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Abstract: In recent years, there is an exponential explosion of data generation, collection, and
processing in computer networks. With this expansion of data, network attacks have also become
a congenital problem in complex networks. The resource utilization, complexity, and false alarm
rates are major challenges in current Network Intrusion Detection Systems (NIDS). The data fusion
technique is an emerging technology that merges data from multiple sources to form more certain,
precise, informative, and accurate data. Moreover, most of the earlier intrusion detection models
suffer from overfitting problems and lack optimal detection of intrusions. In this paper, we propose a
multi-source data fusion scheme for intrusion detection in networks (MIND) , where data fusion is
performed by the horizontal emergence of two datasets. For this purpose, the Hadoop MapReduce
tool such as, Hive is used. In addition, a machine learning ensemble classifier is used for the
fused dataset with fewer parameters. Finally, the proposed model is evaluated with a 10-fold-cross
validation technique. The experiments show that the average accuracy, detection rate, false positive
rate, true positive rate, and F-measure are 99.80%, 99.80%, 0.29%, 99.85%, and 99.82% respectively.
Moreover, the results indicate that the proposed model is significantly effective in intrusion detection
compared to other state-of-the-art methods.

Keywords: data fusion; network intrusion detection systems; anomaly detection; machine learning;
ensemble learning

1. Introduction

There are billions of users who are connected through thousands of autonomous
systems over the Internet globally. The world has witnessed the exponential growth of
Internet traffic for many years. This massive upsurge in the network traffic contains data
from many sources, which are diverse in nature. Notably, this data may bring different
types of anomalies, which can affect network security [1]. It can be observed in Figure 1,
which is plotted based on the data of Skybox Security [2] and Redscam Report [3], that
the Internet users and network attacks are growing at the same pace. According to the
graph, more than 18,000 new attacks were detected in 2020, which is 5.13% more than the
previous year.

A wide range of technologies such as user authentication, data encryption techniques,
and firewalls are implemented to avoid these issues. However, the analysis of such
technologies is not enough. In order to overcome the limitation of these mechanisms,
different network intrusion detection systems (NIDS) are used to analyze the network
packets more deeply compared to traditional mechanisms for intrusion detection [1] and
intrusion tolerant [4] systems. However, these systems are designed for homogeneous
scenarios and are unable to detect anomalies from heterogeneous sources. Furthermore,
due to massive dimensions and huge volumes of data, there are many challenges, which
include: (i) These systems are complex and require more resources in terms of storage and
computing; (ii) these systems face challenges due to irrelevant and redundant data; (iii) it
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is challenging to detect zero-day attacks; and (iv) the low detection and high false alert rate
is another challenge [5].
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Figure 1. Number of Internet users and new attacks.

To overcome these issues in NIDS, the data fusion technique is a promising solution [6].
Data fusion is an evolving technique that is implemented in network intrusion detection
to resolve the heterogeneity of network data [7]. Data is combined from multiple sources
to make decisions about situations, activities, and events in this technique. It provides
more informative, consistent, and accurate information than the original raw data that is
uninformative, inconsistent, and uncertain. The data fusion scheme for future technologies
(e.g., Internet of Things (IoT)) can be very interesting because these devices are more vul-
nerable, heterogeneous, and have more security threats. The data fusion can be performed
at the decision level, feature level, and data layer. The data fusion is applied to military
(situation assessment and surveillance) and commercial (manufacturing, remote sensors,
and robotics) applications.

To this end, in this paper, we used feature level fusion which is used to merge the data
coming from multiple sources and provides a more comprehensive view of data analysis.
Since relational database management system (RDBMS) fails to handle significant data
storage issues, Hadoop comes to rescue these hitches that is an open-source distributed
storage system and runs on commodity machines. Datasets are merged with the help
of the Hive tool, which executes by using the Hadoop MapReduce framework [8]. The
fused dataset is then evaluated by using machine learning algorithms. The ensemble
technique of machine learning is preferred as it uses multiple weak learners to build strong
learners [9–11]. The bagging technique of ensemble learning is used, which is least affected
by the variance as compared to other ensemble learning techniques [12].

The major contributions of this work are the following:

• To perform data fusion among multi-sources datasets (NSL-KDD and UNSW-NB15)
for more certain and informative data;

• To apply fused data to machine learning algorithm (i.e., K-Nearest Neighbor (KNN)
as a base classifier for bagging technique) to check performance after fusion.

The rest of the paper is organized as follows: Background is discussed in Section 2 and
Section 3 reviews the related work. Section 4 presents the proposed approach. Experimental
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setup is described in Section 5. Evaluation and results are discussed in Section 6. Finally,
Section 7 concludes this work.

2. Background

In this section, we discuss a brief background of NIDS and data fusion techniques
before delving into the details of this paper.

There are two primary objectives of an IDS which are the following:(i) to monitor the
network systems and (ii) to generate an alarm in case of any abnormal activity. The first
objective of monitoring is considered an input to the IDS, whereas the second objective
is output. The monitoring can be performed with the help of statistical information from
network traffic, packet header, and content information at the network level, whereas
system class traces, process behavior, and application logs are extracted from the system
level. The output against these parameters is generated in the form of binary or multilevel
indication. In binary indication, the traffic is classified as normal or abnormal traffic. The
severity and different types of attacks are obtained in multilevel indications. These alarms
are helpful to take actions against intrusions and mitigate them; however, a false alarm
is another challenge. Moreover, due to significant network traffic, the NIDS introduces
complexity and require more resources in terms of computation and storage.

Data fusion is a promising technology where data from multiple sources are combined
to make better decisions to overcome these issues. This process deals with the data corre-
lation, association, and combination from different sources to obtain optimal estimation,
timely assessment, and the significance of network threats. It can be understood that, with
the help of the human cognitive process, actions to do with the evaluation of the situation,
decision making, and taking actions based on the fused information of different sensory
organs can commence. The data fusion can be applied at three different layers: decision
layer, feature layer, and data layer. The decision layer fusion combines the decision of
various processing units to provide the final decision. The feature-level fusion helps to
reduce the features of preprocessed data. Feature selection plays a vital role by removing
irrelevant features in the high dimensional dataset and enhances the model performance.
The feature selection procedure is broadly separated into filter, wrapper, and embedded
categories [13,14]. Finally, the data layer fusion is used to integrate the raw data from
different sources for better understanding. It is also known as low-level fusion.

3. Related Work

Several studies propose different mechanisms for intrusion detection in the computer
networks. A light-weight algorithm is proposed in [15] for a real-time intrusion detection
model based on a deep belief network (DBN) and support vector machine (SVM). The
high dimensional data reduction is achieved by using DBN. The sliding window method
uses pattern behavior to mine the abnormal data. This pattern behavior library is formed
to maintain the abnormal data by using regular model updating. After using the DBN
method for feature reduction for high dimensional data, the SVM-based model is trained
for IDS. The experiment is performed on the CICIDS 2017 dataset. This approach lacks
the data fusion technique and uses only one dataset for model evaluation resulting in an
overfitting problem. Furthermore, the accuracy (ACC) and false-positive rate (FPR) are not
discussed.

In [16], authors introduce a new semi-self-taught (SST) network intrusion detection
system that is based on semi-supervised discriminant autoencoder (SSDA), which requires
a minor human intervention. SSDA was implemented through denoising auto-encoder
with a c-mean algorithm for class identification. The experiment is based on the CSE-CIC-
IDS2018 dataset. This may cause an overfitting problem due to a single dataset. Data fusion
is also lacking in this process.

Authors propose the novel XGBoost-DNN model for network intrusion detection in
[17]. Firstly, data preprocessing is performed for data normalization. Secondly, the XGBoost
method is used for feature selection in high-dimensional data. Finally, binary classification
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is performed by using a deep neural network (DNN). The learning frequency is increased
using the Adam optimizer (AO) during model training. Experiments are performed using
the NSL-KDD dataset. This method also suffers from the overfitting problem due to the
single dataset. Model evaluation and data fusion are also lacking in this process.

The novel semantic re-encoder and deep learning model (SRDLM) for IDS is discussed
in [18]. In this study, the authors propose a model for network anomaly detection by
using massive semantic coding space along with word order negligence. The semantic
re-encoding has performance limitations with network traffic, however, this limitation is
improved by combining it with the deep learning method. The deep learning framework
ResNet, based on convolutional neural networks (CNN), is used in this method because
of its generalization ability for intrusive unknown network traffic. The experiment is
performed on benchmark NSL-KDD and Hduxss_data1.0 datasets. This study shows
good performance against the Hduxss_data1.0 dataset with improved results against the
NSL-KDD dataset. This study lacks data fusion and feature selection techniques as each
dataset is used separately for model evaluation. The FPR evaluation parameter is not
calculated against both datasets.

In [19], authors introduce a novel approach for intrusion detection by combining
hybrid sampling and deep hierarchical networks. First, one-side selection (OSS) and
synthetic minority over-sampling technique (SMOTE) are used to develop a composed
dataset for training the model. This process reduces the training time of the model and data
preprocessing is performed for complex networks. Second, it builds a model classifier based
on a hierarchical network by combining CNN and bi-directional long short-term memory
(BiLSTM). UNSW-NB15 and NSL-KDD datasets have been used for model evaluation. The
data fusion technique is not used in this article and each dataset is used separately for
model evaluation. Moreover, FPR is not considered in this study.

The authors propose a novel intrusion detection framework (DT-EnSVM) in [20] by
merging ensemble learning with the data transformation method. First, ratio transforma-
tion is applied to get a new and well-balanced dataset. Second, SVM-based classifiers are
selected for model training. Finally, the non-mixture method is used to combine these
classifiers by building an ensemble learning-based model. NSL-KDD and Kyoto 2006+
datasets are used for experimentation. This study lacks the data fusion technique as each
dataset is used separately for the experiment. Moreover, the true positive rate (TPR) and
F-Measure parameters are missing.

The adaptive ensemble learning-based model is discussed in [21]. In this study, the
authors highlight the key benefits of the ensemble approach by taking different base
classifiers. Five machine learning classifiers (i.e., Decision Tree, Support Vector Machine,
Logistic Regression, K-Nearest Neighbor, and Random Forest) are used in the ensemble
technique. NSL-KDD dataset is used for the experimentation. This article has an overfitting
problem. Feature selection and data fusion are also missing in this study. This study does
not consider the false-positive rate.

In [22], authors address the training issues of feed-forward neural network (FNN)
using locust swarm optimization (LSO), which is an optimization algorithm of the meta-
heuristic field. The authors claim that the joint venture of FNN and LSO (FNN-LSO)
improves the overall performance of IDS. This work aims to design an IDS based on the
evolutionary algorithm (EA) using FNN and LSO. NSL-KDD and UNSW-NB15 datasets
are used for experimentation. Feature selection and data fusion are lacking in this article.
The authors propose a new model for NIDS in [23] based on a hierarchical neural network
that integrates the convolutional neural network (CNN) as LeNet-5 architecture and long
short-term memory (LSTM) neural network. This work uses CICIDS 2017 and UTC datasets
for experiments. Feature selection and data fusion are missing in this article. Furthermore,
the false-positive rate is not considered.

The authors in [24] introduce a new hybrid artificial bee colony (ABC) and artificial
fish swarm (AFS) techniques for intrusion detection to differentiate the normal and ab-
normal network activities. First, the dataset is separated into a small subset using the
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FCM (C-mean clustering) method. Second, feature selection is performed by using the
correlation-based feature selection (CFS) method. Finally, the classification and regres-
sion tree (CART) method is used to employ if-then rules to separate regular traffic from
anomalies. NSL-KDD and UNSW-NB15 datasets are used to evaluate the classification
model. Data fusion techniques are lacking in this article. Moreover, the TPR and F-Measure
evaluation parameters are not considered.

In [25], authors propose a fusion scheme to aggregate and merge the real time data
from different sensors to detect the man-in-the-middle (MiTM) attacks in power systems.
The authors exploit supervised, unsupervised, and semi-supervised learning with a focus
on cyber physical systems to detect the false alarm rate. It also provides a comparison
between various algorithms. However, this study does not consider all the evaluation met-
rics.

The authors in [26] exploit decision level data fusion scheme for the denial of service
(DoS) attacks. The decisions of basic probability (BP) neural network and D-S evidence
theory are combined for the improved results. Moreover, the conflicts between different
decision is also focused. Some of the evaluation metrics are discussed, however, most of
the metrics are ignored.

Conclusively, many studies are available in the literature for detecting network intru-
sions, as shown in Table 1. Some of these works use single dataset for this purpose which
causes the over-fitting problem. The data fusion scheme is missing in most of the studies
where authors use multiple datasets. Moreover, few works do not perform the feature
selection, which can degrade the overall performance because of the high dimensionality
of data. Finally, some basic evaluation parameters (i.e., FPR, TPR, and ACC) are missing in
the results of some studies.

Table 1. Comparison with existing studies.

Literature Data Fusion Over Fitting Issue Evaluation Metrics

[15] 7 7 7

[16] 7 7 4

[17] 7 7 7

[18] 7 4 7

[19] 7 4 7

[20] 7 4 7

[21] 7 7 7

[22] 7 4 4

[23] 7 4 7

[24] 7 4 7

[25] 4 4 7

[26] 4 7 7

MIND (This Work) 4 4 4

4. Proposed Method

In this section, we discuss our proposed approach MIND where we have four major
steps which are dataset selection, feature selection, data fusion, and machine learning
implementation as shown in Figure 2. Firstly, two public datasets NSL-KDD [27] and
UNSW-NB15 [28] are selected for model building. Secondly, the relevant data features of
NSL-KDD and UNSW-NB15 datasets are selected based on literature study [29]. Thirdly,
the data fusion (feature level) process is carried out and horizontally merges the datasets to
produce a single uniform and comprehensive dataset using the Hadoop MapReduce tool
(i.e., Hive). Finally, data preprocessing is performed on a fused dataset to convert characters
into numeric values as machine learning-based models only accept numeric values for their
input. In addition, the bagging technique of ensemble learning (also known as Bootstrap
Aggregation) is used to build the model for finding intrusions in a fused dataset. Moreover,
the proposed model is evaluated through a confusion matrix using 10-fold cross-validation.
The step-by-step working of the proposed method is mention below.
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Figure 2. Working Design of Proposed Method.

4.1. Dataset Selection

Dataset plays a significant role in the intrusion detection system for model assessment.
Real-time network traffic data cannot be acquired for research purposes due to privacy
problems, therefore, researchers are intensely reliant on public datasets [30]. Several public
datasets are available for network IDS such as KDD CUP99 [31], NSL-KDD [27], Kyoto
2006 [32], UNSW-NB15 [28], NGIDS-DS [33], ISOT [34], TRAIbID [35], and CICIDS 2017 [36].
For this study, NSL-KDD and UNSW-NB15 are selected for the experiments. In order to
perform the data fusion, at least two datasets are required. It is also worth mentioning here
that one primary requirement to perform fusion is to have at least one similar column in
two different datasets. Since only these two datasets have similar columns in the literature,
we therefore selected these datasets for this work.

NSL-KDD is a recommended dataset that is intensively used in literature. In addition,
it is a relatively old dataset and does not contain new attacks. It is an enhanced form of
the KDD CUP 99 dataset where duplicate instances are removed. This dataset contains
148,517 total instances in which 125,973 are used for training and 22,544 are used for testing
purposes. It comprises 41 attributes, including numeric, binary, and nominal values. This
dataset includes two types of classes for records as attack and normal. The intrusion
instances are categorized as remote to local (R2L), denial of service (DoS), user 2 root (U2R),
and Prob.

On the other hand, UNSW-NB15 is a relatively new dataset and contains modern-day
attacks. UNSW-NB15 is generated at the Australian Center for Cybersecurity (ACCS) by
using the IXIA PerfectStorm tool. This dataset consists of 257,673 total instances with
82,332 test instances and 175,341 for training purposes. It comprises 49 attributes, including
nominal, integer, float, and binary values. Similar to NSL-KDD, this dataset is also com-
prised of both attack and regular records. The attack is categorized as Worm, Shellcode,
Reconnaissance, Generic, Exploits, DoS, Backdoor, Analysis, and Fuzzers.

4.2. Feature Selection

The machine learning-based model exhibits better performance by removing redun-
dant data and irrelevant features from the dataset. NIDS does not need all the attributes of
high-dimensional NSL-KDD and UNSW-NB15 datasets. The feature selection is broadly
separated into the filter, wrapper, and embedded categories [14]. The filter method assigns
a weight value to the features in the training dataset. The wrapper method is a lengthy
process where machine learning algorithms are used for each possible combination. The
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embedded approach is a combination of filter and wrapper methods. Another technique
used for feature selection is the ensemble approach, which produces efficient results by
combining various machine learning algorithms and improving classification accuracy.

The feature selection in MIND is motivated by [29] where a twofold method is pro-
posed and a novel framework based on data analytics lifecycle is presented to build an
intrusion detection system. In addition, ensemble techniques are used to identify the
relevant features for intrusion detection. First, the framework consists of data discovery,
data preparation, model planning, model building, and model evaluation components
to implement the data analytics lifecycle for detecting intrusions. Second, the ensemble
method is carefully implemented, which combines multiple models instead of one model
to achieve an optimum output. This ensemble approach consists of two steps which are (1)
the construction of ensemble components by joining the subset combination policy taking
correlation, information, consistency, and distance as feature evaluation procedures for
feature selection. (2) Combining the output of ensemble components using subset and
ranking combination methods. This ensemble method is evaluated using classification
accuracy and diversity between the member of the ensemble and the stability of the en-
semble to data variation. Ten features are selected out of 41 from NSL-KDD and eight are
selected out of 49 features extracted from UNSW-NB15 datasets. Tables 2 and 3 shows the
acknowledged features of NSL-KDD and UNSW-NB15 datasets, correspondingly.

Table 2. Identified features for UNSW-NB15 dataset.

Index No Feature Name

4 xServ
8 Sbytes
9 Dbytes
10 Rate
28 Smean
32 Ct_srv_src
36 Ct_dst_sport_ltm
42 Ct_srv_dst

Table 3. Identified features for NSL-KDD dataset.

Index No Feature Name

3 Service
4 Source_bytes
5 Destination_bytes
6 Flag

23 Count
30 Srv_rerror_rate
33 Dst_host_srv_count
35 Dst_host_diff_srv_rate
37 Dst_host_srv_diff_host_rate
38 Dst_host_srv_serror_rate

4.3. Data Fusion

The data fusion procedure is achieved by using correlation, integration, estimation,
and a combination of data imminent from single or multiple sources. In order to achieve
data fusion in this paper, we used relational algebra, which is helpful to provide a joining
between different datasets. Let: X = {x1, x2, x3, . . . , xn} are the features of dataset1 and Y
= {y1, y2, y3, . . . , yn} are the features of dataset2. There are different relational operations
which are the following: select, project, and rename. In this study, we used the select
operation where the tuples are selected on the basis of given conditions for selection and
can be represented as follows: σp(r) where σ is the predicate, r is the relation name of
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the table, and p shows the preposition logic. In project operation, all attributes of input
relations are eliminated except those which are mentioned in the projection list. Finally, the
attributes of a relation are renamed in rename operation. The join of X and Y (X ./ Y) can
be represented as follows:

X ./ Y = {x ∪ y|x ∈ X ∧ y ∈ Y ∧ Func(x ∪ y)} (1)

where Func(x ∪ y) represents predicate and requires a minimum of one common attribute
between x and y. It can be observed from the equation that natural joining combines both
datasets, which introduces more redundant and irrelevant data. In order to avoid this
situation, we used the left-join, which results in all the tuples of X and common attributes
between X and Y. It is worth mentioning here that X contains the UNSW-NB15, which has
more attacks as compared to NSL-KDD. One primary reason is to have more attacks after
the fusion process. The left join of X and Y (X ./ Y) can be represented as follows:

X ./ Y = (X ./ Y) ∪ ((X−Πx1,x2,...xn(X ./ Y))× (ω1, ω2, . . . ωk)) (2)

where Π represents the projection of attributes (x1, x2, . . . xn) and ω shows the null values.
The algorithm for the data fusion in MIND is represented in Algorithm 1 where the resultant
fusion feature provides all the attributes of X as well as the common attributes between X
and Y, as shown in Tables 2 and 3.

In order to perform the data fusion procedure among the NSL-KDD and UNSW-NB15
datasets, we first create a database for data manipulation and generate two tables in that
database to import NSL-KDD and UNSW-NB15 in their respective tables. These tables
are then merged by using left join. The attributes which are common in these datasets
are protocol and service. After the fusion of these datasets, a comprehensive dataset
is produced which is further provided to the machine learning classifier. The overall
procedure for data fusion scheme of the proposed approach is presented in Algorithm 1.

4.4. Machine Learning Implementation

Machine learning algorithms are heavily used in NIDS for intrusion detection opti-
mization. Each of these algorithms has its own advantages and disadvantages in terms of
computational complexity and efficiency. The ensemble approach is used by combining
multiple classifiers to obtain the optimal result, which is considered the most efficient
approach in machine learning [10,11]. Figure 2 shows the functional design of the method.
In this work, model building for classification goes over the following steps. The data
preprocessing is performed on the fused dataset by converting character values into nu-
meric values as each machine learning algorithms work with numeric data only. There
are two different approaches for this purpose which are as follows: label encoding and
one-hot encoding. In label encoding, a unique integer is assigned to each label based on
alphabetical order. This approach is simple and straightforward, however, one major issue
with this approach is that algorithms may misinterpret these numeric values. This issue
is addressed by the one-hot encoder (used in this paper), where a new column is added
against each category and binary values are assigned to each column. This model can
efficiently detect anomalies from complex networks. This ensemble-based model (bagging
approach) having KNN as base classifiers can efficiently detect anomalies from complex
networks. The individual prediction of each classifier is aggregated to obtain the final
prediction and it also reduces the variance. KNN uses the similarity matric, which is based
on the euclidean distance between the other points in the dataset and an unknown point
that can be represented as follows:

d(a, b) =

√√√√ j

∑
i=1

(ai − bi)2 (3)
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Algorithm 1 Data Fusion

1: procedure MIND
2: X = {x1, x2, x3, . . . , xn} attributes of Relation X
3: Y = {y1, y2, y3, . . . , yk} attributes of Relation Y
4: TX : total tuples in relation X
5: TY: total tuples in relation Y
6: tx: each tuple in relation X
7: ty: each tuple in relation Y
8: Xγ: common attribute of relation X
9: Yγ: common attribute of relation Y

10: FR: final fused relation
11: for <each tx in TX> do
12: Flag = False
13: for <each ty in TY> do
14: if <tx.Xγ = ty.Yγ> then
15: FR ← tx, ty
16: Flag = True
17: end if
18: end for
19: if <Flag = False> then
20: FR ← tx
21: end if
22: end for
23: end procedure

where a and b represent the attributes of observations. This model is based on 10-fold
cross-validation as the time complexity of each KNN classifier is O(N log N), which is
better than other classifiers.

5. Experimental Setup

In this section, we discuss the experimental setup for MIND. We used the Intel Core i5
2.3 GHz Central Processing Unit (CPU), 4 GB Random Access Memory (RAM), and Centos
7 Operating System (OS) system for conducting experiments.

Since RDBMS are not able to handle massive data coming from multiple sources,
the Hadoop MapReduce framework [37] is used for the data fusion process of NSL-KDD
and UNSW-NB15. On top of Hadoop MapReduce, the Hive tool [38] is used to merge
two datasets. Hadoop is an open-source framework run as a distributed application on
commodity hardware for processing a massive volume of data. Hundreds and thousands
of computers work together in parallel for computing and storing gigantic data. Two
primary components of Hadoop v2.x include the Hadoop distributed file system (HDFS)
and yet another resource locator (YARN) for storing and processing extensive amounts
of data across different commodity hardware. The earlier version of Hadoop v1.x did
not contain YARN in its framework. Hadoop v2.x introduces YARN in its framework
ecosystem.

The hive tool is used to provide data analysis on HDFS, which is an alternative to any
programming language. A two-hundred-piece code written in any programming language
can be achieved in ten to fifteen lines of code in Hive. Hive works in the same manner
as RDBMS. It stores the data in a tabular fashion and uses HiveQL (similar to SQL in
RDBMS) to query data through Hadoop. Data analysis is also performed by using HiveQL,
which is stored on different tables of Hive. It provides an easy solution, particularly for
database programmers [39]. There are two types of joins in Hive which are reduce side
join and map side join. The reduce side join is also called repartitioned sort merge join and
is widely used. However, it requires sort and shuffle phase which sometimes introduces
delay and overhead over the networks. The map side join requires strong prerequisites and
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performs join before data reach to map. It minimizes the burden of merging and sorting in
the reduced and shuffle phase of the MapReduce procedure. Moreover, it optimizes the
performance as task completion takes less time. This is one of the major reasons that we
prefer map side join in this work.

In order to validate our proposed approach, we perform cross validation. The fused
dataset is divided into ten segments Sα where α={1,2,3,. . . ,10}. We select the segments of
fused data that are not from Sα as Training Data (Datatrain) and data from Sα for testing data
(Datatest) for the αth cross-validation. The segments of (Datatrain) for αth cross-validation
can be represented as the following.

Dataα
train =

⋃
β∈[1,10]∧β 6=α

Sβ (4)

The classifier is further trained on this data and (Datatest) is tested on this training data.
The machine learning-based classification model is built on Python programming language
using the Scikit-learn library. Jupiter notebook is used through Anaconda distribution
for writing Python language code. Scikit-learn library is specially designed for solving
machine learning-based problems. The task is to check whether the network packet data
contains intrusion, so it is a binary classification issue. While building the classification
model, data preprocessing is performed using a one-Hot-encoder scheme which converts
the character into numeric values. In addition, an efficient machine learning algorithm
must be selected for detecting anomalous data from the network data packet. Most machine
learning-based classification algorithms such as Naive Bayes, Artificial Neural Network,
K-Nearest Neighbor, Logistic Regression, Support Vector Machine, and Decision Tree
have advantages and disadvantages. The ensemble technique is better and provides more
efficient results than any single machine learning algorithm.

In this work, the model is created using the bagging technique of an ensemble ap-
proach. The based classifier used for the bagging technique is K-nearest neighbor. Different
values of K neighbors are tested to obtain optimal results. After extensive experiments, k = 5
provides the best results for model optimization. In this work, the pipeline approach of the
Sciket-learn library is used for model building. The philosophy of pipeline is to render a
chain of steps together instead of as individual steps. In the pipeline, the preprocessing
and classification model building is combined in one step. Moreover, the cross-validation
is performed at the process level instead of at the model level in pipelining. This model
is trained by using 10-fold cross-validations on the training dataset. The calculation per-
formed against each fold and mean of 10-fold of False Positive Rate (FPR), Detection Rate
(DR), Accuracy (ACC), True Positive Rate (TPR), and F-Measure parameters is shown as a
result of the evaluation.

6. Evaluation and Results

This section describes the evaluation of MIND where, first of all, evaluation matrices
are discussed, which is followed by proof of concept to evaluate the effectiveness of the
approach. Finally, we present the comparative analysis of MIND with existing studies.

6.1. Evaluation Matrices

The NIDS model is evaluated by using a statistical matrix that checks whether network
data is normal or abnormal. The evaluation matrices used in this work are the following:
accuracy (ACC), detection rate (DR), false positive rate (FPR), true positive rate (TPR), and
F-Measure. The network IDS should exhibit good TPR, F-Measure, DR, and ACC but with
lower FPR. In this work, the confusion matrix is used for evaluation purposes. Table 4
shows the confusion matrix binary classification.
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Table 4. Confusion matrix for binary classification.

- Normal Abnormal

Normal TN FP
Abnormal FN TP

ACC is the proportion of total instances that are correctly classified and of true negative
(TN) and true positive (TP) to the total size of the dataset and can be calculated as follows.

ACC =
TP + TN

TP + TN + FP + FN
(5)

DR shows the ratio of correct classification of network data and is also referred to as
precision. It is the ratio of TP to all the instances considered as an intrusion and can be
calculated as follows.

DR =
TP

TP + FP
(6)

FPR, sometimes referred to as false alarm rate, is the proportion of the total instance
of normal data considered as false-positive (FP) to the total normal instances of data set,
which can be calculated as follows.

FPR =
FP

TN + FP
(7)

TPR shows the proportion of correct classification for a given class division by total
instances, which includes TP and false-negative (FN) of that class and is also called a recall.
It can be calculated as follows.

TPR =
TP

TP + FN
(8)

F-Measure uses DR and TPR together to find the evaluation criterion. The value
of F-Measure is calculated by the harmonic mean of gained DR and TPR, which can be
calculated as follows.

F−Measure = 2× DR× TPR
DR + TPR

(9)

This section discusses the achieved results from the experiments with their analysis
to show the soundness of MIND. While constructing the method, 10-fold cross-validation
approach is used for the fused dataset in this work, which is better for check checking
model accuracy. In order to ensure repeatability, the experimentation was performed
various times.

Table 5 shows the findings of ACC, DR, FPR, TPR, and F-Measure with and without
fusion. It can be observed that the ACC with fusion is above 99% in all the experiments.
However, the average ACC is 92.47% with a maximum value of 92.88% without fusion.
Similar to ACC, the average DR is 92.39% without fusion, whereas it is more than 99% with
fusion. In this work, FPR is considered a false alarm rate with a maximum of 0.44% value
with an average of 0.29% after fusion. In contrast, the minimum value of FPR without
fusion is 15.91%, with an average value of 17.6%. The average TPR without fusion is 97.24%,
whereas the same parameter shows 99.85% after fusion. Finally, the F-Measure shows
99.82% and 94.60% with and without fusion, respectively, which shows the effectiveness
of MIND.

6.2. Proof of Concept

Figure 3 depicts the average outcomes of each parameter with and without fusion. As
previously mentioned, the UNSW-NB15 is kept in X which results in all the tuples of X
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and common tuples of X and Y during left-join process. Therefore, we select UNSW-NB15
dataset for comparison to ensure the proof of concept for data fusion. The x-axis shows
the parameters, whereas the y-axis shows the percentage value against each parameter.
In addition, the red line represents the average values without fusion and the average
values with fusion are presented in the blue line. The ACC, DR, TPR, and F-Measure in
each experiment are more than 99% and the averages of ACC, DR, TPR, and F-Measure
of all experiments with fusion are 99.80%, 99.80%, 99.85% and, 99.82%, respectively. The
FPR in each experiment is less than 0.45% and the mean value of FPR is 0.29%, which
indicates the less false alarm rate. In contrast, the same parameters show less performance
without fusion, which clearly shows the effectiveness of MIND. It can be concluded, from
the results, that the feature level fusion among two datasets and pipelining technique for
model building can be a significant reason for better results of MIND.

Table 5. Experimental results of evaluation parameters.

Experiments
ACC (%) DR (%) FPR (%) TPR (%) F-Measure (%)

w Fus. w/o Fus. w Fus. w/o Fus. w Fus. w/o Fus. w Fus. w/o Fus. w Fus. w/o Fus.

1 99.88 92.86 99.85 92.76 0.22 16.16 99.79 97.10 99.82 94.88
2 99.83 92.88 99.85 92.54 0.22 16.73 99.86 97.38 99.86 94.90
3 99.78 92.58 99.77 92.35 0.33 17.14 99.96 97.14 99.82 94.69
4 99.85 91.57 99.86 92.85 0.20 15.91 99.89 96.97 99.88 94.87
5 99.86 92.61 99.88 91.01 0.17 20.52 99.88 97.25 99.76 94.01
6 99.71 92.81 99.69 92.43 0.44 16.94 99.83 97.10 99.76 94.71
7 99.72 92.56 99.71 94.71 0.42 16.86 99.82 97.34 99.81 94.85
8 99.78 92.49 99.78 92.28 0.32 17.34 99.84 97.20 99.76 94.67
9 99.72 92.46 99.70 92.13 0.43 17.70 99.83 97.63 99.87 94.63

10 99.84 92.86 99.85 92.83 0.21 20.92 99.88 97.27 99.88 93.84

Average 99.80 92.47 99.80 92.39 0.29 17.62 99.85 97.24 99.82 94.60
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Figure 3. Average results of evaluation parameters.

Figure 4 shows a graphical representation of TPR (sensitivity) and FPR (1-specificity)
for binary classification, which is presented as Receiver Operation Characteristics (ROC)
curve. The curve closer to the top left corner indicates better performance. It can be
observed clearly in Figure 4a where the average value of the area under the curve is (AUC
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= 0.99) against the ratio 1:1. However, the average value of the area under the curve is
lower in Figure 4b, which shows better performance after fusion.
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Figure 4. Receiver Operation Characteristics (ROC) Curve with and without Fusion.

6.3. Comparative Analysis

In this section, we discuss the comparative analysis of the proposed approach MIND
with the existing studies. Several parameters are considered for this analysis: the average
ACC, DR, TPR, FPR, F1-Measure, data fusion, and overfitting issue. The comparative
analysis of MIND with existing studies are represented in Figure 5. Notably, the graph
of each parameter is presented separately and all the graphs are scaled up to show the
effectiveness of MIND.

The accuracy of MIND is compared with the existing studies which are Jiang et al. [19],
Zhao et al. [16], Gao et al. [21], Benmessahel et al. [22], Wu et al. [18], Devan et al. [17],
Hajisalem et al. [24], and Gu et al. [20]. It is observed that our approach outperforms exist-
ing studies with minor or significant differences, as shown in Figure 5a. Moreover, there is
a minor difference between the proposed approachs Gu et al. [20] and Hajisalem et al. [24],
but it outperforms the rest of the studies clearly. The comparison with Gu et al. [20] and
Hajisalem et al. [24] is magnified and presented in the subgraph of Figure 5a. The accuracy
of these studies is slightly more than 99%, whereas it is exceeding 99.5% in MIND.

Similarly, the detection rate is shown in Figure 5b where it can be observed that
the proposed approach is outperforming existing studies that include Zhao et al. [16],
Jiang et al. [19], Gao et al. [21], Benmessahel et al. [22], Devan et al. [17], Wu et al. [18],
and Zhang et al. [15]. A comparison of MIND with Zhang et al. [15] and Wu et al. [18] is
enlarged in the subgraph of Figure 5b where it can be observed that the detection rate of
existing studies does not exceed 98%, whereas the proposed method has a detection rate of
more than 99.5%.

The TPR is represented in Figure 5c with current literature studies, which include
Zhao et al. [16], Jiang et al. [19], Gao et al. [21], Benmessahel et al. [22], Devan et al. [17],
Wu et al. [18], and Zhang et al. [15]. It can be observed that the values of TPR vary between
94% to 98%; however, the TPR of the proposed method iexceeds 99%. A clear difference can
be observed, however, and the comparison of MIND with [15] and [18] is expanded for a
clearer view.

The comparison of FPR is shown in Figure 5d and is only discussed by four studies
which include Zhao et al. [16], Benmessahel et al. [22], Gu et al. [20], and Hajisalem et
al. [24]. There is a clear difference between existing studies except Hajisalem et al. [24]
and MIND. In order to provide a comparison with this study, we have shown a magnified
sub-graph where it can be observed that the FPR of the proposed approach is less than
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0.3%. However, the FPR is 0.4% in [24]. It is worth mentioning here that all the existing
studies do not focus on all the parameters. Therefore, we present a comparison of the
individual parameter of each study.
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Figure 5. Comparative analysis with existing studies.

The comparison of F-Measure is presented in Figure 6, where the proposed approach
is compared with several studies that include Zhao et al. [16], Jiang et al. [19], Gao et al.
[21], Benmessahel et al. [22], Devan et al. [17], Wu et al. [18], and Zhang et al. [15]. It can be
observed that the F-Measure of the proposed approach is more than 99% and outperforms
existing literature. Conclusively, the ACC, DR, TPR, FPR, and F1-Measure parameters of
the MIND outperform other studies by intelligently applying the model classifier on the
fused dataset.

The proposed approach outperforms existing studies and one possible reason could
be the data fusion scheme proposed in this work. Another reason could be the feature
selection which enhances the overall performance of the system. Although the proposed
approach is accurate, it still produces some false alarm rater. One possible reason for this
could be the neglected features during feature selection.
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Figure 6. Comparison of F-Measure with existing studies.

7. Conclusions

With the growth of Internet users, new attacks are also introduced. These attacks
are critical for the overall efficiency and security of the network. NIDS are used to avoid
these attacks, however, a false alarm is a significant challenge due to the high volume
and uncertain data. To this end, this paper proposes MIND that is a multi-source data
fusion scheme for intrusion detection. A data fusion mechanism is used in this approach,
which can be obtained by merging data from different sources to obtain more informative
and certain data. The data fusion is performed using the left join method of relational
algebra. This process is performed with the help of Hive, which runs on top of Hadoop
Map-Reduce. This consistent and precise data is further implemented in machine learning
algorithms. The KNN algorithm is used for this purpose with ensemble learning, increasing
the generalizability to combine weak learners and turning them into strong learners. The
extensive simulation shows that the data fusion scheme improves the overall efficiency of
IDS with less false alarm rate. In the future, the resource utilization of our approach can be
optimized.
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