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Abstract: Taiwan is an island, and its economic activities are primarily dependent on maritime
transport and international trade. However, Taiwan is also located in the region of typhoon de-
velopment in the Northwestern Pacific Basin. Thus, it frequently receives strong winds and large
waves brought by typhoons, which pose a considerable threat to port operations. To determine the
real-time status of winds and waves brought by typhoons near the coasts of major ports in Taiwan,
this study developed models for predicting the wind speed and wave height near the coasts of ports
during typhoon periods. The forecasting horizons range from 1 to 6 h. In this study, the gated
recurrent unit (GRU) neural networks and convolutional neural networks (CNNs) were combined
and adopted to formulate the typhoon-induced wind and wave height prediction models. This work
designed two wind speed prediction models (WIND-1 and WIND-2) and four wave height prediction
models (WAVE-1 to WAVE-4), which are based on the WIND-1 and WIND-2 model outcomes. The
Longdong and Liuqiu Buoys were the experiment locations. The observatory data from the ground
stations and buoys, as well as radar reflectivity images, were adopted. The results indicated that,
first, WIND-2 has a superior wind speed prediction performance to WIND-1, where WIND-2 can
be used to identify the temporal and spatial changes in wind speeds using ground station data and
reflectivity images. Second, WAVE-4 has the optimal wave height prediction performance, followed
by WAVE-3, WAVE-2, and WAVE-1. The results of WAVE-4 revealed using the designed models with
in-situ and reflectivity data directly yielded optimal predictions of the wind-based wave heights.
Overall, the results indicated that the presented combination models were able to extract the spatial
image features using multiple convolutional and pooling layers and provide useful information
from time-series data using the GRU memory cell units. Overall, the presented models could exhibit
promising results.

Keywords: deep learning; radar mosaics; typhoon; wind speed; wave height; neural networks

1. Introduction

Taiwan, located at 120◦–122◦ E and 22◦–25◦ N, experiences subtropical weather, is
an island with over 95% of its commodity trade being conducted through sea transport
(TIPC 2020), and boasts two major international ports (Figure 1)—namely, Keelung and
Kaohsiung Ports. Keelung Port is located on the north coast of Taiwan, with the Northeast
Asia shipping route passing through the port. Kaohsiung Port is located on the southwest
coast of Taiwan. This port is the largest port in Taiwan and the 15th largest container
port worldwide. The two ports are crucial for maritime transport. However, Taiwan is
located in the typhoon development area of the Northwestern Pacific Basin and, thus, is
often struck by typhoons. Moreover, Taiwan is influenced by monsoons and the oceanic
climate and often experiences severe weather. Such weather has a considerable influence
on port operations.
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Figure 1. Locations of Taiwan, Keelung Port, and Kaohsiung Port.

Typhoons are strong tropical cyclones with high destructive power that often form
in the summer and autumn. The heavy rain, strong winds, and large waves brought by
typhoons influence ship safety and the docking operation at ports. In addition, typhoons
damage facilities inside and outside ports [1]. For example, Typhoon Meranti resulted
in the breaking of a container ship cable at Kaohsiung Port on 14 September 2016, which
resulted in a loss of USD$40 million in equipment. Typhoon Nesat caused a cruise ship
cable to break on 29 July 2017, and the cruise ship subsequently collided with multiple
vessels. To reduce the threat to port safety at times of typhoons, predicting the winds and
waves during typhoons is crucial. The goal of this study was to predict instant changes
in wind speed and wave height over several hours in the water near the coasts of the
international ports in Taiwan during typhoons. The wind and wave information obtained
can subsequently improve ship navigation safety and port operation efficiency.

Currently, four weather surveillance radars of the Central Weather Bureau (CWB) are
in operation. These radars are located at Wufenshan, Hualien, Cigu, and Kenting. The
overall scan range of these four radars spans Taiwan and the neighboring waters, including
the Pacific Ocean, East China Sea, Taiwan Strait, and Luzon Strait. These radars constitute
the weather radar observation network in Taiwan [2]. Weather radar reflectivities are
electromagnetic signals reflected by precipitation particles (rain, snow, and hail) in the
atmosphere. Weather radar data have the features of being observable 24 h a day, high
spatial coverage density, high temporal resolution, and instant data access. Therefore,
these data can be used to identify the spatial reflectivity changes over a large area and the
characteristics of temporal changes in air currents.

Research on weather radar data dates back to the use of Doppler radar data by
reference [3] to estimate the radial wind field. Lhermitte and Atlas [4] proposed the
velocity–azimuth display (VAD) method, which involves using Doppler radar to measure
the wind field speed, wind direction, and precipitation falling speed for large-scale precipi-
tation. Browning and Wexler [5] used a single Doppler radar to explore the movement of
precipitation particles on the basis of the VAD method. This method is used to measure the
wind field movement in large-scale precipitation. Marks and Houze [6,7] used the observa-
tory data of airplane radars to investigate the horizontal radial wind speed and vertical
air movement of the wind field structure around typhoon centers. Lee et al. [8,9] used
the ground-based velocity track display technique with a single ground Doppler radar to
examine the average tangential wind speed and average radial wind speed of the internal
circulation structure of typhoons. However, due to the insufficient information provided
by a single Doppler radar, as well as the influences of terrain and the distance between
the typhoon center and the radar on wind field retrieval, wind field retrieval techniques
based on the use of a dual-Doppler radar have been developed [10–12]. Park and Lee [13]
developed a wind field retrieval technique based on the use of multiple Doppler radars.
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These studies have confirmed the correlations between radar reflectivities and wind field
changes. Thus, the temporal and spatial features of wind fields can be feasibly extracted
from radar reflectivity images.

In general, wind and wave estimation and forecasting are made on the basis of nu-
merical models, which often yield accurate and physically-based results. Examples of such
models are numerical weather prediction models (e.g., MM5 [14] and WRF [15–17]) and
ocean wave models (e.g., WAVEWATCH series [18] and SWAN [19]). However, developing
such a forecasting system requires various boundary data and initial data and is highly
mathematically complicated.

With the development of artificial intelligence, numerous machine learning algo-
rithms, such as decision trees, support vector machines, and deep neural networks, such
as multilayer perceptrons (MLPs) and convolutional neural networks (CNNs), have been
applied to the field of natural science. The advantages of machine learning methods are
that they effectively identify and learn correlated patterns between input datasets and the
corresponding target values [20,21]. However, they are less subject to the constraints of
physical mechanisms [22,23]. Some studies have conducted wind speed and wave height
predictions by using machine learning models [24–27]. For example, Wang et al. [28]
proposed a wind speed prediction method that involved the use of a wavelet transform,
deep belief networks, and quantile regressions based on deep learning. Wei et al. [29] used
the backpropagation neural network algorithm to construct a wind speed prediction model.
This model was used to assess the prediction precision of typhoon routes for different
locations and periods. Mandal and Prabaharan [30] used recurrent neural networks to
construct a wave prediction model. Zhang and Dai [31] developed a conditional restricted
Boltzmann machine in a classical deep belief network by using one-dimensional (1D) data
obtained from buoys to predict the wave height. Wei and Cheng [32] proposed a model
based on deep recurrent neural networks for predicting the wind speed and wave height
during typhoons. They performed the predictions by using 1D ground observatory data.
Most of these studies adopted the data provided by ground stations. Few studies have
used CNNs to extract the wind field features of radar reflectivity images.

CNNs are used for image recognition, natural language processing, and video analysis.
LeCun [33] proposed the prototype of CNNs, as well as the concepts of weight sharing and
feature maps. LeNet (LeCun et al. [34]) is the first CNN with a complete structure. It com-
prises a convolutional layer, pooling layer, fully connected layer, and nonlinear activation
function. Krizhevsky et al. [35] proposed the AlexNet model to fix some of the defects of
CNNs, such as the max pooling method that was adopted to avoid missing features, and
the dropout method was introduced to prevent overfitting. Since AlexNet, various CNN
models, such as VGGNet (Simonyan and Zisserman [36]), GoogLeNet (Szegedy et al. [37]),
and ResNet (He et al. [38]), have been proposed. VGGNet is a classic CNN model. It stacks
CNNs through a small convolution process, which makes the model deeper. GoogLeNet
and ResNet are network structures based on VGGNet.

This study referred to the most commonly used CNN models, such as VGG16, and
designed variations of the VGGNet architectures for formulating wind–wave prediction
models using the image data from radar reflectivity. Moreover, the ground station data
and buoy data were added to involve the in-situ observation information. In general, a
limitation of the MLP architecture is that it assumes that all inputs and outputs are inde-
pendent of each other [39]. In order for an MLP to formulate a time-series forecast problem,
it is necessary to include some temporal information in the input data. One machine
learning approach used for time-series forecasts is the long short-term memory (LSTM)
neural network [40], which is a type of recurrent neural network (RNN) that can learn the
temporal dynamics of sequential data and address the vanishing gradient problems in
RNNs [41]. Although LSTM has made an increase in the accuracy in numerous fields, e.g.,
weather forecasting, it also takes a longer time to train a model [42]. Recently, the gated
recurrent unit (GRU) neural network [43,44], a variant of the LSTM. has fewer parameters
than the LSTM and accelerates the training and equivalent capability [45]. The difference
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between LSTM and GRU is that LSTM has three gates (i.e., input, output, and forget gates),
whereas GRU has two gates (i.e., reset and update gates). The GRU controls the flow
of information like the LSTM unit but without having to use a memory unit [46]. As a
result, GRU not only inherits the merits of the LSTM network but also greatly shortens the
training time [39,47]. Accordingly, this study employed a GRU neural network to learn the
temporal dynamics of time sequential data to accelerate the model computing time.

In this study, RNNs and CNNs were combined and then used as the modeling algo-
rithms. This combination of network architectures is able to capture time dependencies on
the features extracted by convolutional operations [48–51]. This hybrid model has been
applied in weather and hydrological prediction problems; for example, Zhu et al. [52] and
Shivam et al. [53] transformed wind speed data into wind speed intensity images and used
CNNs to capture the temporal and spatial features of wind fields. Moishin et al. [54] built a
hybrid deep learning algorithm integrating the predictive merits of CNN and the LSTM
network to forecast the future occurrence of flood events.

In conclusion, the major contributions of this study are as follows. This paper designed
CNNs combined with RNN-based GRUs models that enable us to fuse these 1D observation
data and 2D radar reflectivity image data for addressing the extraction of spatial features
using convolutional operations and time consistency using recurrent operations. In contrast,
past studies (such as references [29,32]) proposed a model based on RNNs for predicting
the wind velocity and wave height, which performed the predictions only using 1D
ground observatory data. Thus, they did not address the issue regrading fusing the 1D
in-situ observations and 2D spatial image data. Therefore, those models cannot extract
the temporal and spatial features from the 1D and 2D time-series data. Specifically, the
advanced machine learning techniques were performed in the work; that is, the CNNs
combined with GRUs were used to extract the temporal and spatial features of the wind
and waves from those in-situ ground data and radar reflectivity images.

2. Data Sources

The study area comprises the coastal waters of Keelung and Kaohsiung Ports. Ac-
cording to the CWB of Taiwan, Longdong Buoy is located in the coastal waters of Keelung
Port, and Liuqiu Buoy is located in the coastal waters of Kaohsiung Port (Figure 1). The
data of 21 typhoons that occurred between 2013 and 2019 were collected in this study from
the Typhoon Database of the CWB [55]. The typhoon data were collected starting from
2013, because the resolution and color appearance of the radar reflectivity images were
different from those of the radar images captured before 2013. Table 1 presents the data of
5 severe, 9 moderate, and 7 mild typhoons. According to the CWB, mild, moderate, and
severe typhoons are defined as those having maximum wind speeds of 17.2–32.6, 32.7–50.9,
and >51 m/s, respectively.

Table 1. Typhoons that occurred in the study area.

Typhoon Periods Intensity Typhoon Periods Intensity

Soulik 11–13 July 2013 Severe Nepartak 6–9 July 2016 Severe
Trami 20–22 August 2013 Mild Meranti 12–15 September 2016 Severe

Kong-rey 27–29 August 2013 Mild Malakas 15–18 September 2016 Moderate
Usagi 19–22 September 2013 Severe Megi 25–28 September 2016 Moderate
Fitow 4–7 October 2013 Moderate Nesat 28–30 July 2017 Moderate

Hagibis 14–15 June 2014 Mild Haitang 30–31 July 2017 Mild
Matmo 21–23 July 2014 Moderate Hato 20–22 August 2017 Moderate

Fung-wong 19–22 September 2014 Mild Guchol 6–7 September 2017 Mild
Noul 10–11 May 2015 Severe Talim 12–14 September 2017 Moderate

Chan-hom 9–11 July 2015 Moderate Mitag 29 September–1 October 2019 Moderate
Linfa 6–9 July 2015 Mild
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Hourly observatory data from ground stations and buoys, as well as radar reflectivity
images, were collected for the typhoons presented in Table 1. Data were collected from
the ground stations: Keelung Station and Kaohsiung Station. Data on the following
attributes were collected for the both stations: air pressure on the ground (Pair; hPa),
air pressure at sea level (Pasl G2; hPa), surface temperature (Tsfc; ◦C), surface dew point
temperature (Tsdp; ◦C), surface relative humidity (RHsfr; %), surface vapor pressure (Psfv;
hPa), average surface wind speed (WSavs; m/s), average surface wind direction (WDavs;
degree), maximum 10-min mean surface wind speed (WSmsf; m/s), maximum 10-min
mean surface wind direction (WDmsf; ◦), instantaneous maximum surface wind speed
(WSinm; m/s), instantaneous maximum surface wind direction (WDinm; ◦), hourly ground
precipitation (Rrlg; mm/h), and rainfall duration within 1 h (Drnf; h). In this study, these
attributes were defined as the ground meteorological dataset {G}. In addition, information
on the following marine attributes was collected from Longdong Buoy and Liuqiu Buoy:
average wind speed on the sea (V; m/s; defined as the marine wind dataset {V}) and
significant wave height (H; m; defined as the marine wave height dataset {H}). Figure 2
indicates that the maximal significant wave height caused by the typhoons at Longdong
Buoy and Liuqiu Buoy were different.

Figure 2. Maximal significant wave height for the typhoons at (a) Longdong Buoy and (b) Liuqiu Buoy.

For all the radar reflectivity images collected in this study (defined as the radar reflec-
tivity images {I}), the spatial resolution was 1024 × 1024 pixels. One pixel corresponds to
an actual distance of 0.7 × 0.7 km. The CWB of Taiwan has four S-band (10-cm wavelength)
weather surveillance radar (WSR) systems; this type of radar is also referred to as WSR-88D
(Weather Surveillance Radar—1988 Doppler) [56]. The radar product of CWB uses the
skill of a constant altitude plan position indicator (CAPPI). A CAPPI is calculated and
interpolated at different elevations (e.g., at scanning angles of 0.5◦, 1.4◦, 2.4◦, 3.4◦, 4.3◦,
6.0◦, 9.9◦, 14.6◦, and 19.5◦ at Hualien Radar). According to reference [57], the CAPPI is at
the height of 4 km for the radar product of CWB. Although the 6-min volume scanning
radar mosaic are produced, it is inconsistent with the 1-h sampling frequency of the in-situ
data obtained from the ground stations and buoys. Therefore, this study decided that the
radar products were collected one sample per hour.
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3. Model Development

In this study, deep-learning algorithms were used to construct wind and wave predic-
tion models. During the wind and wave prediction process, the radar reflectivity images
were combined with the data obtained from ground stations and buoys during typhoon pe-
riods. The wind and wave models used in this study were constructed in two stages. First,
wind speed prediction models were used to predict the wind speeds during the typhoon
period. Then, the wind speed prediction results were input to wave height prediction
models for wave height prediction. Moreover, we added a one-stage model case, which
directly predicts wave heights without wind speed estimations.

3.1. Model Cases

To deal with the various data, i.e., 1D in-situ observations and two-dimensional
(2D) images, this study designed models using convolutional deep learning to integrate
the 1D and 2D data. The designed models were the combinations of the CNNs (using
convolutional layers) and GRUs (using GRU layers) and used to extract the temporal
and spatial features of the wind and wave from those 1D and 2D data. In addition, the
combination of the CNNs and MLPs (using dense layers) was used as a benchmark model.
In summary, Table 2 lists all the designed model cases for wind speed (i.e., WIND-1 and
WIND-2) and wave height (i.e., WAVE-1 to WAVE-4) and their corresponding algorithms
and data used. Here, our proposed cases were WIND-2, WAVE-3, and WAVE-4, and the
other cases using past studies were WIND-1 [21,23,29], WAVE-1 [32], and WAVE-2 [32].
The network architectures of these model cases were described in the following sections.

Table 2. Designed cases with their corresponding skills and data and related referred studies.

Model Case Algorithm Input Data Referred Paper

WIND-1 MLP/GRU 1D in-situ {G,V} [21,23,29]
WIND-2 CNN + MLP/GRU 1D in-situ {G,V} and 2D image {I} Present

WAVE-1 MLP/GRU 1D in-situ {G,H} [32]
WAVE-2 MLP/GRU 1D in-situ {G,H} and predicted {V’} from WIND-1 [32]
WAVE-3 MLP/GRU 1D in-situ {G,H} and predicted {V’} from WIND-2 Present
WAVE-4 CNN + MLP/GRU 1D in-situ {G,H} and 2D image {I} Present

3.1.1. WIND-1 and WIND-2 Models

Two models—namely, WIND-1 and WIND-2—were constructed for wind speed
prediction in this study (Figure 3). The forecasting horizons ranged from 1 to 6 h. Therefore,
the target in WIND-1 and WIND-2 was the wind speeds of the buoy at (t + i)i=1,6. The
details of the WIND-based models were as follows.

• WIND-1 model

The meteorological dataset {G} and marine wind dataset {V} were used as the input
data for WIND-1 (Figure 3a). A dense/GRU layer was adopted for constructing WIND-1
(the settings of the model parameters; see Section 3.3.1). After the parameter training
process of stacked recurrent layers, the prediction results {V’} were obtained. For both
WIND-based models (i.e., WIND-1 and WIND-2), the attribute selection method, i.e., the
correlation-based criterion method, was used to select attributes from the {G} and {V}
datasets useful for wind speed prediction and set them as the input data. In addition, a
traditional linear regression-based method was applied to the WIND-1 model (using the
same inputs and model targets) and tested as a benchmark model (namely, WIND-1R).

• WIND-2 model
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Figure 3. Schematics of the wind prediction models: (a) WIND-1 and (b) WIND-2.

The datasets of {G} and {V}, as well as the reflectivity images {I}, were used as the
input data for WIND-2. Due to the requirement of processing 2D images, a CNN algo-
rithm combined with a dense/GRU algorithm was adopted to construct a WIND-2 model
(Figure 3b). For feature extraction from the images {I}, the VGGNet network structure
proposed by reference [36] is referred to in this study. The features are extracted from
VGG16, which consists of 13 convolution layers and three fully connected layers. However,
the fixed architectures of VGG16 cannot guarantee suitable networks for the studied data.
To identify the optimal network structures, we designed varied architectures that were
similar to VGG16 (namely, VGGNet variations). Figure 4a is the typical VGG16 architec-
ture where the input image size (an example of 64 × 64 pixels) is passed through a stack
of convolutional layers and max pooling layers. The developed VGGNet variations of
CNN5_1, CNN5_2, CNN5_3, CNN5_4, and CNN5_5 (Figure 4b–f) are modified by using
the architecture of VGG16. That is, the network structure in each of VGGNet variations
comprises five blocks of multiple convolutional layers and a pooling layer. CNN5_4, for
example, represents the structure with five blocks and four convolutional layers in each
block. The VGGNets (including VGG16 and its variations) were formulated in the study.
After feature extraction, effective feature maps can be obtained for model training [58]. For
the settings of the model parameters, see Section 3.3.2.

Subsequently, to integrate the 1D datasets {G} and {V} and 2D imagery {I}, the flatten
layer is first used to flatten the 1D and 2D data. Then, the concatenate layer is used to
combine the data into 1D arrays. Finally, the parameter training of dense/GRU layers
is conducted to obtain the wind speed predictions {V’}. To process the imagery {I}, the
original bitmaps are input into the WIND-2 model, and the original radar reflectivity
images are then cropped. Subsequently, the inputs were obtained from the different sizes
of the cropped reflectivity images. The cropping method involves using the buoy location
as the center and cropping the images outward into different sizes. Then, the most suitable
image sizes are identified for a specific station when a typhoon passes (for details of the
process, see Section 3.3.2).
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Figure 4. Architectures of the VGGNets of (a) classical VGG16 and the variations of (b) CNN5_1, (c) CNN5_2, (d) CNN5_3,
(e) CNN5_4, and (f) CNN5_5 (in the figure, the input image size is 64 × 64 pixels as an example).

3.1.2. WAVE-1 to WAVE-4 Models

Four wave prediction models—namely, WAVE-1, WAVE-2, WAVE-3, and WAVE-4—
were also constructed (Figure 5). Here, the targets of these WAVE-based models are the
wave heights of a buoy at (t + i)i=1,6. The details of WAVE-based models were described
as follows.

• WAVE-1 model

The meteorological dataset {G} and wave height dataset {H} were used as the input
data for WAVE-1 (Figure 5a). An RNN algorithm was adopted for constructing the WAVE-1
model. For all WAVE-based models, the attribute selection method was used to select the
attributes from the {G} and {H} datasets useful for wave height predictions and set them as
the input data. The parameter training of the stacked recurrent layers was conducted to
obtain the wave height predictions {H’}.

• WAVE-2 model using WIND-1 model outcomes

For the WAVE-2 model (Figure 5b), the wind speed prediction results {V’} are obtained
using WIND-1. These results are then fused with the {G}, {H}, and {V’} datasets by using
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the concatenate layer, and parameter training of the stacked recurrent layers is conducted
to obtain the wave height predictions {H’}.

• WAVE-3 model using WIND-2 model outcomes

For WAVE-3 (Figure 5c), the datasets of {G} and {H}, as well as the wind speed
prediction results {V’} of WIND-2, were used as the input data. As in WAVE-2, the
concatenate layer is used to fuse these data into 1D arrays, and parameter training is
conducted to obtain the {H’}.

• WAVE-4 model

The WAVE-4 prediction model conducts one-stage wave height predictions (Figure 5d).
The datasets of {G} and {H}, as well as images {I}, were used as the input data for WAVE-4.
Similarly, the VGGNets were applied and verified the suitable network structures in the
WAVE-4 model. In addition, the original reflectivity images were cropped, and the optimal
image sizes were determined for the wave height prediction (see Section 3.4).

Figure 5. Schematics of the wave height prediction models: (a) WAVE-1, (b) WAVE-2, (c) WAVE-3, and (d) WAVE-4.

3.2. Typhoon Data Division

Prior to modeling, the datasets were divided into three datasets. Three typhoons—
namely, Typhoons Usagi, Fung-wong, and Megi—had the respective intensities of severe,
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mild, and moderate and were selected to comprise the testing set for modeling. Typhoons
Haitang, Nesat, Nepartak, and Mitag (with the intensities of mild, moderate, and severe,
respectively) were used for the validation set. The other 14 typhoons were placed in the
training set (including typhoons Soulik and Meranti, which had the maximal wave heights
respectively at the Longdong Buoy and Liuqiu Buoy). In total, the training, validation, and
testing sets comprised 1056, 288, and 288 hourly records, respectively.

Figure 6 shows the radar reflectivity images of the routes of the testing set (typhoons
Usagi, Fung-wong, and Megi) when they landed or were closest to landing. Figure 6a,d
reveals that Typhoon Usagi moved westward through the Luzon Strait, which is the strait
between Taiwan and Luzon Island of the Philippines. Figure 6b,e indicates that Typhoon
Fung-wong passed through the east coast of Taiwan moving from south to north. For
Typhoons Usagi and Fung-wong, large reflectivity dBZ values (decibels relative to the
reflectivity factor (Z)) and extremely high significant wave heights were observed in the
areas near Liuqiu Buoy. The unit dBZ is a logarithmic dimensionless unit used in radar
imaging. Moreover, Figure 6c,f indicates that Typhoon Megi landed on the northeastern
coast of Taiwan and that large dBZ values were observed in the areas near Longdong
Buoy in the radar reflectivity images. These areas also had extremely large significant
wave heights.

Figure 6. Paths of (a) Typhoon Usagi in 2013, (b) Typhoon Fung-wong in 2014, and (c) Typhoon
Megi in 2016, as well as the radar reflectivity imagery of (d) Typhoon Usagi at 15:00 local standard
time (LST) on 21 September 2013, (e) Typhoon Fung-wong at 15:00 LST on 21 September 2014, and
(f) Typhoon Megi at 14:00 LST on 27 September 2016.

3.3. Modeling for Wind Predictions

The developed models were implemented using the open-source scikit-learn and
Keras libraries in Python 3.7 (Python Software Foundation, Wilmington, DE, USA [59]).

3.3.1. Construction of WIND-1 Model

To construct a WIND-1 model, the settings of the dense/GRU layers were as follows:
activation function = rectified linear units (ReLU), the dropout rate of the dropout layer = 0.25,
loss function = mean squared errors, metrics = root mean squared errors (RMSE), the
epoch sizes = 500, and optimizer = adaptive moment estimation (Adam). The min–max
normalization was used to rescale the range of features in (0, 1). The Adam optimizer
was used to learn the learning rate. Adam is a first-order optimization algorithm that can
replace the traditional stochastic gradient descent algorithm, and it can adapt the learning
rate to the parameters [60]. The initial learning rate was set to 0.01. The hyperparameters of
the number of dense/GRU layers and the number of neurons in a dense/GRU layer were
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calibrated. The optimal parameter combinations with the minimal RMSEs were searched.
The RMSE is defined as follows:

RMSE =

√√√√∑Nk
i=1

(
yobs

k,i − ŷpre
k,i

)2

Nk
(1)

where Nk is the total number of data points (i.e., the records of wind speed and wave
height) at buoy k, and yobs

k,i and ŷpre
k,i are the observation and prediction values for the ith

data point at buoy k, respectively. The effect of each error on the RMSE is proportional to
the size of the squared error. It should be noted that it is influenced heavily by large errors
compared to smaller errors [61].

The calibration range for the number of dense/GRU layers was 1–8, and the calibration
range for the number of neurons in a dense/GRU layer was 20–260. Table 3 presents the
calibration results of the optimal parameters for a validation set using all the possible
combinations of these parameters.

Table 3. Calibration results of the WIND-1 model for the number of dense/GRU layers and the number of neurons in a
dense/GRU layer at Longdong Buoy and Liuqiu Buoy.

Model Buoy
Lead Time (h)

t + 1 t + 3 t + 6

Parameters with Metrics Layers, Neurons RMSE (m/s) Layers, Neurons RMSE (m/s) Layers, Neurons RMSE (m/s)

WIND-
1_dense

Longdong 1, 100 1.417 2, 130 2.018 2, 140 2.812
Liuqiu 1, 70 1.763 2, 80 2.735 2, 100 3.884

WIND-
1_GRU

Longdong 1, 140 1.315 1, 150 1.803 2, 150 2.570
Liuqiu 1, 80 1.631 1, 90 2.576 1, 110 3.532

3.3.2. Construction of WIND-2 Model

When constructing the WIND-2 models, the pooling layers were passed five blocks
through the architectures the VGGNet variations (Figure 4b–f). For the input images of the
VGGNet variations, each time the pooling layers were passed through, the original images
were shrunk to half their size. After five passes, for example, using CNN_5_4 architecture,
the images were shrunk to 1/32nd their original size. Consequently, 32 pixels were used as
the unit to crop the radar reflectivity images for the subsequent model calculations. The
cropped images of four sizes: 64 × 64, 96 × 96, 128 × 128, and 160 × 160 pixels were used
in this study. The original radar reflectivity images (1024 × 1024 pixels) were cropped into
squares with the buoys as the center. The upper-left corners of the images were used as
the origin to measure the locations of the buoys. The pixel location of the Longdong Buoy
was x = 630 and y = 286. The pixel location of the Liuqiu Buoy was x = 420 and y = 661.
The locations of the two buoys were used as centers to crop the images into different sizes.
Figure 7, for example, depicts the spatial ranges covered by the four image sizes when
Longdong Buoy was used as the center for the image cropping of 64, 96, 128, and 160 pixels
for Typhoon Megi.

Figure 7. Cropped radar reflectivity images for Typhoon Megi.
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The cropped images were labeled when used as model inputs of VGGNet variations.
According to the legend of dBZ (Figure 7), there were 17 colors (where the dBZ ranged
from −10 to 75 dBZ, divided by 5 dBZ). Therefore, the number of categories was 17. These
cropped images were then encoded into RGB channels (i.e., red, green, and blue), and
pixel values at each channel were integer values between 0 and 255. The pixel-based RGB
representation of an image was then used as the model input.

When running the VGGNets for the WIND-2 model, the parameter settings of the con-
volutional and pooling layers were as follows: kernel size = (5, 5), padding method = same,
max pooling with pool size = (2, 2), the activation function = ReLU, and the dropout rate of
the dropout layer = 0.25. The number of filters = 64, 128, 256, 512, and 512, respectively, in
blocks 1–5 of the multiple convolutional layers. After flattening the 1D attributes and 2D
feature maps, both flattened arrays were combined by using a concatenate layer. Subse-
quently, the dense/GRU layer environmental setups (i.e., activation function, dropout rate,
loss function, metrics, and optimizer) are the same as in the WIND-1 model. The epoch
sizes in WIND-2 are the epoch sizes = 300.

The structure types of VGGNets; the cropped image sizes (64, 96, 128, and 160 pix-
els); the number of dense/GRU layers (a range of 1–5); and the number of neurons in
a dense/GRU layer (a range of 1000–3500) were calibrated. Table 4 reveals the optimal
parameter combinations for Longdong Buoy and Liuqiu Buoy.

Table 4. Calibration results of the WIND-2 model for the structure types of the VGGNets, cropped image sizes, the number
of GRU layers, and the number of neurons in a dense/GRU layer at Longdong Buoy and Liuqiu Buoy.

Model Buoy
Lead Time (h)

t + 1 t + 3 t + 6

Parameters with Metrics Structure,
Size

Layers,
Neurons

RMSE
(m/s)

Structure,
Size

Layers,
Neurons

RMSE
(m/s)

Structure,
Size

Layers,
Neurons

RMSE
(m/s)

WIND-
2_dense

Longdong VGG16, 96 3, 2300 1.312 CNN5_3, 96 3, 2600 1.401 CNN5_4, 128 4, 2500 2.473
Liuqiu VGG16, 128 3, 1800 1.327 CNN5_3, 128 4, 2000 1.869 CNN5_3, 128 4, 2400 3.013

WIND-
2_GRU

Longdong CNN5_3, 96 3, 2600 1.103 CNN5_3, 96 3, 2700 1.384 CNN5_4, 128 3, 3000 2.112
Liuqiu CNN5_3, 128 3, 2400 1.292 CNN5_3, 128 3, 2500 1.801 CNN5_4, 128 4, 2100 2.786

3.4. Modeling for Wave Predictions

This section describes the modeling conducted for the wave prediction. First, attributes
with moderate or strong correlations were selected as the wave height attributes. Thus,
10 attributes were selected for the Longdong Buoy (Pair, Pasl, Tsfc, Tsdp, Psfv, WSavs, WSmsf,
WSinm, Drnf, and H) (with the corresponding correlation coefficients = 0.384, 0.385, −0.488,
−0.474, −0.476, 0.577, 0.605, 0.636, 0.403, and 1), and 6 attributes were selected from
Liuqiu Buoy (Pair, Pasl, WSmsf, WSinm, Drnf, and H) (with the corresponding correlation
coefficients = −0.346, −0.346, 0.319, 0.377, 0.333, and 1).

The wave height prediction models were constructed according to WAVE-1 and
WAVE-4. The model environmental setups of WAVE-1, WAVE-2, and WAVE-3 were the
same as in WIND-1. A trial-and-error method was used to find the optimal hyperparam-
eter combinations. The calibration range for the number of dense/GRU layers was 1–8,
and the calibration range for the number of neurons in a dense/GRU layer was 20–260.
Table 5 presents the calibration results of the optimal parameters using a validation set for
both buoys.

Moreover, the model setups of WAVE-4 were the same as in WIND-2. The structure
types of the VGGNets, the cropped image sizes, the number of dense/GRU layers, and the
number of neurons in a dense/GRU layer were determined. The calibration range for the
cropped image sizes = 64, 96, 128, and 160 pixels; the number of dense/GRU layers (a range
of 1–5); and the number of neurons in a dense/GRU layer (a range of 1000–3500) were
calibrated. Table 6 presents the optimal parameter results regarding the structure types,
the cropped image sizes, the number of dense/GRU layers, and the number of neurons in
a dense/GRU layer for both buoys.
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Table 5. Calibration results of the WAVE-1, WAVE-2, and WAVE-3 models for the number of dense/GRU layers and the
number of neurons in a dense/GRU layer at Longdong Buoy and Liuqiu Buoy.

Model Buoy
Lead Time (h)

t + 1 t + 3 t + 6

Parameters with Metrics Layers, Neurons RMSE (m) Layers, Neurons RMSE (m) Layers, Neurons RMSE (m)

WAVE-
1_dense

Longdong 2, 80 0.594 3, 100 0.961 3, 80 1.301
Liuqiu 1, 60 0.481 3, 110 0.868 3, 110 1.418

WAVE-
1_GRU

Longdong 1, 90 0.573 2, 130 0.903 2, 100 1.187
Liuqiu 1, 60 0.443 2, 90 0.842 2, 120 1.202

WAVE-
2_dense

Longdong 2, 100 0.456 2, 120 0.831 4, 100 0.991
Liuqiu 2, 60 0.368 3, 110 0.887 3, 120 1.238

WAVE-
2_GRU

Longdong 1, 110 0.447 2, 90 0.802 2, 100 0.902
Liuqiu 1, 70 0.350 2, 100 0.868 2, 110 1.021

WAVE-
3_dense

Longdong 2, 120 0.433 3, 90 0.782 4, 120 0.955
Liuqiu 2, 100 0.372 3, 100 0.822 4, 110 0.979

WAVE-
3_GRU

Longdong 2, 100 0.401 3, 100 0.748 3, 170 0.928
Liuqiu 1, 120 0.348 2, 110 0.786 3, 180 0.948

Table 6. Calibration results of the WAVE-4 model for the structure types of the VGGNets, cropped image sizes, the number
of dense/GRU layers, and the number of neurons in a dense/GRU layer at Longdong Buoy and Liuqiu Buoy.

Model Buoy
Lead Time (h)

t + 1 t + 3 t + 6

Parameters with Metrics Structure,
Size

Layers,
Neurons RMSE (m) Structure,

Size
Layers,

Neurons RMSE (m) Structure,
Size

Layers,
Neurons

RMSE
(m)

WAVE-
4_dense

Longdong CNN5_3, 96 2, 2200 0.358 CNN5_4, 96 4, 1500 0.746 CNN5_4, 128 4, 1600 0.876
Liuqiu VGG16, 96 2, 1900 0.321 CNN5_3, 128 3, 1900 0.723 CNN5_4, 128 4, 1500 0.941

WAVE-
4_GRU

Longdong CNN5_4, 96 3, 2100 0.347 CNN5_3, 128 4, 1400 0.728 CNN5_4, 128 4, 1700 0.844
Liuqiu CNN5_4, 128 2, 2300 0.309 CNN5_3, 128 3, 2100 0.705 CNN5_4, 128 4, 1800 0.919

Figures A1 and A2 in Appendix A depict the learning curves of the training stage
and validation stage in the final optimal models for a lead time = 1 h, 3 h, and 6 h at both
buoys. Figures A1 and A2 show that the RMSE decreased as the epoch number increased
using a training set. The training process is stopped after a certain number of epochs, or
the metrics on the validation dataset increased obviously as compared to the metric at
the prior epoch to avoid model overfitting. Since the results of Tables 3–6 illustrate that
WIND-based and WAVE using GRU layers exhibited superior RMSE performances to those
using dense layers, this study determined to use the GRU layers as the model structures
for learning the temporal dynamics of the time sequences of the inputs in the WIND-based
and WAVE-based models.

4. Simulations

In this section, the testing set, i.e., Typhoons Usagi, Fung-wong, and Megi, were
employed to simulate using the WIND-based and WAVE-based models and then evaluate
the performance levels from various model outcomes.

4.1. Wind Prediction Outcomes

The wind velocities of the typhoons considered in this study were simulated to assess
the developed wind velocity models. Figures 8 and 9 display the wind speed prediction
results for Longdong Buoy and Liuqiu Buoy, respectively.
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Figure 8. Simulation results of WIND-1R, WIND-1, and WIND-2 for the Longdong Buoy: (a–c) lead times of 1, 3, and 6 h
for Typhoon Usagi, respectively; (d–f) lead times of 1, 3, and 6 h for Typhoon Fung-wong, respectively; (g–i) lead times of 1,
3, and 6 h for Typhoon Megi, respectively.

Figure 9. Simulation results of WIND-1R, WIND-1, and WIND-2 for Liuqiu Buoy: (a–c) lead times of 1, 3, and 6 h for
Typhoon Usagi, respectively; (d–f) lead times of 1, 3, and 6 h for Typhoon Fung-wong, respectively; and (g–i) lead times of
1, 3, and 6 h for Typhoon Megi, respectively.
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Typhoon Usagi passed through the Luzon Strait without landing. The terrain did not
interfere with this typhoon to a considerable extent; thus, the eye of the typhoon was still
extremely obvious (Figure 6d). Consequently, a maximum wind speed of up to 18.9 m/s
was observed at Liuqiu Buoy. The typhoon route of Fung-wong was near Liuqiu Buoy
(Figure 6b), which caused high wind speeds at Liuqiu Buoy (up to 17.5 m/s). Then, it was
northward along the eastern coast of Taiwan. Since Typhoon Fung-wong was possibly
affected by terrain factors, it caused high wind speeds at Longdong Buoy (up to 12.5 m/s)
lower than at Liuqiu Buoy. The center of Typhoon Megi passed through Central Taiwan.
Thus, the influential radius of the typhoon circulation (approximately 250 km, Figure 6f)
caused a maximum wind speed of 18.4 m/s at Longdong Buoy and 21.2 m/s Liuqiu Buoy.

The results depicted in Figures 8 and 9 indicate that the simulated wind speed values
obtained with the WIND-2 model were closer to the observation values than those obtained
with the WIND-1R and WIND-1 models. Thus, WIND-2 is superior to WIND-1R, and
WIND-1 determines the wind speed trend.

Figure 10 shows the mean absolute error (MAE) and RMSE for the predicted wind
speeds using three test typhoons at Longdong Buoy and Liuqiu Buoy. The MAE is defined
as follows:

MAE =
1

Nk

Nk

∑
i=1

∣∣∣yobs
k,i − ŷpre

k,i

∣∣∣ (2)

Figure 10. MAE and RMSE values for the wind velocity predictions: (a) MAE for Longdong Buoy,
(b) MAE for Liuqiu Buoy, (c) RMSE for Longdong Buoy, and (d) RMSE for Liuqiu Buoy.

The MAE is an unbiased statistic for measuring the predictive capability of a model.
The results indicated that the errors in the simulated wind speed values increased with
an increase in the lead time from 1 to 6 h. The MAE and RMSE of the prediction values of
WIND-2 were inferior to those of WIND-1R and WIND-1.

4.2. Wave Prediction Outcomes

The wave height of the test typhoons was also simulated to assess the performance of
the four wave height prediction models. Figures 11 and 12 show the wave height prediction
results for Longdong Buoy and Liuqiu Buoy, respectively. Typhoon Usagi passed through
the Luzon Strait and caused a maximum wave height of 7.4 m at Liuqiu Buoy (Figure 12a).
Typhoon Fung-wong was northward along the eastern coast of Taiwan and caused a
maximum wave height of 3.4 m at Longdong Buoy (Figure 11d) and 8.4 m at Liuqiu Buoy
(Figure 12d). In addition, Typhoon Megi passed through Central Taiwan and influenced
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almost all the regions of Taiwan. It caused a maximum wave height of 12.5 m at Longdong
Buoy (Figure 11g) and 5.6 m at Liuqiu Buoy (Figure 12g).

Figure 11. Results of WAVE-1, WAVE-2, WAVE-3, and WAVE-4 for Longdong Buoy: (a–c) lead times of 1, 3, and 6 h for
Typhoon Usagi, respectively; (d–f) lead times of 1, 3, and 6 h for Typhoon Fung-wong, respectively; and (g–i) lead times of
1, 3, and 6 h for Typhoon Megi, respectively.

Figure 12. Results of WAVE-1, WAVE-2, WAVE-3, and WAVE-4 for Liuqiu Buoy: (a–c) lead times of 1, 3, and 6 h for Typhoon
Usagi, respectively; (d–f) lead times of 1, 3, and 6 h for Typhoon Fung-wong, respectively; and (g–i) lead times of 1, 3, and
6 h for Typhoon Megi, respectively.
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The results of this study indicated that WAVE-1 and WAVE-4 could determine the
wave height trends at Longdong Buoy and Liuqiu Buoy for a lead time of 1 h. For lead
times of 3 and 6 h, the four wave height prediction models exhibited different prediction
efficacies. The prediction values of the WAVE-1 model exhibited high errors. The prediction
values of the WAVE-2, WAVE-3, and WAVE-4 models were closer to the observation values
than those of WAVE-1. Figure 13 displays the MAE and RMSE values of the predicted wave
height results for the two buoys. The results indicated that the wave height simulation
error increased for both buoys, with an increase in the lead time from 1 to 6 h. WAVE-1
exhibited the highest MAE and RMSE values, whereas WAVE-4 exhibited the smallest
MAE and RMSE values.

Figure 13. MAE and RMSE values for the wave height predictions: (a) MAE for Longdong Buoy,
(b) MAE for Liuqiu Buoy, (c) RMSE for Longdong Buoy, and (d) RMSE for Liuqiu Buoy.

4.3. Overall Performance for Predicting the Wind Velocity and Wave Height

The coefficient of efficiency (COE) and correlation coefficient (CORR) were used in
this study to determine the overall prediction performance of the developed wind speed
and wave height models. The COE and CORR are, respectively, expressed as follows:

COE = 1 −
∑Nk

i=1

(
yobs

k,i − ŷpre
k,i

)2

∑Nk
i=1

(
yobs

k,i − yobs
)2 (3)

CORR =
∑Nk

i=1

(
yobs

k,i − yobs
)(

ŷpre
k,i − ŷpre

)
√

∑Nk
i=1

(
yobs

k,i − yobs
)2

∑Nk
i=1

(
ŷpre

k,i − ŷpre
)2

(4)

where yobs and ŷpre are the means of all the observation values and prediction values,
respectively. The larger COE and CORR values typically indicate favorable performance
levels. The accurate model results should have COE and CORR values close to 1.
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Figure 14 displays the COE and CORR results for the developed wind speed and wave
height prediction models. The results indicated that (1) WIND-2 exhibited higher COE
and CORR values than WIND-1R and WIND-1 for both buoys in the lead time from 1 to
6 h, and (2) WAVE-4 exhibited the highest COE and CORR values for both buoys, whereas
WAVE-1 exhibited the lowest COE and CORR values in the lead time from 1 to 6 h.

Figure 14. COE and CORR values of the wind speed predictions at (a) Longdong Buoy and (b) Liuqiu
Buoy and those of the wave height predictions at (c) Longdong Buoy and (d) Liuqiu Buoy.

4.4. Evaluation of the Classification for Wind Velocity and Wave Height

In this section, this study proceeded to calculate the predictive error for the classifica-
tions of the wind velocity and wave height. According to the wind and wave classifications
provided by the CWB of Taiwan [62], winds can be classified into three categories: winds
with a velocity less than 8.0 m/s were low winds, those with a velocity between 8.0 m/s and
10.7 m/s were moderate winds, and those with a velocity higher than 10.7 m/s were high
winds. Then, the waves were classified into the three categories: waves with a height less
than 1.5 m were low waves, those with a height between 1.5 m and 2.5 m were moderate
waves, and those with a height higher than 2.5 m were high waves. To further analyze the
different wind and wave strengths, the criterion BIAS was estimated using

BIAS =
1

Nk

Nk

∑
i=1

yobs
k,i − ŷpre

k,i (5)

When the observation is greater than the forecast, the BIAS value is positive, indicating
under-forecasting. The inverse, resulting in a negative BIAS, indicates over-forecasting.
As shown in Figures 15 and 16, the different wind and wave strengths were evaluated by
calculating the average BIAS, COE, and COREE scores of the lead times = 1, 3, and 6 h for
the model cases using three test typhoons at Longdong Buoy and Liuqiu Buoy. The results
indicated the following.
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Figure 15. Metrics of the wind speed classifications at Longdong Buoy: (a) BIAS, (b) COE, and (c) CORR and those at
Liuqiu Buoy: (d) BIAS, (e) COE, and (f) CORR.

Figure 16. Metrics of the wave height classifications at Longdong Buoy: (a) BIAS, (b) COE, and (c) CORR and those at
Liuqiu Buoy: (d) BIAS, (e) COE, and (f) CORR.

For the wind velocity classifications, the BIAS scores (Figure 15a,d) revealed the pre-
dicted wind velocity overestimated in the low level for WIND-1R, WIND-1, and WIND-2
at both buoys and underestimated in the moderate and high levels. The greater bias is at
the high level compared to those at the low and moderate levels, which means models
underestimate at higher wind speeds. For the COE and CORR scores (Figure 15b,c,e,f),
WIND-2 yields higher COE and CORR scores compared to WIND-1R and WIND-1 for all
categories. Comparing the three metrics of the model cases, WIND-2 exhibits satisfactory
results in the three categories of wind velocity. Furthermore, for the wave height classi-
fications, the BIAS values for all the cases were positive values, which indicated that the
wave heights were underdetermined at the three categories. According to Figure 16b,e, the
results of the COE for both buoys exhibited a relatively low COE for small wave heights
and relatively high for moderate and high levels. Moreover, comparing all the model cases,
WAVE-4 provides promising results regarding the three categories of wave heights.
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4.5. Discussion

The developed wind speed prediction models were WIND-1 and WIND-2. Data
from the ground stations and buoys were used as the input data for WIND-1. Moreover,
data from the ground stations and buoys, as well as radar reflectivity images, were used
as the input data for WIND-2. The results indicated that the efficiency of WIND-2 was,
respectively, 13.01% and 9.17% higher than those of WIND-1R and WIND-1 for Longdong
Buoy. Furthermore, the efficiency of WIND-2 was, respectively, 15.11% and 9.72% higher
than those of WIND-1R and WIND-1 for Liuqiu Buoy. Overall, WIND-2 exhibited a superior
prediction performance to WIND-1R and WIND-1. WIND-2 had a higher efficiency than
WIND-1R and WIND-1, because the combination of RNNs and CNNs of WIND-2 could
extract wind field features from the radar reflectivity images more effectively than those of
WIND-1R and WIND-1 could.

WAVE-1 was used as the benchmark model. The results indicated that the efficiency of
WAVE-4 was 15.36% higher than that of WAVE-1 for Longdong Buoy. The COE efficiencies
of WAVE-3 and WAVE-2 were 12.50% and 9.69% higher than that of WAVE-1 for Longdong
Buoy, respectively. The efficiency of WAVE-4 was 15.10% higher than that of WAVE-1
for Liuqiu Buoy. Moreover, the efficiencies of WAVE-3 and WAVE-2 were 11.48% and
8.92% higher, respectively, than that of WAVE-1 for Liuqiu Buoy. Overall, the increased
efficiencies of WAVE-2 and WAVE-3 were contributed to by the wind speed predictions of
WIND-1 and WIND-2, respectively. However, only the wind speed information of single
points (the buoys) was used. Thus, the efficiency of the WAVE-1–WAVE-3 models was
lower than that of WAVE-4, which directly used radar reflectivity images. These images
can provide additional information on spatial changes.

The prediction results obtained for Longdong Buoy and Liuqiu Buoy were compared.
The COE efficiency of the WIND-2 model was 2.9% higher for Liuqiu Buoy than for
Longdong Buoy. The efficiency of the WAVE-4 model was 2.7% higher for Liuqiu Buoy
than for Longdong Buoy. The speculated reason for the results is that Longdong Buoy is
influenced by the seabed topography. The water is shallower at Longdong Buoy (30 m)
than at Liuqiu Buoy (78 m), whereas Longdong Buoy is closer to the land than Liuqiu
Buoy. Moreover, the influence of the topography makes it difficult to predict the wind
and wind-induced waves. This might be due to the mountain-induced flow deflections
being mainly confined to the lower-level vortex, and the typhoon’s passage induced a
mean cyclonic circulation pattern around the terrain of the Central Mountain Range of
Taiwan [27]. In other words, the steep and high terrain causes typhoon track deflections
and structure modifications. Thus, the typhoon route and land topography may have
influenced the wind velocity and wave height predictions for the two buoys. The winds
and waves at a buoy are stronger if the buoy is located at the windward side of the typhoon
circulation than if the buoy is located at the leeward side.

In order to understand the computational cost of each model during the training phase,
Figure 17 displays the relationships among the RMSE prediction errors, the total numbers
of trainable variables, and the WIND-based and WAVE-based model cases. The figure indi-
cates that the prediction errors decrease in the model cases of WIND-2 (Figure 17a,b) and
WAVE-4 (Figure 17c,d) substantially, whereas the numbers of trainable variables of WIND-2
and WAVE-4 increased considerably. This is because the increased hyperparameters were
used to extract the spatial and temporal features from the wind and wave data when the
convolutional layers and GRU layers are conducted in modeling. Although WIND-2 and
WAVE-4 produced superior prediction results compared to the other models (i.e., WIND-1,
WAVE-1, WAVE-2, and WAVE-3), they required more computation costs for identifying the
best set of hyperparameters in the learning phase during the model constructions.
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Figure 17. Computation cost among the model cases for WIND-based models at (a) Longdong Buoy
and (b) Liuqiu Buoy and WAVE-based models at (c) Longdong Buoy and (d) Liuqiu Buoy.

5. Conclusions and Suggestion

In this study, real-time wind and wave changes in coastal waters during typhoon
periods were predicted. The obtained wind and wave information can be used to prevent
damage to infrastructures in international ports. This study used the ground station data,
buoy data, and hourly radar reflectivity images collected by CWB ground stations. RNN-
based GRUs and CNNs were combined and used to construct wind speed models. Then,
the wind speed prediction results of the wind speed models were used to construct wave
height prediction models. In this study, the data of 21 typhoons that affected Taiwan
between 2013 and 2019 were collected. The wind speed and significant wave height in
the coastal waters of the Keelung and Kaohsiung Ports over the lead times of 1–6 h were
predicted and analyzed. The data of three test typhoons were analyzed: Typhoons Usagi,
Fung-wong, and Megi.

The results indicated that, first, WIND-2 has a superior wind speed prediction per-
formance compared to WIND-1, where WIND-2 can be used to identify the temporal
and spatial changes in wind speeds using ground station data and reflectivity images.
Second, WAVE-4 has the optimal wave height prediction performance, followed by WAVE-
3, WAVE-2, and WAVE-1. The results of WAVE-4 revealed using the designed models
using these data directly yielded optimal predictions of wind-based wave heights. Overall,
the results indicated that the designed models could solve problems regarding typhoon-
induced winds and waves prediction with high accuracy, because the combination of
CNNs and GRUs is able to extract the features by convolutional operations and capture
time dependencies from these time sequence data.

The recommendations of this study are as follows. First, because most of current
methods for the predictions of wind and waves use numerical model (e.g., WRF and
WAVEWATCH series), those outcomes from numerical models could be compared and
considered as inputs used in our presented models. The influence of wind fields and terrain
effects could be considered for more detail. For example, Wei [21] used the National Center
for Environmental Prediction final reanalysis data on 1-degree by 1-degree resolution as
the initial field and boundary conditions for simulating a WRF model and suggested that
the interpolation method could be used to obtain the spatiotemporal sequences of the wind
field effectively. Second, as mentioned earlier, this work collected radar reflectivity images
with a sample time of one hour. However, the 6-min volume scanning radar data was
recommended to be used in the training network for increasing the number of samples. It
should be noticed that, when using a sample time of 6 min, the data of the ground station
and buoy should be processed by interpolation into six time frames within 1 h.
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Third, different remote-sensing images are recommended to be used in the modeling
process. The parameters of radar reflectivity are associated with various acquisition
limitations; for example, the radar coverage is limited due to terrain complexity and the
shading problem [63]. Remote-sensing satellite images are recommended to be used in
wind and wave prediction. It should be noticed that the wind from satellites in which
the signals are observed from the clouds on top. Thus, the radar reflectivity signals are
observed from above the ground to the middle level of the clouds, which is quite different.

Fourth, although the radar reflectivity images were used, the radar reflectivity image,
which is a quantified representation of the reflectivity data, accuracy is lower than the
original radar-based data (including reflectivity, radial velocity, and spectral width). Thus,
the original radar-based data are recommended to be used as model inputs and increase
the achievement of the favorable prediction efficiency.
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Appendix A. Learning Curves of Training Stage and Validation Stage in the Final
Optimal Models

Figure A1. Learning curves of the training stage and validation stage using the optimal parameters
combination of WIND-2_GRU for Longdong Buoy: (a) t + 1, (b) t + 3, and (c) t + 6 and for Liuqiu
Buoy: (d) t + 1, (e) t + 3, and (f) t + 6.

https://rdc28.cwb.gov.tw/
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Figure A2. Learning curves of the training stage and validation stage using the optimal parameters
combination of WAVE-4_GRU for Longdong Buoy: (a) t + 1, (b) t + 3, and (c) t + 6 and for Liuqiu
Buoy: (d) t + 1, (e) t + 3, and (f) t + 6.
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