model. Conclusions are drawn in Section 5.

2. Proposed Beam Training Technique for IRS-Assisted Cellular Systems

The beam training is performed in all possible directions during the initialization
period for mmWave cellular systems because a BS has no information about the position
of an MS. The beam training time increases proportionally with the number of beams in
mmWave cellular systems when exhaustive search is used [32,33]. The beam training time
increases further for IRS-assisted cellular systems because the best beam pairs should be
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found not only for the IRS-MS link but also for the BS-IRS link. Because the IRS consists
of passive reflecting elements, the best beam pairs in the BS-IRS-MS link should be found
through the signals transmitted from the active power source in the BS. The beam training
time in IRS-assisted cellular systems increases proportionally with the product of the
number of transmitted beams at the BS, number of reflecting beams at the IRS, and number
of received beams at the MS when an exhaustive search is used. This long processing
time will create significant overhead for IRS-assisted cellular systems. In this section, we
describe a beam training technique that can simultaneously detect the best beam pairs
(BS-IRS-MS) in an IRS-assisted cellular system with URAs.

Figure 1 presents a conceptual schematic diagram for beam training in IRS-assisted
cellular systems. Some users are served by the BS directly. However, the line-of-sight
(LOS) link between the BS and MS can be blocked owing to some obstacles. In this case, an
IRS can provide an alternative path between the BS and MS and keep the MS connected
to the network. In this paper, we focus on a beam training technique for the BS-IRS-MS
link because beam training techniques for the BS-MS link are available. In the proposed
technique, the URA at the BS is divided into Ns

BS subarrays (ULAs), with each subarray
consisting of NA

BS antenna elements. As shown in Figure 2, beams are transmitted from
Ns

BS subarrays simultaneously. Because the source of the signal should be identified in
a multi-cell environment with multiple beams, the CID and BID are incorporated in the
design of the BTS. Here, θb

BS denotes the direction (angle) of the beam with BID b. The total
number of beam directions at the BS is given by Nb

BS. If the number of beams at the BS is
greater than the number of subarrays Nb

BS > Ns
BS, this transmission process is repeated

u times, i.e., Nb
BS = u× Ns

BS. Here, u is an integer. The design technique for the BTS is
described in Section 3.

Figure 1. Beam training for an IRS-assisted cellular system.
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Figure 2. Uniform rectangular arrays at the BS, IRS, and MS.

The IRS is a passive device that reflects the signal received from the BS. The beam
direction of the reflected signal can be adjusted by changing the phase shifters in a passive
manner. An IRS controller is used to control the beam direction and exchange information
with the BS via a separate reliable link. As shown in Figure 2, the URA at the IRS is divided
into Ns

IRS horizontal subarrays, with each subarray consisting of NA
IRS reflecting elements,

similar to the URA at the BS. Each subarray at the IRS reflects the signals (BTSs) received
from the BS in different beam directions θb

IRS. The reflecting beam direction at the IRS
changes sequentially over different symbols. Thus, the BID of the IRS is given by the
symbol index, unlike the BID of the BS. The total number of reflecting beam directions
is given by Nb

IRS. If Nb
IRS > Ns

IRS; this process is repeated v times, i.e., Nb
IRS = v× Ns

IRS.
Here, v is an integer. If the number of subarrays is equal to the number of beams, only one
round of transmission is required.

The MS receives the signals reflected from the IRS and performs correlation with
the reference BTSs to find the best beam pairs (BS-IRS-MS) as well as the CID. As shown
in Figure 2, the URA at the MS is also divided into Ns

MS subarrays, with each subarray
consisting of NA

MS elements. Each subarray receives signals in different beam directions i.e.,
θb

MS. Here, the total number of received beam directions is given by Nb
MS. If Ns

MS is smaller
than Nb

MS, the beam search operation at the MS is repeated w times, i.e., Nb
MS = w× Ns

MS.
If the number of subarrays at the MS is identical to the number of beams at the MS, only
one cycle is required. Thus, the total number of beam scans required for the BS-IRS-MS
link in the proposed technique is given by u×

(
v + Nb

IRS

)
×w. In the proposed technique,

the best BID and CID of the BS are determined at the MS by correlating the received signal
with reference BTSs because the BTSs are transmitted simultaneously from the BS. The best
beam pair for the IRS and MS is determined at the MS by comparing the received signal
power over time (symbol) and antenna subarrays, respectively. Here, it is assumed that the
distance between the BS and IRS and the distance between the IRS and MS are considerably
larger than the spacing between antenna elements in the URA (BS, IRS, and MS). In this
case, the subarrays transmitting/receiving beams in different directions can be assumed
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to be located at the same position (height). The procedure of the proposed beam training
technique for the BS-IRS-MS link can be summarized as follows:

First, the BS transmits multiple beams simultaneously in all possible directions using
a set of ULAs. The BTS transmitted from each beam contains CID and BID so that they can
be detected at the MS in a multi-cell multi-beam environment. Second, the IRS reflects the
signal received from the BS in different beam directions. The reflecting beam direction at
the IRS changes sequentially over time. Third, the MS receives the signals reflected from
the IRS using a set of ULAs. The ULAs receive signals simultaneously from different beam
directions. The BID and CID of the BS are determined by correlating the received signal
with the reference BTSs, whereas the BIDs of the IRS and MS are determined by comparing
the received signal power over time.

3. Proposed BTSs for IRS-Assisted Cellular Systems

When the proposed technique is used for beam training in an IRS-assisted cellular
system, the received signal at the MS in the BS-IRS-MS link can be expressed as follows:

y(n) = yc̄,b̄(n) + yc̄,b(n) + yc,b(n) + η(n) (1)

where

yc̄,b̄(n) = γc̄,b̄
BSγtx

IRSγrx
MShc̄,b̄

BS−MSqc̄,b̄(n− ∆c̄,b̄)

yc̄,b(n) =
Nb

BS−1

∑
b=0

γc̄,b
BSγtx

IRSγrx
MShc̄,b

BS−MS(n)× qc̄,b(n− ∆c̄,b)

yc,b(n) =
Nc−1

∑
c=0

Nb
BS−1

∑
b=0

γc,b
BSγtx

IRSγrx
MShc,b

BS−IRS(n)× qc,b(n− ∆c,b)

where yc̄,b̄ represents the signal received from the serving BS with the best beam. Here,
c denotes the CID, ranging from zero to Nc − 1. Nc is the number of neighboring cells.
c̄ and b̄ denote the reference CID and reference BID, respectively. In addition, yc̄,b is the
interference signal received from the serving BS with different BIDs. yc,b represents the
interference signal received from the neighboring BS with BID b. Finally, η represents the
noise term. Here, γc,b

BS, γrx
MS, γtx

IRS, hc,b
BS−MS, and qc,b are the transmit beamforming gain of

the bth beam of the cth BS, receive beamforming gain of the MS, beamforming gain of the
IRS, effective channel in the BS-IRS-MS link, and BTS transmitted from the BS, respectively.
The channel is assumed to be time-invariant and frequency-flat. In addition, ∆c,b denotes
the propagation delay between the BS with (c, b) and MS in the BS-IRS-MS link. As the
distance between the BS and IRS and the distance between the IRS and MS are considerably
larger than the antenna spacing, ∆c,b can be simply expressed as ∆c. Note that the BIDs for
IRS and MS are not considered in (1) because they can be easily determined by finding the
position of the peak value in the received signal power at the MS over time and antenna
subarrays, respectively.

In the proposed technique, multiple BTSs are simultaneously transmitted from the
URA of the BS to reduce the beam training time in the BS-IRS-MS link. The CID and
BID are incorporated in the design of the BTS so that they can be detected at the MS in a
multi-cell multi-beam environment. The BTSs that are not matched with the reference CID
and the reference BID will act as an interference. To facilitate joint detection of the CID
and BID with minimum inter-beam and inter-cell interferences, two BTSs are proposed for
IRS-assisted cellular systems.

3.1. Zadoff–Chu Sequence Based BTS (ZC-BTS)

Owing to a good correlation property and low peak-to-average power (PAPR), the ZC
sequence has been widely used to design synchronization signals in various applications,
including the primary synchronization signal (PSS) in LTE and random access in 5G-NR-
based cellular systems [34,35]. In the proposed BTS, beams are transmitted simultaneously
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from the BS subarrays to find the best beam pairs in the BS-IRS-MS link. The CID and BID
are mapped to a ZC sequence of a prime length so that they can be detected in a multi-cell
multi-beam environment as follows:

qc,b
zc (n) = e

jπrc(n+zb)(n+zb+1)
L (2)

where 1 < rc < L and gcd(r, L) = 1. Here, qc,b
zc denotes the ZC-BTS with CID c and BID b.

“gcd” stands for the greatest common divisor. In addition, rc,z, and L denote the root index
of the ZC sequence carrying CID c, cyclic shift spacing of the ZC sequence, and sequence
length, respectively. The ZC sequence has the property of zero autocorrelation and a
constant envelope. The ZC sequences with different root indices have a cross-correlation of
1/
√

L. The maximum number of CIDs for the ZC-BTS is given by L− 1. Because multiple
ZC-BTSs are simultaneously transmitted from the subarrays of the BS in the proposed
technique, a correlation operation is performed at the MS to find the best CID and BID of
the BS in the BS-IRS-MS link. The correlation between the received signal and reference
ZC-BTS is given by:

Cc,b
ZC−BTS(m) =

L−1

∑
n=0

y(n)
(

qc̄,b̄
zc,re f (n−m)

)∗
(3)

Cc,b
ZC−BTS = ΣZC−BTS + ΥZC−BTS + ΛZC−BTS + ΩZC−BTS (4)

where

ΣZC−BTS(m) =
L−1
∑

n=0
yc̄,b̄(n)

(
qc̄,b̄

zc,re f (n−m)
)∗

ΥZC−BTS(m) =
L−1
∑

n=0
yc̄,b(n)

(
qc̄,b̄

zc,re f (n−m)
)∗

ΛZC−BTS(m) =
L−1
∑

n=0
yc,b(n)

(
qc̄,b̄

zc,re f (n−m)
)∗

ΩZC−BTS(m) =
L−1
∑

n=0
η
(

qc̄,b̄
zc,re f (n−m)

)∗
Here, qc̄,b̄

zc,re f denotes the reference ZC-BTS. In (4), ΣZC−BTS represents the autocorrela-
tion value when the received signal is matched with the reference ZC-BTS

(
c = c̄, b = b̄

)
.

The terms inside the summation can be expressed as:

L−1
∑

n=0
qc̄,b̄

zc (n− ∆c̄)
(

qc̄,b̄
zc,re f (n−m)

)∗
=

L−1
∑

n=0
e

jπrc̄(n−∆c̄+zb̄)(n−∆c̄+zb̄+1)
L

(
e

jπrc̄(n−m+zb̄)(n−m+zb̄+1)
L

)∗
=e

jπrc̄
L

[
(∆c̄)

2−2zb̄∆c̄−∆c̄−m2+2zb̄m+m
]

×ejπ(2m−2∆c̄)(L−1)
/

L.
sin π(2m−2∆c̄)

sin
(

π(2m−2∆c̄)
/

L
) .

(5)

The correlation is performed at the MS by shifting time lag of the reference ZC-BTS.
It can be observed from (5) that the correlation value is maximum when the symbol
timing offset (STO) between propagation delay ∆c̄ and time lag m is zero. The correlation
decreases with an increase in the STO in the sinc-like pattern. In (4), ΥZC−BTS represents
the interference term caused by the correlation when the received signal has the same CID
but a different BID

(
c = c̄, b 6= b̄

)
. The terms inside the summation are given in (6),
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L−1
∑

n=0
qc̄,b

zc (n− ∆c̄)
(

qc̄,b̄
zc,re f (n−m)

)∗
=

L−1
∑

n=0
e

jπrc̄(n−∆c̄+zb)(n−∆c̄+zb+1)
L

(
e

jπrc̄(n−m+zb̄)(n−m+zb̄+1)
L

)∗
= e

jπrc̄
L [zb(zb+1)]︸ ︷︷ ︸

qc̄,b
zc (0)

· e
jπrc̄

L [zb̄(zb̄+1)]︸ ︷︷ ︸
qc̄,b̄

zc (0)
∗

×

e
j2πrc̄

L

[
(∆c̄)

2−2zb∆c̄−∆c̄−m2+2zb̄m+m
]

L−1
∑

n=0
e

j2π
L n[rc̄(zb−zb̄−∆c̄+m)]

=

{
qc̄,b

zc (0)q
c̄,b̄
zc (0)∗ · L if ξ(c̄,z,b,b̄,m,∆c̄) = σL

0 otherwise

(6)

where

ξ(c̄,z,b,b̄,m,∆c̄) = rc̄[zb− zb̄− ∆c̄ + m
]
. (7)

Here, σ is an arbitrary integer. According to (6), the correlation becomes high when
the following condition is satisfied:

rc̄[zb− zb̄− ∆c̄ + m
]
= σL. (8)

In this case, the correlation peak occurs at an incorrect position, which causes a
detection error. Thus, the cyclic shift spacing (z) must be selected to avoid the following
condition:

z =
σL + rc̄(∆c̄ −m)

rc̄
(
b− b̄

) , z > 0 (9)

The maximum value of the cyclic shift spacing can be obtained as follows:

zmax =

⌊
L

Nb
BS

⌋
(10)

If the value of the cyclic shift spacing is properly selected to avoid the above ambiguity
condition, the correlation value will be zero, resulting in negligible inter-beam interference.
However, as the maximum STO value increases, the value of cyclic shift spacing must be
increased to avoid ambiguity, resulting in reduction of the available IDs. In (4), ΛZC−BTS
represents the interference term caused by cross-correlation when the received signal has
a different CID (c 6= c̄). The correlation value is obtained in (11) using the Gaussian sum
property [36].

L−1
∑

n=0
qc,b

zc (n− ∆c)
(

qc̄,b̄
zc,re f (n−m)

)∗
=

L−1
∑

n=0
e

jπrc(n−∆c+zb)(n−∆c+zb+1)
L

(
e

jπrc̄(n−m+z̄b̄)(n−m+z̄b̄+1)
L

)∗
= qc,b

zc (0)
[
qc̄,b̄

zc (0)
]∗
· e

jπ
L rc((∆c)2−2zb∆c−∆c) · e−

jπ
L rc̄(m2−2zb̄m−m)e

−jπχ
L ·
√

L ·Θ
(11)

where

χ =
(
rczb− rc̄ z̄b̄− rc̄∆c + rc̄m

)((
rczb− rc̄ z̄b̄− rc̄∆c + rc̄m

)
(rc − rc̄)

−1
+ 1
)

Θ =

 κ
1−jN

1−j , rc > rc̄

κ
1+jN

1+j , rc < rc̄

κ =
〈

α|rcc̄ |
L

〉
e−j 2πbcc̄ gγ2

L

gcd(r(c), L) = 1, gcd(r(c̄), L) = 1, gcd(rcc̄, L) = 1
g = (L + 1)

/
2, γ = (L− 1)

/
2, bcc̄ = rc − rc̄
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Here, 〈〉 and z̄ denote the Jacobi symbol [36] and cyclic shift spacing of the reference
BTS, respectively. According to (11), the cross-correlation is bounded by

√
L. Finally,

ΩZC−BTS represents the noise term correlated with the reference ZC-BTS.
In (6) and (11), it can be observed that the inter-beam and inter-cell interferences are

small when the proposed ZC-BTS is used. The actual interference power received at the MS
will be negligible because the beamforming gains in (1) are small when the transmit and
receive beams are not aligned. According to (5), the maximum correlation is obtained when
the received signal is matched with the reference ZC-BTS. In this case, the beamforming
gains in (1) are maximized because the transmitted and received beams are aligned. Thus,
the best BID and CID can be found using the ZC-BTS if the cyclic shift spacing is adjusted
to avoid the ambiguity condition in (9).

3.2. M-Sequence Based BTS (m-BTS)

The m-sequence is widely used for preamble design in cellular systems, such as the
PSS and secondary synchronization signal (SSS) of 5G-NR and SSS of LTE, owing to its
good autocorrelation properties [35]. However, the m-sequence is not used for applications
requiring different sequence generation because of its poor cross-correlation property.
The Gold sequence (GS), generated by selecting preferred pairs of m-sequences and their
combinations, is often used for applications requiring a large set of sequence generation
because of its enhanced cross-correlation property. In this paper, a new signal (m-BTS)
based on an m-sequence is proposed for fast beam training in IRS-assisted mmWave cellular
systems. The m-BTS is generated as follows:

qc,b
m (n) = S(n + dc)(S(n + db))

∗ (12)

where S = (1/L)1/2 ∑L−1
n=0 sne−j2πwn/L, L = 2n − 1, 0 ≤ dc, db < L, and dc 6= db.

Here, S denotes the DFT of m-sequence s. Different values of cyclic shifts (dc, db)

corresponding to CID and BID are used to generate qc,b
m . qc,b

m is obtained by multiplying two
sequences (S, S∗), which are the DFTs of the m-sequences with different cyclic shifts. The
number of IDs that can be generated by m-BTS is given by (L− 1)L. Here, L denotes the
length of the m-sequence. The correlation between the received signal and the reference
m-BTS is given by

Cc,b
m−BTS(m) =

L−1
∑

n=0
y(n)

(
qc̄,b̄

m,re f (n−m)
)∗

(13)

Cc,b
m−BTS = Σm−BTS + Υm−BTS + Λm−BTS + Ωm−BTS (14)

where

Σm−BTS(m) =
L−1
∑

n=0
yc̄,b̄(n)

(
qc̄,b̄

m,re f (n−m)
)∗

Υm−BTS(m) =
L−1
∑

n=0
yc̄,b(n)

(
qc̄,b̄

m,re f (n−m)
)∗

Λm−BTS(m) =
L−1
∑

n=0
yc,b(n)

(
qc̄,b̄

m,re f (n−m)
)∗

Ωm−BTS(m) =
L−1
∑

n=0
η
(

qc̄,b̄
m,re f (n−m)

)∗
Here, qc̄,b̄

m,re f denotes the reference m-BTS. In (14), Σm−BTS represents the autocorrela-
tion value when the received signal is matched with the reference m-BTS

(
c = c̄, b = b̄

)
. In

this case, the terms inside the summation can be rewritten as
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L−1
∑

n=0
qc,b

m
(
n− ∆c̄)(qc̄,b̄

m,re f (n−m)
)∗

= 1
L

L−1
∑

n=0

(
S
(
n + dc − ∆c̄)(S(n + db − ∆c̄))∗)(S(n + dc̄ −m)(S(n + db̄ −m))∗

)∗
= 1

L

L−1
∑

n=0

(
L−1
∑

w0=0

L−1
∑

w1=0
sw0

e−j2πw0(n+d′ c)/Lsw1
ej2π(w1)(n+d′b)/L

)

×
(

L−1
∑

w2=0

L−1
∑

w3=0
sw2

e−j2πw2(n+d′ c̄)/Lsw3
ej2πw3(n+d′ b̄)/L

)∗
(15)

where

d′c = dc − ∆c̄

d′b = db − ∆c̄

d′ c̄ = dc −m
d′ b̄ = db −m

If (n1 − n0)%L = δ0 and (n3 − n2)%L = δ1, (15) can be expressed as

L−1
∑

n=0
qc,b

m
(
n− ∆c̄)(qc̄,b̄

m,re f (n−m)
)∗

= 1
L

L−1
∑

n=0

(
L−1
∑

w0=0

L−1
∑

δ0=1
sw0

sw0+δ0
e−j2πw0(n+d′ c)/Lej2π(w0+δ0)(n+d′b)/L

)

×
(

L−1
∑

w2=0

L−1
∑

δ1=1
sw2

sw2+δ1
ej2πw2(n+d′ c̄)/Le−j2π(w2+δ1)(n+d′ b̄)/L

) (16)

In addition, % denotes the modulo operation. The “shift and add property” of the
m-sequence states that multiplication of an m-sequence with its own cyclic shift results in
another m-sequence [37]. Here, Dδ denotes the amount of shift caused by the multiplication
of an m-sequence by its shifted version with an offset δ ranging from 1 to L− 1. Thus, (16)
can be simplified as

L−1
∑

n=0
qc,b

m
(
n− ∆c̄)(qc̄,b̄

m,re f (n−m)
)∗

= S(d′ c−d′b)
1
L

L−1
∑

n=0

(
L−1
∑

δ0=1
ej2π(δ0)(d′b)/Lej2πDδ0 (d

′
c−d′b)/Lej2π(δ0)(n)/L

)

×
(

S(d′ b̄ c−d′ c̄)

)( L−1
∑

δ1=1
e−j2πDδ1(d′ c̄−d′ b̄)/Le−j2π(δ1)(d′ b̄)/Le−j2π(δ1)(n)/L

) (17)

Equation (17) is simplified as

L−1

∑
n=0

qc,b
m
(
n− ∆c̄)(qc̄,b̄

m,re f (n−m)
)∗

= S(d′ c−d′b)

(
S(d′ b̄ c−d′ c̄)

) L−1

∑
δ0=1

ej2πDδ0 (α)/Le−j2π(δ0)(β)/L

︸ ︷︷ ︸
µ

(18)

where α = d′c − d′b + d′ b̄ − d′ c̄ and β = d′ b̄ − d′b. When no STO exists, the cyclic shifts,
dc̄ and db̄ are equal to dc and db, respectively, because c = c̄ and b = b̄. Thus, α = 0 and
β = 0. Hence, |µ| is given by L− 1. Therefore, when there is no STO (∆′ = 0, d′c = dc), the
autocorrelation value is given by∣∣∣∣∣L−1

∑
n=0

qc̄,b̄
m
(
n− ∆c̄)(qc̄,b̄

m,re f (n−m)
)∗∣∣∣∣∣ = (L2 − 1

)/
L2 (19)

Moreover, in the presence of an STO, the received m-BTS is changed to another
sequence with different d′c. In this case, its correlation value should be found through
cross-correlation operation, which is derived as follows. In (14), Υm−BTS represents the inter-
ference term when the received signal has the same CID but a different BID

(
c = c̄, b 6= b̄

)
.
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Using the “shift and add property” [37] of the m-sequence, the inter-beam interference can
be expressed as∣∣∣∣L−1

∑
n=0

qc̄,b
m (n− ∆c̄)

(
qc̄,b̄

m,re f (n−m)
)∗∣∣∣∣ = 1

L s∆c̄

(dc−db)

(
sm
(db̄−dc̄)

)
µ. (20)

Because α 6= β,
∣∣∣µα=0,α 6=β

∣∣∣2 is given by

∣∣∣µα=0,α 6=β

∣∣∣2 =
L−1
∑

δ0=1

L−1
∑

δ̄0=1
ej2π(Dδ0

−Dδ̄0
)α/Le−j2π(δ0−δ̄0)β/L

=
L−1
∑

δ0=1

{
1 +

L−1
∑

δ̄0=1,δ̄0 6=δ0

ej2π(Dδ0
−Dδ̄0

)α/Le−j2π(δ0−δ̄0)β/L

}
.

(21)

As (δ̄0 − δ0)%L can be represented by τ ranging from 1 to L− 1,
∣∣∣µα=0,α 6=β

∣∣∣2 can be
expressed as

∣∣∣µα=0,α 6=β

∣∣∣2 = L− 1 + (L− 2)
L−1

∑
τ=1

ej2πτβ/L = 1 (22)

Using (22), (18) can be simplified as∣∣∣∣∣L−1

∑
n=0

qc̄,b
m
(
n− ∆c̄)(qc̄,b̄

m (n−m)
)∗∣∣∣∣∣ = (L + 1)

/
L2 (23)

In (14), Λm−BTS represents the interference term caused by cross-correlation when the
received signal has a different CID (c 6= c̄). Using the “shift and add property” [37] of the
m-sequence, the inter-cell interference term can be expressed as∣∣∣∣L−1

∑
n=0

qc,b
m (n− ∆c)

(
qc̄,b̄

m,re f (n−m)
)∗∣∣∣∣ = 1

L s∆c

(dc−db)

(
sm
(db̄−dc)

)
µ (24)

As α 6= 0 and α 6= β,
∣∣∣µα 6=0,α 6=β

∣∣∣2 is given by

∣∣µα 6=0,α 6=β

∣∣2 = L− 1 +
L−1
∑

τ=1
ej2πτβ/L{

L−1

∑
δ0=1,δ0 6=L−τ

ej2π(Dδ0
−D(δ0+τ)%N

)α/L

︸ ︷︷ ︸
υ

}
(25)

Here, τ is a constant integer ranging from 1 to L− 1. The values of variables δ0 and
Dδ0 also range from 1 to L− 1. Furthermore, L− τ is not considered for δ0 in (25) because
it generates an out of range value. Replacing (Dδ − Dδ+τ)%L with D̃, v can be expressed as

υ =
L−1
∑

D̃=1,D̃ 6=L−τ

ej2πD̃α/L

=
L−1
∑

D̃=0
ej2πD̃α/L − ej2π0α/L − ej2π(L−τ)α/L

(26)

Because α is an integer, the first and second terms in (26) become zero and one,
respectively. The third term can be rewritten as ej2π(L)α/Lej2π(−τ)α/L. Because α is an
integer, the first term becomes one. Thus, v can be simplified as

υ = −1− e−j2πτα/L (27)
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Using (23), (25), and (27), the inter-cell interference term in (24) is given by

∣∣∣∣L−1
∑

n=0
qc,b

m (n− ∆c)
(

qc̄,b̄
m,re f (n−m)

)∗∣∣∣∣ =
{

(L+1)3/2

L2 , (α 6= 0,β 6= 0)&(α 6= β)
(L+1)

L2 , (β = 0)&(α 6= β)
(28)

3.3. Examples

Figure 3 presents an example of the correlation function of the m-BTS when L = 127.
The analytic results derived in (19), (23), and (28) are compared with the simulation re-
sults when the STO is zero. Here, the CID and BID are set to 39 and 3 (dc̄ = 39, db̄ = 3),
respectively. According to Figure 3, the maximum correlation peak occurs at the correct
position, i.e., 4956 ((dc̄ × Nc) + db̄). As given in (19), autocorrelation value

(
L2 − 1

)/
L2 is

close to one. The term (L + 1)
/

L2, corresponding to the inter-beam interference in (23),

is 0.0079. Moreover, (L + 1)3/2
/

L2 and (L + 1)
/

L2, corresponding to the inter-cell inter-
ference in (28), are 0.0898 and 0.0079, respectively. The results are indistinguishable in
Figure 3 because the analytic and simulation results are approximately identical.

Figure 3. Correlation property of the m-BTS (STO = 0).

The maximum cross-correlation values of the ZC-BTS and m-BTS are compared for
three different values of the sequence length (L) in Table 1. Here, the GS is included for
comparison purposes. Table 1 shows that the maximum cross-correlation values of the
ZC-BTS and m-BTS are significantly smaller than those of the GS for the three cases. The
maximum cross-correlation value of the ZC-BTS is slightly smaller than that of m-BTS. As
discussed in Section 3.1, the number of available sequences in the ZC-BTS decreases as the
maximum STO value increases. In the ZC-BTS, the value of cyclic shift spacing must be
increased to avoid the ambiguity condition in (9) as the maximum STO value increases.
When the sequence length is 127 and the maximum STO is 30 samples, the number of
available IDs in the ZC-BTS is 533

(⌊
(L− 1)× L

zmax

⌋)
. In addition, the m-BTS experiences

an ambiguity problem because the received m-BTS is changed to another sequence with
different dc in the presence of the STO (∆c̄ −m 6= 0). The peak is shifted in proportion to
the product of the sequence length and STO value. To avoid the ambiguity problem, the
sequences that can be obtained by the peak shift phenomenon in the presence of the STO
should not be selected. Therefore, the number of available IDs in the m-BTS is reduced by
the factor of the maximum STO value ∆′max. Under the same conditions (∆′max = 30), the
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number of available IDs in the m-BTS is 533
(⌊

Ndc

∆′max
× Ndb

⌋)
. Here, Ndc(127) and Ndb(126)

denote the maximum number of shifts for the CID and BID generations, respectively.
However, the number of available IDs in the ZC-BTS and m-BTS can be increased by
assigning IDs in the ambiguity region to spatially separated cells (not adjacent cells).

Table 1. Maximum correlation values of the ZC-BTS, m-BTS, and GS.

Maximum Correlation L = 31 L = 63 L = 127

ZC-BTS 1/
√

L 0.1796 0.1260 0.0887
m-BTS (L + 1)3/2/L2 0.1886 0.1289 0.0897

GS 1+2b l+2
2 c

L
0.2903 0.2698 0.1339

4. Simulations

In this section, performance of the proposed beam training technique for IRS-assisted
cellular systems is evaluated via numerical simulations. The simple IRS-assisted cellular
system model, shown in Figure 1, was used for simulation. It was assumed that the link
between the BS and MS was blocked because of some obstacle, and the MS received a signal
through the BS-IRS-MS link. The channel between BS/IRS and IRS/MS was assumed to
experience Rician fading, which consisted of an LOS path and a non-LOS (NLOS) path.
The k-factor was set to 15 dB. The NLOS path was generated by the spatial channel model
(SCM) and composed of 20 rays with an azimuth spread of 2° [38,39]. The BS, IRS, and
MS were assumed to have URAs with 16, 32, and four antenna elements, respectively. The
continuously variable phase shifters are used for beamforming. The simulation parameters
are listed in Table 2.

Table 2. Simulation parameters.

Simulation Parameter Value

Channel model Spatial channel model (SCM)
Antenna elements at BS

(
NA

BS
)

16

Beams at BS
(

Nb
BS

)
16

Subarrays at BS
(

Ns
BS
)

16
Reflect elements at IRS

(
NA

IRS
)

32

Beams at IRS
(

Nb
IRS

)
32

Subarrays at IRS
(

Ns
IRS
)

32
Antenna elements at MS

(
NA

MS
)

4

Beams at MS
(

Nb
MS

)
4

Subarrays at MS
(

Ns
MS
)

4
Antenna spacing at BS, IRS, and MS λ/2

Sequence length (L) 127

Figure 4 presents the correlation values of the ZC-BTS and m-BTS when the STO exists.
According to (5), the autocorrelation of the ZC-BTS is maximum when the STO is zero. The
correlation decreases in the sinc-like pattern. The autocorrelation becomes zero when the
STO value is an integer greater than zero. According to (19), the autocorrelation of the
m-BTS is maximum

(
L2−1

L2

)
when the STO is zero. In the presence of the STO, the m-BTS is

changed into another sequence (∆′ 6= 0, d′c = dc + ∆′L). In this case, the correlation value
is given by 0.0079

(
L+1
L2

)
according to (28). Moreover, the simulation results for the ZC-BTS

and m-BTS overlap with the analytic results at the integer value of STO.



Sensors 2021, 21, 4936 14 of 18

Figure 4. Correlation property of the ZC-BTS and m-BTS in the presence of the STO.

Figure 5 compares the detection probabilities of the ZC-BTS and m-BTS when the
system is synchronized. The detection probability is obtained by correlating the received
signal with the reference BTS and finding the index with the maximum correlation value.
If the detected CID and BID are correct, then the detection is declared “successful”. The
simulation is performed in a three-cell environment. The MS is assumed to receive reflected
signals from the IRS when the serving BS transmits the training signals. The training
signals transmitted from two adjacent BSs are considered as interference. The lengths of
the sequences (ZC-BTS, m-BTS, and GS) are set to 127. The other parameters used in the
simulation are listed in Table 2.

Figure 5. Detection probability for three BTSs.

Figure 5 shows that the ZC-BTS performs approximately 1 dB better than m-BTS. The
m-BTS performs approximately 1 dB better than the GS. This is because the maximum
cross-correlation values are on the order of the ZC-BTS (lowest), m-BTS, and GS (highest).



Sensors 2021, 21, 4936 15 of 18

A high detection probability is obtained in the low SNR region because of the beamforming
gains of the BS (12 dB), IRS (15 dB), and MS (6 dB). Figure 5 also shows the detection
probability of the ZC-BTS when the STO exists and the ambiguity condition in (9) is met.
For the simulation, the root index, cyclic shift spacing, reference BID, and STO are set to
rc = 54, z = 6, b̄= 5, and (∆c̄− m) = 30, respectively. In this case, BID 5 is transmitted;
however, the maximum correlation occurs at BID 10, resulting in a detection error.

Figure 6 compares the PAPRs of the ZC-BTS, m-BTS, and GS. The ZC-BTS has the
lowest PAPR because the ZC-BTS is generated using the ZC sequence with a constant
envelope. The PAPR of m-BTS is higher than that of ZC-BTS; however, it is significantly
lower than that of GS.

Figure 6. PAPR for three BTSs.

Figure 7 compares the beam patterns in the azimuth angle for three different tech-
niques (conventional, proposed, and reference [30]) when the same number of antenna
elements is used in the horizontal domain. Figure 7 shows that the proposed technique
produces a beam pattern similar to conventional beamforming. The beam pattern in the
proposed technique is sharper than that in the reference [30] because the URA in the pro-
posed technique is divided into ULAs consisting of all antenna elements in the azimuth
domain, as shown in Figure 2. However, the IRS elements in [30] are divided into multiple
subarrays, resulting in wider beams.
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Figure 7. Comparison of beam patterns.

Figure 8 compares the beam training time required for the BS-IRS-MS link when three
different techniques (exhaustive search, proposed, and reference [30]) are used. The beam
training time is compared in terms of the number of beam scans required for the entire
BS-IRS-MS link. The number of beam scans required for an exhaustive search is given
by Nb

BS × Nb
IRS × Nb

IRS. In [30], beam training is proposed for the IRS-MS link, assuming
that the best beam pair of the BS-IRS link has already been found. For comparison with
the proposed technique, an exhaustive search is assumed for the BS-IRS link. The number
of beam scans required for the proposed technique is given by u×

(
v + Nb

IRS

)
× w, as

discussed in Section 2. Figure 8 is plotted on a logarithmic scale with the parameters listed
in Table 2. Figure 8 shows that the proposed technique with the ZC-BTS or m-BTS can
significantly reduce the number of beam scans. For example, when the number of beams at
the IRS is 32, the exhaustive search, reference [30], and proposed technique require 2048
(16× 32× 4), 224 (16× 3.5× 4), and 34 (1× (2 + 32)× 1) beam scans, respectively.

Figure 8. Number of beam scans required for IRS-assisted cellular systems.
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5. Conclusions

In this paper, a fast beam training technique for IRS-assisted mmWave cellular systems
with URAs is proposed to detect the best beam pairs of the BS-IRS-MS link simultaneously.
Two different types of BTSs (ZC-BTS and m-BTS) were proposed to distinguish simulta-
neously transmitted beams from the BSs in a multi-cell multi-beam environment. The
correlation properties of the ZC-BTS and m-BTS with STOs were analyzed in multi-cell
multi-beam environments. It was revealed that the maximum cross-correlation value of the
ZC-BTS is slightly smaller than that of the m-BTS. However, the maximum cross-correlation
values of the ZC-BTS and m-BTS are significantly smaller than those of the GS. Both ZC-BTS
and m-BTS experience an ambiguity problem when the STO exists. Consequently, in the
proposed technique, the CID and BID should be selected to avoid ambiguity in the adjacent
cells, considering the maximum STO value. In addition, it was also demonstrated that
the ZC-BTS has a lower PAPR than the m-BTS. However, the m-BTS has a significantly
lower PAPR than the GS. Finally, it was demonstrated that the proposed technique with the
ZC-BTS and m-BTS can significantly reduce the number of beam scans without affecting
the beam resolution in IRS-assisted mmWave cellular systems.
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