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Abstract: Hyperspectral imaging (HSI) provides additional information compared to regular color
imaging, making it valuable in areas such as biomedicine, materials inspection and food safety.
However, HSI is challenging because of the large amount of data and long measurement times
involved. Compressed sensing (CS) approaches to HSI address this, albeit subject to tradeoffs between
image reconstruction accuracy, time and generalizability to different types of scenes. Here, we develop
improved CS approaches for HSI, based on parallelized multitrack acquisition of multiple spectra per
shot. The multitrack architecture can be paired up with either of the two compatible CS algorithms
developed here: (1) a sparse recovery algorithm based on block compressed sensing and (2) an
adaptive CS algorithm based on sampling in the wavelet domain. As a result, the measurement speed
can be drastically increased while maintaining reconstruction speed and accuracy. The methods were
validated computationally both in noiseless as well as noisy simulated measurements. Multitrack
adaptive CS has a ∼10 times shorter measurement plus reconstruction time as compared to full
sampling HSI without compromising reconstruction accuracy across the sample images tested.
Multitrack non-adaptive CS (sparse recovery) is most robust against Poisson noise at the expense of
longer reconstruction times.

Keywords: hyperspectral imaging; compressed sensing; wavelets; adaptive imaging

1. Introduction

Hyperspectral images are comprised of light intensity information from an object
or scene, resolved into two spatial dimensions and a spectral (wavelength) dimension,
forming a datacube. Such images can be interpreted as a collection of (i) electromagnetic
spectra associated with each spatial pixel or (ii) grayscale images corresponding to each of
the spectral channels.

Hyperspectral imaging (HSI)—the capture of hyperspectral images—proves beneficial
in areas as diverse as biomedicine [1], materials defect detection [2], agriculture monitoring
and food safety [3], and even beyond more traditional applications, such as remote sensing
of terrain [4]. Variants of HSI, such as Raman chemical imaging [5], where each spatial
pixel records a Raman spectrum, are useful as label-free compositional analysis methods
for spatially heterogeneous samples. Such tools are valuable in biopharmaceutical and
cell manufacturing.

The biopharmaceutical industry has been trending towards integrated continuous
manufacturing [6], where real-time measurements and process control [7] are critical in
ensuring and optimizing the quality of the products. This is particularly important due
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to the stringent regulatory landscape. Here, optical techniques such as HSI can provide
information-rich yet non-contact methods for monitoring and inspection.

Hyperspectral imaging presents a challenge due to the large amount of data that has
to be acquired (and subsequently stored) and the long duration of time required to acquire
this data. Established methods that fully sample the hyperspectral scene include point-scan,
line-scan (pushbroom), wavelength-scan and snapshot imaging. (For clarity in description,
we distinguish between the terms hyperspectral scene and hyperspectral image. The former
will refer to the object or scene that is to be imaged hyperspectrally; the latter will refer to the
datacube captured by an imager.) Scanning methods can be time-consuming, especially
in low-light conditions where long integration times are needed. These methods also
often involve moving parts. Furthermore, if the scene to be imaged is dynamic, scanning
can produce artifacts that are difficult to correct during postprocessing. On the other
hand, snapshot imaging methods, which record the whole image in one shot, involve very
large detector arrays and complex optical arrangements such as lenslet arrays and filter
arrays [8]. Overall, there is a necessity for subsampling (or undersampling) approaches to
HSI such that measurements can be made faster and more efficient without losing critical
information in the process.

A standard approach to the subsampling of signals is compressed sensing (CS), also
known as compressive sensing or compressive sampling [9,10]. The theory of compressed
sensing prescribes a subsampling procedure, together with a reconstruction algorithm,
which recovers the signal (the datacube in our case) by making use of some prior assump-
tions about the structure of the signal. Recent HSI approaches have been leveraging on this
theory in a variety of ways [11]. Coded aperture snapshot spectral imaging (CASSI) [12–14]
provides a prominent class of imaging architectures for compressed sensing HSI (CS-HSI),
that can achieve a snapshot measurement—capturing all the necessary data in one shot
instead of using a sequence of measurements. Another important HSI architecture is the
single pixel camera (SPC)-style hyperspectral imager [15], which is a direct extension of the
SPC by replacing the single pixel detector with a spectrometer. There have also been recent
efforts in making CS-based hyperspectral imagers more compact. The use of spatial light
modulators or coded apertures is forgone in [16,17], and the number of optical elements
required is greatly reduced.

Classes of CS algorithms commonly employed are sparse recovery [18,19] (which
can be augmented by dictionary learning [20] or learnt nonlinear representations [21]),
neural network-based reconstruction [22–25] and adaptive basis scan (or adaptive direct
sampling) [26–29]. Sparse recovery algorithms tend to have good performance guarantees
but are generally computationally intensive, making them slow for large signals such as
hyperspectral scenes. Neural network-based reconstruction, on the other hand, is much
faster. Neural networks use training signals to learn an inverse transformation from the
subsampled measurements back to the original signal, hence avoiding slow optimization
steps post-training. However, a lack of sufficient training data or mismatches between the
distributions of the training set and the set of target signals can limit the generalizability
and scope of this method. Lastly, an adaptive basis scan is based on progressive prediction
and sampling of the most significant coefficients of a signal in some basis. These prediction
steps are computationally lighter than the iterative steps involved in sparse recovery, and
as a result, adaptive basis scan also achieves fast reconstruction speeds. Moreover, it is not
limited by the need for large training datasets, unlike neural-network-based methods.

In the context of contemporary manufacturing, where there is an increasing need for
high-volume production with extensive personalization [30], we require responsive yet
autonomous operations together with end-to-end integration of the various processes. The
monitoring and inspection systems involved in such a setting would require real-time
processing and feedback while maintaining reliability, robustness and consistency [31].

CASSI is not very suitable for these purposes since it cannot be used with an adaptive
basis scan (to our knowledge); it fails the ‘fast reconstruction’ criterion when using sparse
recovery and the ‘generalizability’ criterion when using neural-networks for reconstruction.
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The alternative here, the SPC-style hyperspectral imager, is also limited in its capability
as it only measures one spectrum in a shot. Hence, a large number of shots are needed to
obtain sufficient information for a good reconstruction of the hyperspectral datacube. As a
consequence, the measurement times are high despite the fact that reconstruction times can
be reduced by computationally light algorithms. Overall, there is a need for HSI methods
that can achieve fast measurement as well as reconstruction while maintaining imaging
accuracy and generalizability across various types of scenes.

Here, we formulate improved compressed sensing approaches for HSI, which over-
come the aforementioned limitations of measurement and reconstruction speeds. This is
achieved by multitrack compressed sensing, based on a multitrack acquisition architecture
enabling multiple spectra to be measured in each shot. Besides being compatible with stan-
dard sparse recovery techniques, multitrack compressed sensing also supports an adaptive
basis scan so that multiple basis coefficients can be sampled in parallel. As a result, the
measurement speed can be drastically improved while maintaining reconstruction speed
as well as accuracy.

The paper is organized as follows. Section 2 reviews the prior work on compressed
sensing for HSI, describes the proposed multitrack acquisition architecture and develops the
two compatible CS algorithms for it: a non-adaptive sparse-recovery-based algorithm and
an adaptive basis scan algorithm. Section 3 describes the numerical experiments conducted
and discusses the reconstruction results for noiseless as well as noisy measurements. Finally,
Section 4 concludes.

2. Materials and Methods
2.1. Background
2.1.1. CS Formulation and Notation

Here, we describe the general framework for compressed sensing [9,10]. Let x ∈
Rn (represented by a column vector) be a discrete signal that is to be measured. The
measurement (alternatively sampling or acquisition) of x is described by the equation:

y = Φx (1)

where y ∈ Rm is a column vector whose components are all the measurement values,
and Φ ∈ Rm×n is the measurement matrix. An individual measurement yj can be written
as a dot product (or projection) yj = ϕT

j x between the signal and the jth row ϕT
j of Φ.

Subsampling occurs when the number of measurements m is less than the length of the
signal n, i.e., when the sampling ratio rsampling = m/n is less than 1. After the subsampling
process, the original signal x is reconstructed from the measurements y by methods such
as sparse recovery.

The particular type of signals addressed in this paper is hyperspectral scenes (and
images), which can be naturally organized into datacubes. Mathematically, this is a 3D
array of the shape nh× nw× nc, where nh is the spatial height of the scene or image in pixels,
nw is the spatial width in pixels, and nc is the number of wavelength channels. np ≡ nh nw
denotes the total number of spatial pixels. It is common and convenient for use in later
equations, however, to reshape the elements of the datacube into a matrix: X ∈ R(nhnw)×nc ,
whose row indices correspond to spatial pixel locations and column indices correspond
to wavelength channels. This is performed by taking spatial slices of the datacube at each
wavelength channel and unrolling these slices into tall column vectors, which end up
forming the columns of X.

Note that the symbol X here plays the same role as the symbol x in Equation (1)—the
only difference is that the elements of X are arranged into a matrix instead of a column
vector. This notation will be used in the following sections of the paper.

2.1.2. Acquisition Architectures

Several CS acquisition architectures that have been employed [11] make use of devices
that can modulate and code light spatially. Spatial light modulators include masks [32],
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which block out light in some regions and not in others, and digital micromirror devices
(DMD) [33], which are arrays of micrometer-scale mirrors that can dynamically form
patterns that selectively redirect light from different regions.

Coded aperture snapshot spectral imaging (CASSI) [12–14] provides a prominent
class of imaging architectures for CS-HSI, which can achieve snapshot HSI. The snapshot
nature enables capturing hyperspectral video at high frame rates [34]. However, such
powerful architectures can come with increased hardware costs—to image an nh(height)-
by-nw(width)-by-nc(wavelength channels) voxel scene using single dispersive CASSI, for
example, the detector array needs to have dimensions of at least (nh) × (nw + nc − 1)
pixels. The number nw + nc − 1 can generally be very large, and this additionally presents
a trade-off between the amount of spatial and spectral information that can be captured
at once. Dual dispersive CASSI can function with a detector array having fewer pixels,
but there is still the issue that significantly low amounts of spectral information can be
captured in one shot. Multiframe CASSI [35] acquires more information through multiple
shots, each using a distinct mask or DMD pattern, albeit the snapshot nature of the method
is inevitably lost. Hence, there exists a different trade-off: one between spectral information
and acquisition time. Furthermore, CASSI systems use prisms as the dispersive element
and since the dispersion of a prism is nonlinear, the spectral resolution of CASSI varies
with the wavelength [36].

High-accuracy and high-resolution spectral data warrant the use of a spectrometer.
The single pixel camera (SPC)-style hyperspectral imager [15] is an acquisition architecture
that leverages this—it consists of an SPC with the single pixel detector replaced by a
spectrometer. Being an extension of the SPC, this architecture allows us to borrow many of
the CS methods developed originally for single pixel imaging, including an adaptive basis
scan. The capability of the architecture to sample dot products of patterns on the DMD with
the spatial slices of the datacube allows for direct sampling of the wavelet coefficients of the
scene. Note, however, that unlike snapshot CASSI, the SPC-style imager requires sequential
measurements of spectra through a large number of shots. Therefore, even though faster
adaptive reconstruction techniques are enabled, the slow measurement process nullifies
this advantage. Addressing this limitation is the central theme of this work.

2.1.3. Adaptive Basis Scan Algorithms

Adaptive basis scan was briefly described in Section 1. It is based on progressive pre-
diction and sampling of the most significant coefficients of signals in some basis. The most
popular bases for this method are wavelets [37]. Wavelet transforms decompose signals
into coefficients that capture the signals’ features at multiple scales and locations. Such
multiresolution analyses provide the transform coefficients with a hierarchical structure
so that some coefficients have predictive power over others. In particular, low-resolution
information that is contained in the wavelet coefficients at coarser scales can be used to
predict which of the wavelet coefficients at finer scales are significant.

Deutsch et al. [26] predicted the significance of the fine-scale coefficients by estimating
local directional Lipschitz exponents from the already-sampled coarse-scale coefficients.
Averbuch et al. [27], on the other hand, relied on statistical modeling of the wavelet coeffi-
cients and their parent–child relationships. In [38], Hahn et al. adapted Deutsch’s adaptive
algorithm to hyperspectral imaging. Finally, Rousset et al. [29] developed an adaptive
basis scan algorithm whose wavelet coefficient prediction step relies on bicubic interpo-
lation in image space. This was further extended to time-resolved HSI in [39]. In [38,39],
however, the measurement step is not multitrack—the sensor elements measure only a
single spectrum per shot.

The multitrack adaptive CS algorithm we present in Section 2.2.3 is an extension of
the Adaptive Basis Scan with Wavelet Prediction (ABS-WP) algorithm from [29,39]. We
make this choice because ABS-WP produces high accuracy reconstruction, even in the
presence of noise. Furthermore, ABS-WP has already been demonstrated to work with
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HSI via minor changes to the original algorithm. However, multitrack CS is potentially
compatible with the other adaptive basis scan algorithms as well.

2.2. Proposed Multitrack Compressed Sensing

The single-track acquisition of the SPC-style hyperspectral imager measures only one
spectrum per shot, and hence, a large number of shots are needed to obtain sufficient infor-
mation for a good reconstruction of the hyperspectral scene. This is especially a problem
when integration times are large, as is the case for low-light imaging. To develop more pow-
erful acquisition architectures, one can draw inspiration from pushbroom hyperspectral
imagers in which multiple spectra are measured at once.

2.2.1. Multitrack Acquisition Architecture

Consider the hyperspectral scene X ∈ Rnp×nc , whose components have units of
photons per second. Different spatial regions—rectangular tracks (Figure 1a)—of the
hyperspectral scene are to be treated separately yet in parallel. Let nτ be the number
of tracks. Then, each track of the scene will be nh-by-(nw/nτ)-by-nc in terms of voxels.
Spatially, each track has nh × (nw/nτ) = np/nτ pixels. In our matrix notation of X, this
division into tracks can be described by breaking down X into submatrices:

X =

 X(1)

...
X(nτ)

 (2)

where X(1), . . . , X(nτ) ∈ R(np/nτ)×nc represent the tracks. Next, the different tracks of
X need to be modulated separately but in parallel. This is achieved by dividing the
DMD into tracks of size nh-by-(nw/nτ) as well to correspond spatially to the tracks of
the hyperspectral scene (Figure 1b). The pixels on the ith track of the DMD form the
ith subpattern ζ(i) ∈ R(np/nτ). This modulates the ith track of X, i.e., X(i). All tracks
of X simultaneously undergo such modulation, after which the entire modulated scene
is focused into a line by a cylindrical lens (Figure 1c). Different sections of the line are
comprised of information from different tracks. This can be modeled by a trackwise list of
dot products between subpatterns and the corresponding tracks of X:

(
ζ(1)

)T
X(1)

...(
ζ(nτ)

)T
X(nτ)

 ∈ Rnτ×nc (3)

where each
(

ζ(i)
)T

X(i) ∈ R1×nc . Finally, the transformed scene enters a spectrometer
where the focused line is dispersed. The 2D detector array captures one spectrum from
each track, i.e., nτ spectra in total. With integration time ∆t, the recorded spectra in a given
shot (in the units of photon counts) are described by the rows of:

(
ζ(1)

)T
X(1)∆t

...(
ζ(nτ)

)T
X(nτ)∆t

 ∈ Rnτ×nc (4)

assuming no measurement noise. Overall, one shot of the multitrack acquisition process
comprises of the simultaneous (or parallel) action of subpatterns ζ(1), . . . , ζ(nτ) to linearly

map X onto the recorded spectra
(

ζ(i)
)T

X(i)∆t.
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SubpatternsTracks

(a) (b)

Compound pattern 

modulates the scene

Hyperspectral scene

(256 x 256 x 31)

Modulated scene is 

focused into a 'line'

(c)

Figure 1. (a) Dividing a hyperspectral scene into tracks (8 tracks as an example) seen here as the
dashed vertical strips. (b) A full compound pattern as formed by subpatterns (8 subpatterns in this
example), again seen as the dashed vertical strips. (c) A schematic of the multitrack acquisition
process. In every shot, the hyperspectral scene is modulated by a compound pattern, focused into a
line and dispersed in a spectrometer. The 2D detector array records one spectrum from each track.

2.2.2. Multitrack Non-Adaptive Compressed Sensing

This section describes the first of our proposed methods. It is based upon block
compressed sensing and uses non-adaptive sparse recovery for reconstruction. Block
compressed sensing [40,41] involves dividing a scene into blocks and applying the mea-
surement matrix to those blocks separately. The reconstruction can then be carried out
either separately for each block or globally by processing all the blocks together. The aim
of block CS is to reduce the reconstruction complexity and the memory burden of the
imaging process.

The track-wise acquisition naturally allows for the use of block compressed sensing
methods, where the tracks can be treated as blocks that have their own measurement
matrices. The reconstruction algorithm then takes into account this measurement matrix
structure, as will be described later.

Note that a non-adaptive compressed sensing HSI architecture with a similar mul-
titrack acquisition principle was first developed, to our knowledge, in [42]. Per shot, a
spectrum is captured from each pixel-wide column of the scene; this is the same as having



Sensors 2021, 21, 5034 7 of 22

one-pixel-wide tracks in our formulation from Section 2.2.1. The use of block compressed
sensing provides a generalization to this, allowing the tracks to have a width greater than
one pixel. This is important when the number of spectra that can be measured per shot
is limited by the detector pixel count. Several spectrometers have 2D detector arrays of
256-by-1024 pixels, for example, where a 1-by-1024 strip is meant for a single spectrum. In
that case, the maximum number of spectra that can be measured in a shot is 256. Moreover,
due to optical aberrations near the edges of the detector array, the maximum number of
spectra might be even lower in practice. This is a limiting factor when the desired datacube
is more than 256 pixels wide. Our use of block CS, however, enables the use of wider tracks.
As a result, fewer tracks can be used cover the whole datacube, and fewer spectra need to
be measured per shot.

First, we describe the measurement process. As separate tracks are measured sepa-
rately, we can rewrite Equation (1) for each track:

Y(i) = Φ(i)X(i) for each track i (5)

where Φ(i) ∈ Rm(i)×(np/nτ) is track i’s measurement matrix, and m(i) is the number of sam-
ples taken from track i, which is related to the sampling ratio by m(i) = rsampling × np/nτ .

Y(i) ∈ Rm(i)×nc are the measured spectra from the track (up to some scaling factors).
The measurement matrices Φ(i) we use are composed of entries drawn from a trans-
formed Bernoulli distribution: ± 1/

√
m(i) with equal probabilities. Here

√
m(i) works as

a normalization.
Now, we describe how the measurement matrices can be implemented using a DMD.

Consider track i. The kth projection from this track can be written as the dot product

Y(i)
k,· =

(
ϕ
(i)
k

)T
X(i) (6)

where Y(i)
k,· denotes the kth row of Y(i) (equivalent MATLAB-like notation would be

Y(i)(k, :)), and
(

ϕ
(i)
k

)T
is the kth row of Φ(i). To implement this projection, we employ the

following scaling and shifting operations on ϕ
(i)
k and obtain physically implementable b-bit

(grayscale) subpatterns:

ζ
(i)
k =

2b−1 − 1
2b − 1

 ϕ
(i)
k∥∥∥ϕ
(i)
k

∥∥∥
∞

+ 1(i)np

 for all tracks i (7)

Here, ‖·‖∞ denotes the `∞-norm, and 1(i)np is a subpattern [1, . . . , 1]T ∈ R(np/nτ) of the
all-ones pattern 1np ∈ Rnp :

1np =


1(1)np

...
1(nτ)

np


An additional offset subpattern is also required to compensate for the scaling and

shifting mentioned above:

ζ
(i)
offset =

2b−1 − 1
2b − 1

1(i)np for all tracks i (8)

These operations are needed because ϕ
(i)
k cannot be physically implemented in a

direct manner. As the DMD pixels values are physically restricted to the interval [0, 1], the
±1/
√

m(i) values of ϕ
(i)
k cannot be realized on the DMD. Furthermore, b-bit DMD pixel
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values are subject to the discretization
{

0
2b−1

, 1
2b−1

, . . . , 2b−1
2b−1

}
, which needs to be accounted

for while constructing the subpatterns.
Next, these subpatterns are formed on the DMD to obtain raw measurements parallel

to each track. For the kth shot, we get:

G(k) =


(

ζ
(1)
k

)T
X(1)∆t

...(
ζ
(nτ)
k

)T
X(nτ)∆t

 (9)

with integration time ∆t. From the offset subpatterns, we obtain

Goffset =


(

ζ
(1)
offset

)T
X(1)∆t

...(
ζ
(nτ)
offset

)T
X(nτ)∆t

 (10)

The raw measurement can be processed as follows, based on Equations (6)–(10) to
obtain the elements of Y:

Y(i)
k,` =

2b − 1
2b−1 − 1

∥∥∥ϕ
(i)
k

∥∥∥
∞

∆t
([G(k)]i,` − [Goffset]i,`), for all i, ` (11)

where [G(k)]i,` and [Goffset]i,` denote (i, `)th entries of G(k) and Goffset, respectively. Note
that Goffset does not depend on the projection index k, and thus, it only needs to be measured
once. The measured value can subsequently be reused for other values of k. However, in
the case of noisy measurements, it would be preferable to measure Goffset a few more times,
with an average taken in the end.

Now, we describe the reconstruction algorithm based on block compressed sensing.
A direct way to approach reconstruction would be to use sparse recovery on each

track separately. However, this leads to blocking artifacts. An alternative solution for block
compressed sensing is to reformulate Equation (5) as Y(1)

...
Y(nτ)


︸ ︷︷ ︸

Y

=

Φ(1)

. . .
Φ(nτ)


︸ ︷︷ ︸

Φ

 X(1)

...
X(nτ)


︸ ︷︷ ︸

X

(12)

Sparse recovery can now be used to solve for all of X from the measurements Y.
Though X can now be reconstructed globally, it is often simpler and more efficient to re-
construct spatial slices X·,` for the different wavelength channels ` ∈ {1, . . . , nc} separately.
Note that X·,` denotes the `th column of X (equivalent MATLAB-like notation would be
X(:, `)). This yields

Y·,` = ΦX·,` for each channel ` (13)

where Y·,`—the `th column of Y—are the measurements at the `th wavelength channel.
The reconstruction algorithm we employ is the 2D total variation (TV)-minimization (used
on each slice separately):

X̂·,` = arg min
X·,`

TV2D(X·,`) subject to Y·,` = ΦX·,` (14)

2.2.3. Multitrack Adaptive Compressed Sensing

This section describes the second of our proposed methods. It involves implementing
an adaptive basis scan algorithm where multiple basis coefficients are sampled in parallel.
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Preliminary results were published in [43]. Similar to most adaptive basis scans, we use
a 2D wavelet basis—specifically, 2D Haar wavelets [37]. Besides their simplicity, Haar
wavelets have a property that is critical to our parallelized sampling: when viewed as a
nh-by-nw pixel 2D pattern, the support (i.e., region of non-zero pixels) of a Haar wavelet
is localized and can be completely contained inside a track or subpattern. This allows for
sampling a wavelet coefficient using only a subpattern instead of a full nh-by-nw pattern.
The other subpatterns are free to parallelly sample other wavelet coefficients. Details of the
process are described below.

Measurement of Wavelet Coefficients

This problem consists of designing compound patterns made up of the subpatterns, such
that each of the recorded spectra provide information on the wavelet coefficients. Consider
a 2D Haar wavelet ψq ∈ Rnp labeled by an index q. This, when viewed as a a nh-by-nw
2D wavelet pattern, can also be divided into nτ tracks of size nh-by-(nw/nτ), where the
division into tracks can again be described by breaking down ψq into submatrices:

ψq =


ψ
(1)
q

ψ
(2)
q
...

ψ
(nτ)
q

 (15)

Here, ψ
(i)
q ∈ R(np/nτ) is the ith track of the wavelet. Now, if ψq is a Haar wavelet

pattern whose support lies entirely in the ith track, then its pixel values must be zero in all

other tracks. This would mean that for any track i′ other than i, we have ψ
(i′)
q = 0, and ψq

reduces to:

ψq =



0
...

ψ
(i)
q
...
0


(16)

Hence, the sub-matrix (or subpattern) ψ
(i)
q can play the role of the full wavelet ψq,

despite being smaller in size. Importantly, it can still sample dot products:

ψT
q X =

[
0T · · · (ψ

(i)
q )T · · · 0T

]


X(1)

...
X(i)

...
X(nτ)


=
(

ψ
(i)
q

)T
X(i) (17)

Note that the left-hand side is just the wavelet coefficients of the slices of X: ψT
q X =

[ψT
q X·,1, . . . , ψT

q X·,nc ] = [Wq,1, . . . , Wq,nc ]. Thus, wavelet subpatterns can be used instead of
full wavelets to obtain the wavelet coefficients. This, together with the aforementioned
facts that (1) several DMD subpatterns ζ(i) can be formed parallelly on the DMD and (2)
the corresponding spectra can be measured, enables the extraction of multiple wavelet
coefficients per slice in a shot.

The precise steps involved in this process are as follows. Let Wq1,`, Wq2,`, . . . , Wqnτ ,`, for
all channels ` ∈ {1, . . . , nc}, be wavelet coefficients that are to be extracted simultaneously
in a shot. To enable this, we require that the supports of the corresponding patterns
ψq1 , ψq2 , . . . , ψqnτ

lie in separate tracks. Without the loss of generality, suppose the support
of ψqi lies in the ith track for each i ∈ {1, . . . , nτ}. Then, from (17),
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[Wqi ,1, . . . , Wqi ,nc ] = ψT
qi

X =
(

ψ
(i)
qi

)T
X(i) (18)

Using this equation, we can obtain a formula similar to Equation (11) that extracts the
wavelet coefficients from the measured raw spectra. Analogous to Section 2.2.2, we employ
the following scaling and shifting operations on the wavelet subpatterns to account for the
non-negative and discretized range of the DMD pixel values:

ζ
(i)
qi =

2b−1 − 1
2b − 1

 ψ
(i)
qi∥∥∥ψ
(i)
qi

∥∥∥
∞

+ 1(i)np

 for all tracks i (19)

where b is the number of bits again, and 1(i)np is a subpattern [1, . . . , 1]T ∈ R(np/nτ) of the
all-ones pattern 1np . Again, an additional set of offset subpatterns is required to account
for the scaling and shifting mentioned above:

ζ
(i)
offset =

2b−1 − 1
2b − 1

· 1(i)np for all tracks i (20)

Now, the final subpatterns ζ
(i)
qi for i ∈ {1, . . . , nτ} can be formed parallelly as a

compound pattern on the DMD (Figure 1b). The pixels on the ith track of the DMD form
the ith subpattern. With the integration time ∆t, the recorded spectra (see Equation (4)) are:

G(q1, . . . , qnτ ) =


(

ζ
(1)
q1

)T
X(1)∆t

...(
ζ
(nτ)
qnτ

)T
X(nτ)∆t

 (21)

A set of measurements from the offset subpatterns is also needed:

Goffset =


(

ζ
(1)
offset

)T
X(1)∆t

...(
ζ
(nτ)
offset

)T
X(nτ)∆t

 (22)

Denoting the (i, `)th entries of G(q1, . . . , qnτ ) and Goffset by [G(q1, . . . , qnτ )]i,` and
[Goffset]i,`, respectively, we finally obtain as a result of Equation (18):

Wqi ,` =
2b − 1

2b−1 − 1

∥∥ψqi

∥∥
∞

∆t
([G(q1, . . . , qnτ )]i,` − [Goffset]i,`) for all i, ` (23)

Extension of the Adaptive Basis Scan Algorithm to Incorporate Multitrack Measurements

Steps 1–4 in Figure 2 are closely based on Rousset et al. [29,39] and will be described
only briefly here. Steps 5 and 6 are novel and designed to incorporate the multitrack
requirement into the adaptive algorithm.
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Figure 2. A flow chart of the multitrack adaptive CS scheme for hyperspectral imaging. Steps 1–6 are described briefly here.

The setup is similar to [29,39]. The decomposition level of the wavelet transform is set
to some J ∈ N, which determines the coarsest scale at which information from the scene is
captured. However, the need for multitrack sampling imposes a restriction on J due to the
requirement that the support of each wavelet pattern must be situated completely within
the boundaries of a track. Since the support of a Haar wavelet under decomposition level J
can be up to 2J-by-2J pixels in size, we need 2J to be less than the width of a track in pixels:
2J ≤ nw/nτ .

Next, the sampling percentages are set for each scale pJ , . . . , p1, with j = J being the
coarsest, and j = 1 being the finest.

The algorithm is divided into J + 1 acquisition cycles where wavelet coefficients are
measured, and J prediction cycles where the significance of yet-to-be-measured wavelet
coefficients is predicted using the already-measured coefficients. The resultingpredicted
wavelet coefficients then guide the next acquisition cycle and so on.

The algorithm starts off with an acquisition cycle (Step 1 in Figure 2) where all the
approximation wavelet coefficients of all slices X·,` of the scene are measured. Unlike [29,39],
these are now measured parallelly with the multitrack system using the corresponding
approximation compound patterns made up of subpatterns that extract approximation
coefficients. The first prediction cycle (described in the next paragraph) predicts the detail
wavelet coefficients at scale j = J, and this is followed by an acquisition cycle that measures
detail coefficients at scale j = J. The scale is then lowered by one, j ← j − 1, and the
cycles repeat.

In a prediction cycle for detail coefficients at scale j ∈ {1, . . . , J}, the steps are as
follows. First, a low-resolution intermediate reconstruction is obtained by inverse trans-
forming all the wavelet coefficients that were measured or set to zero in all the previous
acquisition cycles for every slice (Step 2 in Figure 2). Binning of all slices at the various
wavelength channels gives a grayscale image, which is then oversampled by a factor of 4
in the number of pixels via a bicubic interpolation. (Step 3 in Figure 2). The oversampled
image is then one-level 2D wavelet transformed to give predicted detail wavelet coefficients
at scale j (Step 4 in Figure 2). Until now, all the prediction steps have been similar to the
ABS-WP algorithm from [29,39]. The next two steps contain the differences that are needed
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to make ABS-WP compatible with the multitrack measurement (see also Steps 5 and 6 in
Figure 2).

Step 5: Predicted wavelet coefficients are queued according to their magnitudes. The
higher the magnitude of a predicted wavelet coefficient, the earlier in the queue it appears,
as it is expected to be more significant. Each predicted wavelet coefficient will correspond
to a unique wavelet, creating an ordered queue of wavelets. Viewing the wavelets as 2D
patterns, the support of each wavelet pattern is completely situated within the boundaries
of a track, and the corresponding track that the support sits within can be referred to as the
pattern’s supporting track. The queued wavelet patterns are further sorted into sub-queues
based on their supporting tracks while maintaining their ordering within each sub-queue.
Based on pj, a corresponding percentage of the more significant wavelet patterns is retained
from each of the sub-queues, while the less significant wavelet patterns (at the back of the
queues) are discarded.

However, this sub-queuing process can result in some imaging accuracy losses. In
the single-track ABS-WP, the patterns to be used correspond to the pj most significant
predicted coefficients overall. This is different, in general, however, from the pj most
significant coefficients from each sub-queue because some sub-queues might have more of
the significant coefficients than other sub-queues.

Step 6: One wavelet pattern from each sub-queue is combined to form a compound
pattern: if the wavelet patterns ψq1 , ψq2 , . . . , ψqnτ

appear first in sub-queues 1, 2, . . . , nτ ,
respectively, (so that the supporting track of ψqi is the ith track), then the first compound

pattern is formed by corresponding subpatterns ζ
(i)
qi , for i ∈ {1, . . . , nτ}, obtained from

Equation (19). This is continued sequentially, with the second wavelet pattern from each
sub-queue combined into the second compound pattern and so on.

This prediction cycle at scale j is followed by an acquisition cycle, as mentioned before,
for the measurement of detail coefficients at scale j for all slices X·,` of the scene. The
compound patterns from Step 6 are used to parallelly measure the detail coefficients that
were predicted to be significant in the preceding prediction cycle. The rest of the coefficients
at scale j are set to zero. Finally, j is lowered by one and the cycles repeat. The algorithm
terminates when j = 0.

The final reconstruction is obtained by an inverse wavelet transform, for each slice, of
all the wavelet coefficients that were measured (or set to zero) from that slice of the scene
in all the acquisition cycles. This is identical to the reconstruction step in [39].

3. Results and Discussion
3.1. Numerical Experiments

All numerical experiments/simulations in this work are conducted using MATLAB
2018a on a HP Z240 Tower Workstation with 4 cores of Intel® Core™ i5-6500 CPU @
3.20 GHz and 16 GB of RAM.

The performance and applicability of multitrack CS for HSI is assessed computation-
ally on hyperspectral images. The measurements are simulated and fed into the adaptive
sampling or reconstruction algorithms being evaluated.

More precisely, a ground truth hyperspectral datacube is treated as the scene to be
imaged X. Simulated measurements are computed according to the forward model from
Equation (4), where the corresponding subpatterns ζ

(i)
k are generated according to the

reconstruction algorithms to be used. For multitrack non-adaptive CS, the subpatterns are
obtained from Equation (7), whereas for multitrack adaptive CS, the ABS-WP algorithm
and Equation (19) determine the subpatterns. These computations yield the simulated mea-
surements G (see Equations (9) and (21)), which are used to reconstruct the hyperspectral
image. The reconstructions are then compared against the ground truth images; the details
of these comparisons are provided later in this section.

First, noiseless measurement simulations and reconstruction are performed on three
different hyperspectral images: Color Checker, Green Peppers, and U2OS cell, obtained
from [44,45]. The former two are 512-by-512-by-31 voxel macroscopic images; the latter
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is a 256-by-256-by-231 voxel coherent anti-Stokes Raman Scattering (CARS) hyperspec-
tral image. Both multitrack non-adaptive CS (Section 2.2.2) and multitrack adaptive CS
(Section 2.2.3) are compared against benchmarks:

Multitrack full sampling: This involves sampling the whole datacube using a scheme
similar to pushbroom. However, for a fair comparison with the multitrack CS methods, it
is equipped with the same acquisition architecture as the multitrack methods—the same
number of detector tracks, in particular. All spectra are measured from each track of the
scene in a ‘multitrack point-scan’ fashion. Hence, no reconstruction step is needed.

Single-track adaptive CS: This involves the sampling of a single spectrum per shot by
a SPC-style hyperspectral imager [15], using the adaptive ABS-WP algorithm of [29]. Note
that we use an adaptive algorithm for benchmarking here because it generally outperforms
single-track non-adaptive CS in terms of speed as well as accuracy.

Details of the compared methods are summarized in Table 1. For multitrack non-
adaptive CS, the sparse recovery algorithm used is total variation (TV) minimization with
equality constraint, implemented using the TVAL3 package [46]. The settings used are
‘anisotropic TV’ with ‘positivity’ since these tend to give the best results. For multitrack
adaptive CS as well as single-track adaptive CS, the decomposition level used is J = 4 for
Color Checker and Green Peppers, and J = 3 for U2OS cell. Higher values of J enable
the use of smaller sampling ratios and are generally preferable. However, since the U2OS
cell scene is of a smaller pixel count, our use of multitrack adaptive CS requires J to be
less than four to ensure that the supports of the wavelet patterns lie completely inside
individual tracks.

Table 1. A summary of methods and a comparison of their key features.

Multitrack Full
Sampling

Single-Track
Adaptive CS

Multitrack
Non-Adaptive CS

Multitrack
Adaptive CS

Tracks: 32 tracks 1 track 32 tracks 32 tracks
Sampling ratio: 100% About 6.2% About 6.2% About 6.2%
Integration time: 0.1 s per shot 0.1 s per shot 0.1 s per shot 0.1 s per shot
DMD pattern switch
rate:

10,638 frames/s (1-bit
binary patterns)

255 frames/s (8-bit
grayscale patterns)

255 frames/s (8-bit
grayscale patterns)

255 frames/s (8-bit
grayscale patterns)

The results are reported in Section 3.2. The performance of the compared methods is
quantified by the following metrics:

Reconstruction accuracy: This is quantified by relative error and peak signal-to-noise
ratio (PSNR).

Acquisition time: This is composed of (i) the time required to adaptively determine
the DMD patterns (0 for non-adaptive), (ii) the time required to load the DMD patterns into
a computer’s memory, (iii) the time required to switch the DMD patterns, as per the pattern
switch rate, and (iv) the total spectrometer integration time, which is the total number of
shots times ∆t.

Reconstruction time: This is the time required to compute the final reconstruction.
Total time: Acquisition time + Reconstruction time.
In Section 3.3, we report the simulated effects of the illumination level and noise on

imaging accuracy and assess the robustness of the methods developed here. We model
measurement noise as Poissonian shot noise together with dark noise. Given a subpattern
ζ(i) for track i and integration time ∆t, the recorded noisy spectrum from the track is
modeled as

Pois
((

ζ(i)
)T

X(i)∆t + α∆t
)

(24)

where α ∈ R+ is the dark current in the detector pixels in units of photons pixel−1 s−1, and
Pois(µ) stands for a Poisson random variable with mean µ.
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In low-light imaging, where the scene intensity is low, both shot noise and dark noise
become more prominent.

Shot noise: The standard deviation of a Pois(µ) random variable is
√

µ; as a result, the

ratio (coefficient of variation)
√

µ
µ grows larger as µ shrinks. The implication is that when

the intensity of the scene X is small, the standard deviation of the measured signal is large
with respect to its mean.

Dark noise: The α∆t term can overpower the
(

ζ(i)
)T

X(i)∆t term when the scene
intensity is small.

3.2. Simulation Results on Various Hyperspectral Images

The simulation results for the Color Checker and U2OS cell images under noiseless
measurement are presented in Figure 3. We evaluate the two proposed multitrack methods
against multitrack full sampling and single-track adaptive CS. First, we observe that
single-track acquisition is slow: its acquisition time (and total time) is about twice that of
multitrack full sampling. Since only one spectrum is measured per shot, a large number of
shots are required even with a low sampling ratio of 6.2%. The other three methods, on the
other hand, need fewer shots due to their multitrack acquisition architecture.

Multitrack full
sampling

(ground truth)

Single-track
adaptive CS

Proposed:
Multitrack

non-adaptive CS

Proposed:
Multitrack

adaptive CS

Color
Checker

Relative error: 0%
PSNR: ∞

Acquisition time: 834 s
Reconstruction time: 0 s

Total time: 834 s

Relative error: 3.67%
PSNR: 37.8 dB

Acquisition time: 1695 s
Reconstruction time: 1.50 s

Total time: 1697 s

Relative error: 4.84%
PSNR: 35.4 dB

Acquisition time: 54.4 s
Reconstruction time: 947 s

Total time: 1001 s

Relative error: 3.97%
PSNR: 37.1 dB

Acquisition time: 62.6 s
Reconstruction time: 1.56 s

Total time: 64.2 s

U2OS
cell

Relative error: 0%
PSNR: ∞

Acquisition time: 206 s
Reconstruction time: 0 s

Total time: 206 s

Relative error: 2.06%
PSNR: 39.5 dB

Acquisition time: 429 s
Reconstruction time: 4.37 s

Total time: 433 s

Relative error: 3.11%
PSNR: 35.9 dB

Acquisition time: 14.5 s
Reconstruction time: 478 s

Total time: 493 s

Relative error: 2.10%
PSNR: 39.3 dB

Acquisition time: 16.4 s
Reconstruction time: 4.38 s

Total time: 20.8 s

Figure 3. Simulations are carried out on the hyperspectral scenes Color Checker and U2OS cell. The reconstruction results
are presented for each of the methods tested. For the Color Checker scene, pseudo-RGB versions of the reconstructed images
are displayed in the table. For the U2OS cell scene, the 2964.5 cm−1 band of the reconstructed image is displayed.

Multitrack non-adaptive CS had the shortest acquisition time—about 6–7% of the
acquisition time of full sampling enabled by the employed sampling ratio of 6.2%. For the
512-by-512-by-31 voxel Color Checker scene, full sampling required 8192 shots, whereas
sampling at 6.2% amounted to 516 shots. Note that the 516 shots here include 10 extra shots
corresponding to the offset patterns mentioned in Section 2.2. A similar comparison applies
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to the U2OS cell scene, which is 256-by-256-by-231 voxels. A low sampling ratio, together
with multitrack acquisition, reduced the acquisition time significantly. Furthermore, no
adaptive prediction steps were needed during the acquisition process, unlike for multitrack
adaptive CS. Hence, the pattern sequence is not computed on the fly and can be pre-
programmed into the DMD’s field-programmable gate array (FPGA) for increased speed.
However, due to long reconstruction times (947 s for the Color Checker scene and 478 s for
the U2OS cell scene), the total time for multitrack non-adaptive CS is even longer than that
of full sampling. Thus, despite having a fast acquisition step, the long reconstruction time
necessitates offline post-processing.

In terms of total time, multitrack adaptive CS performs the best. It is faster than
multitrack non-adaptive CS due to a much shorter reconstruction time, even though the
acquisition time is up to 8 s higher due to the adaptive steps. Multitrack adaptive CS is
also faster than full sampling, again, because of the small sampling ratio that required
fewer shots.

For the multitrack methods, an increase in the number of tracks improves the imaging
speed due to a higher extent of parallelization in sampling. However, this is valid only up
to a limit in the case of multitrack adaptive CS—the tracks still have to be wide enough to
contain the supports of the wavelet patterns, as was discussed earlier.

Regarding reconstruction accuracy, the simulation results show that multitrack adap-
tive CS outperforms its non-adaptive counterpart for both the Color Checker and the U2OS
cell scene; the PSNR for multitrack adaptive CS is 2–3 dB higher. Hence, there is evidence
that the wavelet coefficients measured capture the important information from the scene
effectively. This discrepancy in accuracy could also be due to the scenes being more easily
representable in the wavelet basis or due to the scenes not having sufficiently low total
variation as would be necessary for TV-based sparse recovery. Full sampling achieves the
best imaging accuracy; however, the (relative) errors are smaller than 5% for the multitrack
CS methods. The slight loss of accuracy for a huge gain in speed presents a good tradeoff
in favor of multitrack adaptive CS in particular.

Besides the above comparisons, one needs to make sure that the accuracy of multitrack
adaptive CS is not much behind that of single-track adaptive CS. The simulation results
indeed confirm that despite the losses induced by the sub-queue formation in multitrack
adaptive CS, the PSNR discrepancy of the two methods does not exceed 1 dB. Hence,
this shows that the ABS-WP algorithm has been successfully extended to the multitrack
measurement scenario.

Next, Figure 4 shows a similar comparison between the four methods for the Green
Peppers image. The first row of Figure 4 yields similar conclusions as Figure 3: multitrack
non-adaptive CS has the shortest acquisition time; multitrack adaptive CS has the shortest
total time; and the relative errors of the multitrack CS methods, though higher than in
Figure 3, are still only about 6–7%. In the second, third and fourth rows of Figure 4, we
demonstrate the potential applicability of multitrack CS HSI to agricultural monitoring.
Reconstructed spectra from each of the compared methods are plotted in the second row.
The dotted lines are from a point on the green leaves background; the dashed lines are
from a point on the pepper near the top left corner; and the solid lines are from a point on
a chili at the bottom right corner, as indicated on the ground truth image. The multitrack
CS methods can distinguish the three, as can full sampling and single-track. The third
row shows the errors of the reconstructed spectra from the various methods relative to the
ground truth spectra. The errors are low for the multitrack CS methods and do not prevent
us from distinguishing the different regions while still being fast. The exact trends of the
error curves likely depend on the shape of the spectra and the intensity levels. Finally,
the fourth row displays the pixel-wise ratio of the spectral bands at 560 and 680 nm. The
ratio images clearly distinguish the peppers from the background for each of the compared
methods, possibly making it easier to perform semantic segmentation. Note that the red
regions at the bottom right corners correspond to chilies.
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Multitrack full
sampling

(ground truth)

Single-track
adaptive CS

Proposed:
Multitrack

non-adaptive CS

Proposed:
Multitrack

adaptive CS

Pepper

Leaves

Chilli

Relative error: 0%
PSNR: ∞

Acquisition time: 834 s
Reconstruction time: 0 s

Total time: 834 s

Relative error: 5.45%
PSNR: 42.6 dB

Acquisition time: 1695 s
Reconstruction time: 1.52 s

Total time: 1697 s

Relative error: 7.32%
PSNR: 40.0 dB

Acquisition time: 54.6 s
Reconstruction time: 929 s

Total time: 984 s

Relative error: 5.88%
PSNR: 41.9 dB

Acquisition time: 62.6 s
Reconstruction time: 1.55 s

Total time: 64.2 s

Leaves Pepper Chilli

560 nm 
/ 680 
nm
ratio 

Figure 4. Simulations are carried out on the hyperspectral scene Green Peppers. The reconstruction results are presented for
each of the methods tested. Pseudo-RGB versions of the reconstructed images are displayed in the first row. Reconstructed
spectra are plotted in the second row. The dotted lines ( ) are from a point on the green leaves background; the dashed
lines ( ) are from a point on the pepper near the top left corner; and the solid lines ( ) are from a point on a chilli at the
bottom right corner, as indicated on the ground truth image. The third row shows the errors of the reconstructed spectra
relative to the ground truth spectra. Finally, the fourth row displays the pixel-wise ratio of the spectral bands at 560 and
680 nm.

3.3. The Effect of Illumination Level and Noise

We modeled measurement noise as Poissonian shot noise with dark noise, as described
in Section 3.1. The factors determining the severity of noise were intensity of the scene X,
integration time ∆t and dark current α. The effects of these factors on the CS reconstructions
of the U2OS cell scene are examined here via simulations for the multitrack methods. We
do not analyze single-track CS further since we established in Section that it is much slower
than the multitrack methods.
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First, we set α = 0 and note that X and ∆t play a similar role in the resulting measurement:

Pois
((

ζ(i)
)T

X(i)∆t
)

Hence, it is reasonable to evaluate the effect of the product X∆t on the reconstruction
accuracy instead of using X and ∆t individually. Furthermore, X∆t has units of photons
and, therefore, is physically meaningful as the photon counts emanating from the scene
during the integration time interval. As a result, we quantify the illumination level by
max(X∆t)—the max photon count per voxel emanating from the scene during the time
interval ∆t.

Figure 5 shows the simulation results—the effect of illumination level on the recon-
structed image accuracy (in PSNR)—for multitrack full sampling, multitrack non-adaptive
CS and multitrack adaptive CS. The illumination level plotted on the horizontal axis
decreases from left to right, corresponding to an increasing prominence of shot noise.

Figure 5. The effect of the illumination level on the reconstructed image PSNR of the U2OS cell
scene for multitrack full sampling, multitrack non-adaptive CS and multitrack adaptive CS. The
illumination level (horizontal axis) decreases from left to right, corresponding to an increasing
prominence of shot noise. The gray shading illustrates the illumination level. The dark current α is
fixed at 0.

The reconstruction accuracy is highest for full sampling, similar to Section 3.2, across
all illumination levels. However, the accuracy of non-adaptive CS starts approaching that
of full sampling at lower illumination levels of ∼5 × 102 photons voxel−1. We also note
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that for illumination levels higher than∼5× 104 photons voxel−1, the accuracy of adaptive
CS overtakes that of non-adaptive CS.

A prominent trend is that the reconstruction accuracies of full sampling and adaptive
CS are more sensitive to the illumination level as compared to non-adaptive CS. The DMD
patterns used in the former two have small supports, such that only a small percentage
of incident light is reflected towards the detector. This leads to a weaker signal at the
detector, which is more susceptible to shot noise. On the contrary, the DMD patterns used
in non-adaptive CS reflect about 50% of the incident light towards the detector, which is
much higher than the other two methods. The resultant stronger signal at the detector is
thus less affected by shot noise.

Noting that this sensitivity is a measure of robustness to shot noise, we can conclude
from comparing the slopes of the PSNR-illumination plots that the robustness of our CS
methods is better than the robustness of full sampling.

Next, we evaluate the effect of the dark current by varying α. We fix the max scene
intensity at 5× 104 photons s−1 voxel−1 and the integration time 0.1 s, yielding an illu-
mination level of 5× 103 photons voxel−1. Figure 6 shows the simulation results—the
reconstruction accuracy across a wide range of dark current values. The plots indicate
that full sampling is much more sensitive to dark current as compared to adaptive and
non-adaptive CS. This gives the CS methods an advantage—their robustness to dark noise
can allow the use of cheaper detectors or relax the cooling requirements of detectors.

Figure 6. The effect of dark current α on the reconstructed image PSNR of the U2OS cell scene for
multitrack full sampling, multitrack non-adaptive CS and multitrack adaptive CS. The max scene
intensity is fixed at 5× 104 photons s−1 voxel−1, and the integration time is 0.1 s
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These discrepancies could again be attributed to signal strengths at the detector, as
mentioned earlier. Full sampling uses delta function subpatterns, which have smaller
supports than the wavelet patterns used in adaptive CS and the random patterns used in
non-adaptive CS. Furthermore, the CS methods have a regularization method built into
them—sparsity in the wavelet domain for adaptive CS, and low TV norms for non-adaptive
CS—making them more noise-robust in general.

Lastly, we examine the effect of the integration time. Both reconstruction accuracy
and acquisition time are affected by this quantity, leading to tradeoffs. The effect of the
integration time on the accuracy was effectively captured in Figure 5 since the illumination
level was determined by X∆t, which is linear in ∆t. The ∆t–PSNR relationship is plotted
explicitly in the top panel of Figure 7 for the multitrack methods. Here, we have fixed
α = 0 and max(X) = 5× 104 photons s−1 voxel−1.

Figure 7. The effect of the integration time ∆t on the U2OS cell scene’s reconstruction PSNR and
total time (acquisition + reconstruction) for multitrack full sampling, multitrack non-adaptive CS
and multitrack adaptive CS. α = 0 and max(X) = 5× 104 photons s−1 voxel−1 are fixed.

The acquisition time and total time are related to the integration time as per the
following equation:

total time = (number of shots× ∆t)

+ DMD-pattern-related time + reconstruction time (25)

The DMD-pattern-related time is independent of the integration time and comprises
of (i) the time required to adaptively determine the DMD patterns (0 s for non-adaptive),
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(ii) the time required to load the DMD patterns into a computer’s memory and (iii) the
time required to switch the DMD patterns, as per the pattern switch rate. Similarly, the
reconstruction time is also independent of the integration time. These components are
offset terms in Equation (25). The remaining term provides a linear relationship between
the total time and ∆t, the slope of which is governed by the sampling ratio. The bottom
panel of Figure 7 plots these relationships for the three multitrack methods.

The total time curve for full sampling is the steepest due to a larger number of shots.
Non-adaptive CS, on the other hand, has the highest reconstruction time, leading to a large
offset when ∆t→ 0. The lowest total time is achieved by adaptive CS, as was also shown
in Section 3.2.

Both panels in Figure 7 can be used together for choosing the optimal multitrack
method for the given accuracy and time requirements. Suppose a minimum PSNR must be
achieved. Then the top panel would yield the integration times required by each of the
methods to achieve this PSNR threshold. Based on the integration times, the bottom panel
would then predict the total time required by the three methods, allowing us to choose the
one with the smallest time. Conversely, if we have a maximum total time requirement, a
similar procedure based on Figure 7 could then be used to choose the method that achieves
the highest PSNR under this time constraint.

4. Conclusions

In this paper, we have developed two methods for multitrack compressed-sensing-based
hyperspectral imaging—a non-adaptive approach based on sparse recovery and an adaptive
approach based on sampling significant wavelet coefficients of the hyperspectral scene.

We have verified via simulations that both the methods can achieve short measurement
times while maintaining high imaging accuracy. However, they have different advantages:
the adaptive method enjoys a much shorter reconstruction time and computational burden,
whereas the non-adaptive method is more robust to noise.

Next, we have also shown that the two methods are generalizable to different types
of scenes—the reflectance of macroscopic objects as well as Raman signals of cells. This is
likely because the methods do not rely upon information from fixed data sets.

Overall, the CS-HSI methods achieve a reconstruction accuracy close to full sampling,
and the noise-robustness is even better than full sampling. This, along with the high
acquisition speed as well as high reconstruction speed in the case of multitrack adaptive
CS, demonstrates these methods to be effective.
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Abbreviations
The following abbreviations are used in this manuscript:

HSI Hyperspectral imaging
CS Compressed sensing
CASSI Coded aperture snapshot spectral imaging
CS-HSI Compressed sensing based hyperspectral imaging
SPC Single pixel camera
DMD Digital micromirror device
ABS-WP Adaptive basis scan with wavelet prediction
TV Total variation
CARS Coherent anti-Stokes Raman Scattering
PSNR Peak signal-to-noise ratio
RGB Red Green Blue
FPGA Field-programmable gate array
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