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Abstract: Deep neural networks (DNNs), especially those used in computer vision, are highly vul-
nerable to adversarial attacks, such as adversarial perturbations and adversarial patches. Adversarial
patches, often considered more appropriate for a real-world attack, are attached to the target object
or its surroundings to deceive the target system. However, most previous research employed ad-
versarial patches that are conspicuous to human vision, making them easy to identify and counter.
Previously, the spatially localized perturbation GAN (SLP-GAN) was proposed, in which the per-
turbation was only added to the most representative area of the input images, creating a spatially
localized adversarial camouflage patch that excels in terms of visual fidelity and is, therefore, difficult
to detect by human vision. In this study, the use of the method called eSLP-GAN was extended
to deceive classifiers and object detection systems. Specifically, the loss function was modified for
greater compatibility with an object-detection model attack and to increase robustness in the real
world. Furthermore, the applicability of the proposed method was tested on the CARLA simulator
for a more authentic real-world attack scenario.

Keywords: adversarial patch; generative adversarial networks; camouflage

1. Introduction

In addition to their use for computer vision tasks [1], such as facial recognition, object
detection [2], and image segmentation, deep neural networks (DNNs) are known for their
various potential applications. In particular, the use of DNNs have been found in lane line
detection and traffic sign recognition in self-driving cars [3–5], Unmanned Aerial Vehicle
(UAV)-based monitoring system [6], and even to the usage in the emerging technologies and
framework such as big data [7] and blockchain [8] in the industrial network infrastructure.
Despite their promising progress, recent research has shown examples of attacks on various
intelligent systems [9,10]. In particular, it is known that DNNs included in those systems
are vulnerable to adversarial attacks, which lead deep learning models to make incorrect
predictions with high confidence.

Adversarial examples are typically created by adding a modicum of noise to the
original image. The majority of early research efforts have concentrated on adversarial
examples against image classification in digital environments [11–13]. Brown et al. [14]
proposed a printable universal adversarial patch to deceive a classifier in the physical
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world. The performance of the classifier was degraded by attaching adversarial patches to
a physical object.

However, these adversarial patches could be easily identified by human vision because
they prioritized attack performance rather than visual fidelity. Liu et al. [15] proposed a
perceptual-sensitive GAN (PS-GAN) for generating adversarial patches through generative
adversarial networks (GANs) that could learn and approximate the distribution of original
instances. Utilizing a patch-to-patch translation and an attention mechanism, the PS-GAN
simultaneously improved the visual fidelity and the capability of the adversarial patch to
attack. Despite the considerable effort, adversarial patches generated by a PS-GAN retain
an unnatural appearance and, thus, are conspicuous to human vision.

Object detection models have also emerged as critical components of computer vision
systems for real-time recognition tasks. Recent studies have revealed that object detection
models are vulnerable to adversarial attacks. Eykholt et al. [16] proposed a disappearance
attack that caused physical objects to be ignored by a detector in the scene and a creation at-
tack to detect nonexistent objects by using posters or stickers. Zhao et al. [17] implemented
adversarial examples that can attack detectors within distances varying from 1 to 25 m and
angles from −60◦ to 60◦. However, these object detection model attack methods also have
low visual fidelity, similar to the case of the classification model.

Attacks on object detection models are more challenging than those on classification
models. While the classifiers focus only on a single label, object detectors would consider
multiple labels and the relative positions of the detectors and objects. In addition, because
the objects move dynamically, attackers must consider their distance, viewing angle, and
illumination.

In our previous work, we proposed a spatially localized perturbation GAN (SLP-
GAN) [18] that generated a spatially localized perturbation as an adversarial patch to
attack classifiers. It had the advantage that it could generate visually natural patches
while maintaining a high attack success rate. The patch region to attach to a target object
was extracted from the most representative area of the target object using the Grad-CAM
algorithm [19] to improve the ability to attack. However, there are two main limitations
of SLP-GAN. First, SLP-GAN can attack only classification models, not object detection
models. Second, SLP-GAN has a rather weak attack performance in the physical world
because it does not consider the various physical world transformations.

In this paper, we propose an extended spatially localized perturbation GAN (eSLP-
GAN) that can attack both classifiers and detectors. We modify the loss function of
SLP-GAN to enable attack on the object detection models. We also improve the robust-
ness of adversarial patches by applying terms that consider various transformations and
printability in the real-world scenario.

2. Related Work

Attacks on deep neural networks (DNNs) have raised concerns for many researchers
owing to their potentially fatal impact. Even a slight perturbation added to an image may
cause the computer vision model to behave unexpectedly. When successful, this attack type
has been proven to disrupt a wide range of computer vision tasks, ranging from simple
image classification to object detection models. Recent works have identified the risks
posed even in the real-world case, such as adversarial patches being attached to physical
objects. In this section, we provide an overview of the state-of-the-art image classification
and object detection models that are evaluated using the proposed method. Then, we
provide the overview of related adversarial attacks in both the digital and physical domains,
as well as generative adversarial networks (GANs), which have recently gained interest for
use as methods to generate adversarial attacks.

2.1. Classification Model

Image classification or image recognition is the primary task in computer vision.
Given image x, the goal is to predict the label y ∈ Y, where Y is the set of defined labels
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corresponding to the image. The convolutional neural network (ConvNet) is the most
common neural network architecture used in this field.

VGGNet [20] is a classic Deep ConvNet with its celebrated VGG-16 architecture,
that was proposed to learn the effect of convolutional network depth on accuracy. Many
researchers have used it as a baseline for large-scale image recognition.

Residual Network (ResNet) architecture [21] introduces a residual or skip connection
function to the convolutional neural network that allows the deeper model to be trained.
This novel architecture has been an inspiration for later state-of-the-art CNN-based models.

MobileNet [22] and MobileNetv2 [23] are convolution neural networks specifically de-
signed for mobile or embedded vision applications that have limited computing resources.
It introduces tunable hyperparameters that efficiently make trade-offs between latency
and accuracy.

EfficientNet [24], the state-of-the-art ConvNet, was proposed as a method to scale
up the model accuracy effectively by meticulously balancing the network width, depth,
and resolutions. The best EfficientNet model can achieve 84.3% top-1 accuracy on a
large-scale ImageNet dataset while being 8.4-times smaller and 6.1-times faster than the
best-performing ConvNets [24].

2.2. Object Detection Model

Object detection is a computer vision task that detects instances of objects of a certain
class within an image. Given image x, the goal is to predict each object’s location, which is
represented as bounding box B and label y that corresponds to the object. It is also known
for combining the object localization and multi-label classification tasks. The common
object detection framework consists of a feature extraction module from a pre-trained
classification model added to a detection head module. The state-of-the-art object detection
approaches can be categorized into two types: two-stage and one-stage object detection.

Two-stage object detection consists of a region of interest (RoI) proposal (where the
candidate object is located) and an image classifier to process the candidate region. The
R-CNN family [25–28] represents the most well-known methods using these concepts.
The initial R-CNN [25] used a selective search method to propose RoIs and process each
candidate region independently, which rendered the model computationally expensive
and slow.

Fast R-CNN [26] aggregates the RoI into one unit and uses one CNN forward pass
over the entire image, which shares the same extracted feature matrix as the RoI. The
shared computation makes the model faster than the original R-CNN; however, it remains
inefficient because the RoIs are produced by other models. Faster R-CNN [27] overcomes
this issue by unifying the model and proposing a region proposal network (RPN) as the
replacement selective-search method.

One-stage object detection is more efficient and has a higher inference speed. It directly
predicts the output in a single step. You Only Look Once (YOLO) [29] was an early method
for one-stage object detection. The latest version of YOLO, namely the YOLOv4 [30], is
proposed as a major improvement to the YOLO family in terms of both speed and accuracy.
EfficientDet [31] is another state-of-the-art one-stage object detection method. EfficientDet
implements a weighted bi-directional feature pyramid network (BiFPN) for fast multi-scale
feature fusion and uses the EfficientNet model as the backbone [31].

2.3. Adversarial Attack in Digital Environments

Adversarial attacks in digital environments mainly consist of adversarial perturbation
methods that add pixel-level noise to the input images. Adversarial perturbation is tiny
perturbation added to the image that causes the target model to misclassify with high
confidence [32]. Suppose that a trained model M can correctly classify an original image
x as M(x) = y. By adding to x a slight perturbation η, that could not be recognized by
human vision, an adversary could generate an adversarial example x′ = x + η such that
M(x′) 6= y.
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Based on the adversary’s knowledge, adversarial attacks can be categorized as white-
box and black-box attacks as follows:

• White-box attacks: The adversary knows the structure and all the parameters of the
target model, including the training data, model architectures, hyper-parameters, and
model weights. FGSM [11], Deepfool [33], C&W [12], and PGD [13], are examples of
popular techniques for generating adversarial examples based on white-box attacks.
Most white-box attack methods rely on model gradients to compute the perturbations.

• Black-box attacks: The adversary is ignorant of the target model and considers the
target as a black-box system. The adversary analyzes the target model by observing
only the output based on a given series of adversarial examples. White-box attack
methods can be used in black-box attack scenarios by relying on the transferability
of adversarial perturbations. The adversary uses a substitute model trained with
the same output as the target model and generates adversarial examples with the
white-box setting. The generated adversarial example is then used and evaluated in
the target model. Using the same approach, we evaluate the transferability of our
method to other models. In addition to relying on transferability, some black-box
attack methods have been specifically designed for this setting. Gradient-estimation-
based [34–36] and local-search-based [37–39] methods require no knowledge of the
target model.

2.4. Adversarial Attack in Physical Environments

Adversarial perturbations are typically applied to digital environments in real-world
attack scenarios. Conversely, an adversarial patch is feasible in physical environments
because it can be attached to a specific location on a real object. Brown et al. [14] introduced
a method to create a universal, robust, and targeted adversarial patch for real-world appli-
cations. The patch can successfully fool a classifier with a variety of scenes, transformations,
and outputs to any target class.

Another proposal is a black-box adversarial-patch-based attack called DPatch. It can
fool mainstream object detectors (e.g., Faster R-CNN and YOLO), which cannot be accom-
plished by the original adversarial patch [40]. It simultaneously attacks the bounding box
regression and object classification.

Slightly different from adversarial patches that focus on being applied to physical
objects, physical attack methods focus on robustness in the real world. Athalye et al. [41]
presented the expectation over transformation (EOT), an algorithm for synthesizing robust
adversarial examples over a chosen distribution of transformations. They synthesized
adversarial examples that were robust to noise, distortion, and affine transformations and
demonstrated the presence of 3D adversarial objects in the physical world.

Eykholt et al. [42] proposed robust physical perturbation (RP2), an adversarial attack
algorithm in the physical domain that generates robust adversarial perturbations under var-
ious physical conditions. The RP2 algorithm is an enhanced version of the EOT algorithm
that considers printability in the real world. They added a term that models printer color-
reproduction errors based on the non-printability score (NPS) by Sharif et al. [43]. They
can create adversarial patches that are close to the actual printable colors by minimizing
the NPS.

The success of the EOT algorithm was also proven by Chen et al. [44], who proposed
a robust physical adversarial attack on a Faster R-CNN object detector called ShapeShifter.
The attack shows that EOT can also be applied in object detection tasks and significantly
enhances the robustness of the resulting perturbation captured under different conditions.
They tested the attack on real-world driving and showed that the perturbed stop signs
can constantly fool the Faster R-CNN object detector. However, most adversarial patches
or physical perturbation methods produce a visible pattern that can be easily recognized
by human vision. Therefore, we focus on the invisibility of the patch while maintaining
robustness in a real-world implementation by utilizing the EOT and RP2 algorithms for
our eSLP-GAN.
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2.5. Generative Adversarial Networks (GANs)

Recent studies have shown that adversarial perturbation and patch generation mostly
rely on optimization schemes. To generate a perceptually more realistic perturbation ef-
ficiently, researchers have proposed many variants of generative adversarial networks
(GANs) [45]. Earlier, Goodfellow et al. [45] introduced a framework for estimating gen-
erative models via an adversarial process, which simultaneously trained two models: a
generative model G that captures the data distribution, and a discriminative model D that
estimates the probability that a sample came from the training data rather than G. This
discovery, coined as a generative adversarial network (GAN), has had a significant impact
on data generation.

In the context of adversarial perturbation generation, Xiao et al. [46] proposed Adv-
GAN to generate adversarial perturbations using generative adversarial networks (GANs).
It can learn and approximate the distribution of the original instances. Once the generator
is trained, it can generate perturbations efficiently for any instance to potentially accelerate
adversarial training for defense. This attack was placed first with an accuracy of 92.76% in
a public MNIST black-box attack challenge. Liu et al. [15] proposed a perceptual-sensitive
GAN (PS-GAN) that simultaneously enhances the visual fidelity and the attacking ability
of an adversarial patch.

To improve the visual fidelity, we treat patch generation as a patch-to-patch translation
via an adversarial process, feeding a seed patch, and outputting a similar adversarial patch
that has a moderately high perceptual correlation with the attacked image. To further
enhance the attacking ability, an attention mechanism coupled with adversarial generation
was introduced to predict the critical attacking areas for patch placement. The limitation
of PS-GAN is that it uses a seed patch that is quite different from the original image and,
thus, may still not seem visually natural. The proposed method generates a patch from
the original input image using an attention map that maximizes the attack rate while
maintaining high visual fidelity.

3. Proposed Method

In this section, we describe the problem definition for attacking both the classification
model and the object detection model and introduce the extended spatially localized
perturbation GAN (eSLP-GAN) framework for generating robust adversarial camouflage
patches. All mathematical notations used in eSLP-GAN can be referred to in Table 1.

Table 1. List of symbols in this paper.

Symbol Meaning Symbol Meaning

hθ

Hypothesis function
of classification or

object detection task
L Total loss function of eSLP-GAN

x Input data LADV Adversarial loss function of eSLP-GAN

xA Adversarial example LATK
Attacking ability loss function of

eSLP-GAN

y Ground truth (label)
of input data x LPTB Perturbation loss function of eSLP-GAN

yt Attack target label LNPS Printability loss function of eSLP-GAN

p Spatially localized
patch lcls

Classification loss function applied to the
target model M

G Generator of
eSLP-GAN lobj

Objectness loss function applied to the
target model M

D Discriminator of
eSLP-GAN T Chosen distribution of transformations

M Attack target model t Transformation functions



Sensors 2021, 21, 5323 6 of 18

3.1. Problem Definition

This section defines the problem of generating adversarial camouflage patches for
classification and object detection models. Assume that hθ denotes a hypothesis function
capable of performing a classification or object detection task. x denotes input data to
hθ with a corresponding label of y, which satisfies the equation hθ(x) = y. The label is
constructed differently depending on the task. There are two types of attack methods:
untargeted and targeted. The purpose of the adversarial attack in the proposed approach
is to generate the adversarial example xA. The untargeted attack can be expressed as
hθ(xA) 6= y.

The targeted attack is described as hθ(xA) = yt, where yt is the attack target label.
In addition, xA should be comparable to the original input data x in terms of visual
fidelity. The adversarial example xA is constructed by attaching a spatially localized
patch p to the original input data x, as specified by the equation xA = x + p. In the
study’s terminology, “spatially localized” refers to the property of perturbation that is
applied to a subset of the input image rather than the entire image. The following section
describes the proposed method for generating adversarial camouflage patches that meet
the aforementioned requirements.

3.2. eSLP-GAN Framework
3.2.1. eSLP-GAN

The proposed eSLP-GAN architecture consists of three primary components: a gen-
erator G, a discriminator D, and a target model M. The target model M approximates
the hypothesis function hθ that performs the classification task or the object detection task
mentioned above. Generator G takes the original data x as input and generates a pertur-
bation over the entire region of the input image. In contrast to previous proposals [46],
this method employs additional steps to generate spatially localized perturbations for
adversarial camouflage patches that can be attached to a specific location.

We leverage the Grad-CAM algorithm [19] to extract patch regions and apply the
generated perturbation to only the extracted region. The method is used for extracting the
most representative area that affects the target model to determine the input image as a
specific label. Our assumption is that attack performance will be improved in the case of
attaching the adversarial patch to the representative area from an input image rather than
attaching it to another area. As a result, spatially localized perturbations can be treated as
adversarial patches p.

The discriminator D is responsible for differentiating the original data x and the
adversarial example xA = x + p. D encourages G to generate perturbation that visually
conforms to the original data. Furthermore, G should be capable of deceiving the target
model M. Thus, the entire structure of eSLP-GAN has four loss functions: adversarial loss
LADV , attacking ability loss LATK, perturbation loss LPTB, and printability loss LNPS. The
adversarial loss LADV is expressed by the following equation:

LADV = Ex log D(x) +Ex log(1− D(xA)). (1)

As observed in the preceding equation, discriminator D aims to distinguish the
adversarial example xA from the original data x. Note that D promotes G to generate
perturbation with visual fidelity in compliance with the above equation.

The attacking loss LATK is configured differently depending on the attack method and
the type of target model M. We used the EOT algorithm to construct the attacking loss to
improve robustness in real-world situations. In the case where M is a classification model,
the attacking loss can be defined as follows:

LATK =

{
−Ex,t∼T`cls(M(t(xA)), y), if untargeted attack.
Ex,t∼T`cls(M(t(xA)), yt), otherwise.

(2)
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where y is the original label of the input data x and yt is the target label. `cls is the
classification loss function (e.g., cross-entropy loss) applied to the target model M. We
use a chosen distribution T of transformation functions t, and fool the target model to
misclassify M(xA) or classify M(xA) as the target label yt by minimizing LATK. Differently
expressed, we can generate robust adversarial examples that remain adversarial under
image transformations that occur in the real world, such as angle and viewpoint changes.

In the case of the object detection model, it predicts bounding boxes that determine the
location of objects in an input image. In general, each bounding box contains the objectness
score, box position, and class probability vector [47]. We use two types of object detection
losses: `obj and `cls. `obj represents the maximum objectness score over the predictions
for the entire image. `cls is the classification loss, which is the concept also used in the
classification model. We define the attacking loss LATK using `obj and `cls in the case where
M is an object detection model as follows:

LATK =

{
`obj −Ex,t∼T`cls(M(t(xA)), y), if untargeted attack.
−`obj +Ex,t∼T`cls(M(t(xA)), yt), otherwise.

(3)

This differs from the attacking loss of the classification model by the addition of
the objectness score. In the case of an untargeted attack, the target model considers the
bounding box empty of objects by minimizing `obj. In contrast, in the case of a targeted
attack, the target model is induced to classify xA as the target label yt by minimizing `cls,
and the objectness score for the target label is increased by maximizing `obj.

Additionally, we define the perturbation loss LPTB using a soft hinge loss [48] on the
L2 norm to bound the magnitude of the generated perturbation as follows:

LPTB = Ex max(0, ‖G(x)‖2 − c), (4)

where c represents the user-specified bound and serves to stabilize the GAN training. To
account for printability, we add a term LNPS to our objective function that models the
fabrication error. This term is based on the non-printability score (NPS) by Sharif et al. [43].

LNPS = ∏
p′∈P′

|pi − p′|, (5)

where p′ ∈ P′ represents the printable RGB triplets and pi is each pixel of the adversarial
patch p. We can generate adversarial patches close to printable color by minimizing LNPS.
Finally, combined with the above visual fidelity and ability to attack the target model, the
eSLP-GAN loss function can be expressed as follows:

L = LADV + αLATK + βLPTB + γLNPS, (6)

where α > 0, β > 0, and γ > 0 control the contribution of each loss function. In our
eSLP-GAN, the generator G and discriminator D are trained by solving a minimax game
denoted by the equation minG maxD L. As a result, generator G can generate spatially
localized perturbations suitable for adversarial patches while maintaining visual fidelity
and attacking ability. The overall architecture of the eSLP-GAN is depicted in Figure 1, and
Algorithm 1 describes the process for training the eSLP-GAN framework.
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Figure 1. The eSLP-GAN framework consists of the generator G, the discriminator D, and the target
model M.

Algorithm 1 Training process of the eSLP-GAN Framework.

Input: training image set Ximage = {xi | i = 1, . . . , n}
Output: spatially localized patches P = {pi | i = 1, . . . , n}
for the number of training epochs do

for k steps do
sample minibatch of m images φx = {x1, . . . , xm}.
generate minibatch of m adversarial perturbations φG

x = {G(x1), . . . , G(xm)}.
obtain activation maps M(φx) by Grad-CAM.
extract spatially localized patches P = {G(xi)M(xi)

| i = 1, . . . , n}.
create adversarial examples xA = {xi + pi | i = 1, . . . , n}.
update D to maxD L with G fixed.

end for
sample minibatch of m images φx = {x1, . . . , xm}.
create adversarial examples xA (same as above).
update G to minG L with D fixed.

end for

3.2.2. Spatial Localization

Grad-CAM [19] is suitable for extracting a representative area from an input image.
Grad-CAM produces “visual explanations” from convolutional neural network (CNN)-
based models. It generates a localization map highlighting the important regions in the
input image by using the gradients of any target label flowing into the final convolutional
layer. To obtain a localization map according to the target label (class), defined as a class-
discriminative localization map, we used a gradient of the score for class yc with respect to
the feature map activation Ak of the target layer.

αc
k =

1
Z ∑

i
∑

j

∂yc

∂Ak
ij

(7)

Here, αc
k indicates the neuron importance weight associated with feature map k for

target class c. We take a weighted sum of the forward activation maps, A, with weights αc
k,

and combine them with a ReLU to obtain counterfactual explanations that have a positive
effect on the target class.
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Lc
Grad−CAM = ReLU(∑

k
αc

k Ak) (8)

After obtaining a localization map with class activation mapping (CAM), we take the
bounding boxes for the activated regions by filtering for values greater than 80% of the
CAM intensity. The acquired bounding boxes are the most representative areas of the target
model decision for the input image. Figure 2 shows examples of Grad-CAM visualizations
with bounding boxes for traffic signs.

Original Grad-CAM Bounding boxes

Figure 2. Samples of Grad-CAM visualizations and bounding boxes on traffic signs.

4. Experiments
4.1. Experimental Setup
4.1.1. Model Structure

To configure our eSLP-GAN framework, we utilize structures for generator G and
discriminator D with image-to-image translation, as in [48,49]. Generator G consists of a
U-Net [50] structure, which has an encoder–decoder network. U-Net has the advantage
of generating high-resolution images by adding skip connections to construct a contract-
ing path to capture the context and a symmetric expanding path that enables precise
localization.

We adopted U-Net architecture as a generator because it is suitable for generating
adversarial patches not only similar to input image but also with a relatively good attack
performance. This is due to its ability to capture the context, enabling it to extract informa-
tion from the low level to the high level of the input image. Furthermore, discriminator
D uses a common CNN architecture in the form of Convolution–BatchNorm–ReLU to
encourage generator G to increase the generation ability.

4.1.2. Target Models

In this experiment, we used two types of target models: a classification model and an
object detection model. As the classification models, we used VGG16 [20], ResNet50 [21],
MobileNetV2 [23], and EfficientNetB0 [24], which exhibit good performance in image
classification problems. For object detection, we used Faster R-CNN [27], YOLOv4 [30],
and EfficientDetD0 [31], which are state-of-the-art object detection models.

4.1.3. Implementation Details

For the implementation, we utilized PyTorch, with testing performed on a Linux
workstation (Ubuntu 18.04) with four NVIDIA Titan XP GPUs, Intel Core i9-7980XE CPU,



Sensors 2021, 21, 5323 10 of 18

and 64 GB of RAM. We trained the eSLP-GAN for 250 epochs with a batch size of 128, with
an initial learning rate of 0.001, and dropped it by 10% every 50 epochs.

4.2. Experiment Results
4.2.1. Classification Models

In the case of classification models, we conducted a physical-world attack experiment
to verify that the eSLP-GAN was enhanced to be more robust to the physical environment
than the previous version. We used Korean traffic sign mock ups approximately 15× 15 cm
in size and from nine classes {Bike Path, No Entry, Danger, Motorway, No Bicycle, No
Jaywalking, Roadworks, Railroad Crossing, and School Zone}, as shown in Table 2.

Table 2. Korean traffic sign mock ups used in the physical-world attack experiment against classifica-
tion models.

Bike Path No Entry Danger

Motorway No Bicycle No Jaywalking

Roadworks Railroad Crossing School Zone

We first took approximately 150 pictures of each traffic sign mock up at varying
distances {1, 1.25, 1.5, 1.75, and 2 m} and angles {0◦, 15◦, 30◦, −15◦, and −30◦}. Figure 3
shows each point at which traffic sign images with different distances and angles were
taken. We verified the robustness of the eSLP-GAN under various physical conditions by
altering the environmental settings with different distances and angles.

Next, we trained the VGG16, ResNet50, MobileNetV2, and EfficientNetB0 as target
models using these images that were divided into a training dataset (approximately 100 im-
ages) and a validation dataset (approximately 50 images). To configure a test dataset
for both the original images and the adversarial examples equivalently, we randomly
selected again approximately 100 pictures as the test dataset, and adversarial patches were
generated using eSLP-GAN for each image and each target model.
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In this case, we generated half of the patches using an untargeted attack and the
remainder using a targeted attack by selecting a random label. After printing these patches,
we attached them to the traffic sign mock ups and again took photos of each mock up with
the patches attached. Table 3 presents the classification accuracy of the target models on
normal validation images and the adversarial examples with attached patches using the
test dataset.

Table 4 shows examples of traffic sign mock ups with and without adversarial patches
and the classification results. The previous SLP-GAN version had an attack performance
that reduced the classification accuracy of the target model from 97.8% to 38.0% [18]. We
observe in Table 3 that the enhanced version, eSLP-GAN, had a higher attack performance
than the previous version. In other words, eSLP-GAN is robust against real-world distor-
tions, such as lighting conditions, various distances, and angles, by additionally applying
the EOT algorithm and NPS loss.

Table 5 represents the physical-world attack result examples of the Roadworks’ traffic
sign mock ups with various transformations on the VGG16 target model. Table 6 presents
the attack results of the traffic sign mock ups of a targeted attack and untargeted attack at
different distances and angles. We can conduct both targeted and untargeted attacks by
adjusting the attacking loss term of the eSLP-GAN, as shown in Equation (2). In the case of
Table 6, we set the target label as “Motorway”.

Table 3. Classification accuracy of target classification models on normal images and adversarial examples.

Target Model
Classification Accuracy

Original Adversarial

VGG16 98.24% 31.49%
ResNet50 97.48% 29.81%

MobileNetV2 96.91% 36.58%
EfficientNetB0 96.35% 34.24%

Table 4. The physical-world attack result examples of traffic sign mock ups with and without
adversarial patches generated by eSLP-GAN.

Original Adversarial Original Adversarial

Roadworks Danger Bike Path No Jaywalking

Motorway School Zone Railroad Crossing No Entry
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Figure 3. Physical-world attack experiment settings against classification models with different
distances and angles.

Table 5. The physical-world attack result examples of ‘Roadworks’ traffic sign mock ups with
various transformations.

Original Adversarial

Roadworks Danger Danger

Roadworks Danger Roadworks

We also conducted transferability experiments between each target model. Table 7
shows the classification accuracy of each target model using transferability. First, we gener-
ate adversarial patches for the source models and, then, attached these patches to traffic
sign mock ups. Note that adversarial examples against other source models significantly
reduced the classification accuracy of the target models. This means that our eSLP-GAN
encourages transferability among different target models in physical environments.
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Table 6. The physical-world attack result of ‘Roadworks’ traffic sign mock ups of targeted attack and untargeted attacks
with different distances and angles against VGG16.

Distance Angle Dangers (Conf.) Motorway (Conf.) Untargeted (Conf.)

1 m

30◦ Dangers (0.71) Motorway (0.85) Roadworks (0.88)
15◦ Dangers (0.93) Motorway (0.87) Railroad Crossing (0.78)
0◦ Dangers (0.87) Motorway (0.93) Railroad Crossing (0.64)
−15◦ Dangers (0.90) Motorway (0.61) Railroad Crossing (0.73)
−30◦ Roadworks (0.91) Motorway (0.70) Roadworks (0.87)

1.25 m

30◦ Dangers (0.81) Motorway (0.65) Danger (0.91)
15◦ Dangers (0.84) Motorway (0.70) Danger (0.83)
0◦ Dangers (0.87) Roadworks (0.75) Roadworks (0.58)
−15◦ Dangers (0.86) Motorway (0.71) Danger (0.64)
−30◦ Dangers (0.77) No Entry (0.40) Railroad Crossing (0.70)

1.5 m

30◦ Dangers (0.78) Motorway (0.85) Railroad Crossing (0.91)
15◦ Dangers (0.79) Motorway (0.91) Railroad Crossing (0.91)
0◦ Dangers (0.80) Motorway (0.89) Roadworks (0.62)
−15◦ Dangers (0.74) Roadworks (0.68) Bike path (0.80)
−30◦ Dangers (0.68) Motorway (0.89) No Jaywalking (0.70)

1.75 m

30◦ Dangers (0.61) Motorway (0.68) No Jaywalking (0.63)
15◦ Dangers (0.58) Motorway (0.62) Dangers (0.81)
0◦ Roadworks (0.55) Motorway (0.61) Railroad Crossing (0.93)
−15◦ Dangers (0.56) Motorway (0.61) Railroad Crossing (0.96)
−30◦ Dangers (0.61) No Entry (0.55) No Entry (0.91)

2 m

30◦ Motorway (0.69) Motorway (0.60) Railroad Crossing (0.96)
15◦ Dangers (0.63) Motorway (0.61) Railroad Crossing (0.94)
0◦ Roadworks (0.51) Motorway (0.55) Roadworks (0.94)
−15◦ Dangers (0.61) Motorway (0.58) Danger (0.91)
−30◦ Railroad Crossing (0.55) Motorway (0.51) Railroad Crossing (0.98)

Success rates 73% 67% 78%

Table 7. Classification accuracy of each target classification model using the transferability.

Target Models

VGG ResNet MobileNet EfficientNet

Source Models

VGG 31.49% 57.32% 49.81% 54.38%
ResNet 42.78% 29.81% 60.57% 53.13%

MobileNet 56.04% 47.28% 36.58% 55.91%
EfficientNet 44.38% 53.12% 50.45% 34.24%

4.2.2. Object Detection Models

For the classification models, we evaluated the attack performance of eSLP-GAN in a
real-world environment using custom-trained models with traffic sign mock ups. In the
case of the object detection models, we evaluated eSLP-GAN by expanding the scope of
pre-trained models with large datasets, such as COCO [51]. In an attack scenario of object
detection models, we applied an untargeted attack to classify a traffic sign as a different
class or a targeted attack to classify a specific class for a label existing in the COCO dataset.
Instead of various restrictions, such as financial and time constraints existing in the real
world, we used a CARLA simulator [52] that was photo-realistic to increase the efficiency of
the experiment. The CARLA simulator is built on the Unreal Engine and provides various
maps, vehicle models, and traffic signs, in addition to an autonomous driving system.

We experimented using various maps and traffic signs from the CARLA simulator,
as shown in Figure 4. First, we captured image datasets of various traffic signs using the
CARLA simulator. Next, we added the “traffic sign” label to the object detection models
pre-trained on the COCO dataset and fine-tuned the models using the collected traffic
signs image dataset. Next, we generated adversarial camouflage patches using eSLP-GAN
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extracted for the traffic sign labels. Here, to reproduce the experiment in the real world,
the patches were not applied directly to the image, but we used a method of attaching the
patch to the corresponding area in the texture map of the traffic sign object. That is, we use
an approach similar to attaching a patch directly to a traffic sign in the real world.

(a) (b) (c)

Figure 4. Examples of photo-realistic environments in the CARLA simulator. (a–c) show the capture
of some different panoramas and shades in the CARLA simulator.

We collected approximately 1000 images of traffic signs at various locations in the
CARLA simulator, and we split the dataset into 700 training images, 200 validation images,
and 100 test images. Next, we used the training datasets and validation datasets for fine-
tuning the object detection models, and we used the test dataset to evaluate the object
detection models as shown in Tables 8 and 9. To illustrate an object detection model attack
used in autonomous driving, we captured images of traffic signs from the perspective of a
vehicle running in a lane.

Next, we measured the mean average precision (mAP) with the IoU threshold set to
0.5 of the object detection model for traffic signs by attaching patches that were generated
by the eSLP-GAN to target each object detection model. We used state-of-the-art object de-
tection models, Faster R-CNN [27], YOLOv4 [30], and EfficientDet [31]. Figure 5 illustrates
the collected original images and adversarial examples with patches, while Table 8 details
the mAP of each object detection model. As shown, our eSLP-GAN performed well against
both the classification and object detection models.

Table 8. mAP of target object detection models on normal images and adversarial examples.

Target Model
mAP

Original Adversarial

Faster R-CNN 83.74% 48.91%
EfficientDet-D0 97.27% 55.38%

YOLOv4 98.13% 61.55%

Table 9. mAP of each target object detection model using the transferability.

Target Models

Faster R-CNN EfficientDet-D0 YOLOv4

Source
Models

Faster R-CNN 48.91% 73.58% 75.39%
EfficientDet-D0 62.14% 55.38% 72.15%

YOLOv4 60.48% 71.38% 61.55%

As with the classification models, we experimented with the transferability in object
detection models. We collected approximately 100 adversarial examples to be used against
each source model and evaluated the mAP of each target model. Table 9 lists the mAP
values of each target model. Our eSLP-GAN also encouraged transferability in object
detection models.
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Original Adversarial (Untargeted)

Original Adversarial (Targeted)

Figure 5. Samples of original images and adversarial examples for traffic signs.

5. Conclusions

In this paper, we proposed an extended spatially localized perturbation GAN (eSLP-
GAN) for generating adversarial camouflage patches. We improved the robustness of the
real-world attack over the previous version and extended it to attack an object detection
model. We extracted the target region to place adversarial patches that could maximize the
attack success rate by using the Grad-CAM algorithm. In addition, we generated robust
adversarial patches in the real world by combining the EOT algorithm and NPS loss and
attacked the object detection models through an appropriate loss function correction for the
eSLP-GAN. The experimental results show that eSLP-GAN generated robust adversarial
patches that were visually natural with a high attack performance that can be used for both
classification and object detection models.

The proposed eSLP-GAN was validated on the custom traffic sign dataset against the
given classification models and showed that the attack performance improved compared
to the previous version. The proposed method also performed well in a black-box attack
because, as can be observed from the experimental results, it encouraged transferability.
We also verified the efficacy of attacking object detection models using a photo-realistic
simulator.

The proposed methods emphasize the vulnerability of computer vision models that are
widely used in the real world. These attacks, which are difficult to detect with human vision,
are especially fatal to computer vision systems because they are concealed. Therefore, it is
suggested that improvements to the security of computer vision models are essential to
withstand attacks, such as by the proposed method.
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