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Abstract: Aeration is one of the most important methods to keep stored grain safe and maintain
its quality. Experimental platforms are used for stored grain aeration study in a laboratory-scale.
The purpose of this paper was to provide the real-time data acquisition and control system design
of a new experimental platform with multifunction for stored grain study. Requirements of the
aeration experiments were analyzed, and multi running modes were designed. The aeration inlet air
conditions were designed to be adjustable and multi variables need to be controlled simultaneously,
which was a key problem to be solved for the platform. An ON/OFF-PID based multivariable
cooperative control method was proposed, and two control loops were formed where inlet air
temperature and humidity were considered separately while could be controlled simultaneously
with a logic judgement strategy. Real-time data needed to be monitored was acquired with different
sensors and displayed intuitively. Experiments were carried out to test the static and dynamic
characteristics of the control method and three inlet air flow rates of 0.03, 0.08 and 0.13 m·s−1were
used. Performance of the data acquisition system was also tested. The results showed that, the
inlet air conditions control error was within ±1 ◦C and 10% for temperature and relative humidity,
respectively. The real-time data acquisition of multi parameters during aeration process was realized.
The experimental platform can be used for studies of different aeration objectives.

Keywords: control; data acquisition; stored grain aeration; experimental platform

1. Introduction

Grain storage is very essential for food supply, especially in 2020 when the COVID-
19, plague of locusts, and the frequent occurrence of natural disasters threatened stable
growth of grain production. Advanced grain storage technologies have become particularly
important. The temperature and moisture content are the most important factors for grain
storage [1,2]. The population of insects and mites, fungal growth and grain quality are in
close relation with these two factors [3–6]. Aeration is the key grain storage technology [7,8],
which can be used to maintain grain safety and quality by adjusting the grain temperature
and moisture content [9]. Heat, mass and momentum transfer occurs during the aeration
process [10], which is mainly determined by the original grain temperature and moisture
content, the inlet air temperature, humidity and the flow rate, and the outside environment
if the bin is not insulated. Conditions of these parameters will influence not only the
final grain temperature and moisture distribution, but also the aeration process, in terms
of heat, mass and momentum transfer speed, energy consumption, and even the grain
quality. It is very important to study the aeration mechanism and control for grain storage
management [11]. Therefore, mathematical models are developed by researchers to better
understand and simulate the stored grain aeration process [12], and control strategies are
proposed for stored grain aeration management [13].

Many of these studies are presented in literatures, and model simulations and experiments
have been carried out [14–18]. Experiments can be used to reveal important phenomenon and
validate newly developed models and control methods, which provides important means for
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stored grain aeration study. Experiments run in field grain storage bins are rational and more
likely to achieve the reliable results. However, they are usually time and labor consuming, and
much more grain is needed, which may result in massive waste if the experimental process
is not well managed. Sometimes, the required conditions are rather difficult to reach in field
experiments. The experiment in a laboratory scale is easy to be carried out and more focuses
on the specific problem by eliminating irrelevant factors. That is why many studies of stored
grain are executed on an experimental platform [8,12,18–23].

Most of the aeration platforms under laboratory conditions can be classified into
two types.

One type involves using the integrated air supply system and the simulated storage
bin. The inlet air can be the ambient air without pretreated process and blown into the
bin directly or with specially designed control strategies [8]. The inlet air can also be
heated for in-bin drying [20] or cooled for cooling the stored grain [21,22]. The inlet air is
rarely pretreated for different aeration objectives. The bins are usually instrumented with
sensors [8,20–22]. This type of experimental platform usually has simple inlet air treated
systems which makes it easy to construct. It is usually designed for one or two aeration
objectives, unable to meet various aeration study requirements.

The other type of platform is using artificial climate chamber to simulate different
aeration inlet air conditions, which can be used for different aeration objectives [12,18,23].
The bin instrumented with sensors for data acquisition is placed inside the chamber,
and inlet air condition is the same as the chamber inner environment. The cubic bin and
column bin are used. In [12], the authors designed a new aeration system with three
bins where the three-replicate data were collected in one aeration process. For this kind
of platforms, control method is required for the chamber to obtain the desired aeration
conditions. Sometimes the inlet air conditions might be influenced by the fluctuations
of the chamber environment. That was probably because the air temperature, humidity
and velocity fields distribute non-uniformly inside the chamber, which is difficult to be
eliminated. For this type of platforms, the chamber construction might be the most complex
and costly part. It will also take up considerable space.

In addition to the existing functions on the above aeration experimental platforms,
the real bin aeration requirements should also be considered to develop more suitable
platforms for aeration study in a laboratory scale. Some aeration tests are executed in
real bins. During cooling-aeration process, it is required to minimize the grain moisture
content loss [24]. Therefore, the constrained inlet air condition control study experiments
(either using the adsorption and desorption model [24] or equilibrium moisture content
model [18]) should be considered in the platform design. For the ambient air aerations,
turning on and off of the fan can be performed manually or automatically. If inlet air is
pretreated, automatic control of the heating, refrigeration or humidifying will need to be
realized. Real-time data acquisition is also essential in real bins [25].

A multi-function experimental platform in the laboratory scale is more likely to be an
effective solution for various aeration studies. The following aspects should be considered:

(1) Aeration experiments using ambient air or pretreated air with constant or varied flow
rate can all be conducted on the platform.

(2) For pretreated air aeration, the control method can realize stable and reliable inlet
air conditioning.

(3) Real-time data of multi-sensor parameters should be acquired.
(4) The platform can be more compact, have low construction cost, supply air for different

bins, and be easy to reproduce.

A new multi-functional experimental platform for different stored grain aeration
needs was designed in this work. It could be used for both the mechanism study, which
aimed at better understanding the parameter changes during aeration process; and the
control study, which emphasized the process optimization. The automatic control and the
real-time data acquisition were realized, which would be introduced in detail.
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This paper was organized as follows: First, requirements of stored grain aeration were
analyzed. Then the platform design details were introduced. Finally, tests were carried
out to validate the performance of the platform and the platform control characteristics
were analyzed.

2. The Laboratory-Scale Experimental Platform for Stored Grain Aeration Study
2.1. Monitoring and Control Requirements of the Stored Grain Aeration Experimetal Platform

During the aeration of stored grain, air was forced through the grain bulk with a
mechanical fan. For different objectives, the inlet air may be heated, cooled, humidified,
dehumidified or not treated. The inlet air temperature, humidity and flow rate would
influence the drying, cooling, rewetting rate and final grain hygrothermal parameters.
The heat and mass transfer could possibly be explained like the adiabatic drying process.
If blown through with a uniform air rate, and constant temperature and relative humidity,
the grain bulk would form three zones (A, B, C) and two fronts (temperature front and
moisture front) as shown in Figure 1 [26]. In zone A, the intergranular air was at the
inlet air conditions and the grain was in equilibrium with the inlet air. In the moisture
front, it was an adiabatic process during which air provided the heat to evaporate the
moisture of the grain. In zone B, the grain temperature was near or between the dry bulb
and wet bulb temperature of the air. In the temperature front, the air got into equilibrium
with the initial grain conditions. In zone C, the grain was at the initial temperature
and moisture content. Possible psychrometric processes could be shown in Figure 2.
ERH was the equilibrium relative humidity. Monitoring the conditions of the grain and
intergranular conditions during aeration was rather essential to learn about the proceedings.
If the inlet air conditions changed, which usually happened in the real field, the grain
and intergranular air conditions inside the bin would become more complicated, and a
good knowledge of this process would be helpful to work out appropriate management
measures. For the experimental platform design, various aeration objectives should be
considered. Inlet air could be used for aeration management study with low cost. In
some cases, the ambient air was heated before flown into the bin such as in-bin drying.
Moreover, it was important to supply constant inlet air conditions with good accuracy
for certain mechanism study, and also varied inlet air conditions for different aeration
control method studies during an aeration process. Speed of this process could be affected
by the air flow rate. Therefore, the inlet air temperature, humidity and flow rate of
laboratory-scale experimental platform was designed to be adjustable for different aeration
objectives or left untreated. The room air temperature and the inlet air pressure were also
needed to be recorded. Therefore, the stored grain conditions, the inlet air conditions and
environment air conditions were monitored, and real-time data were recorded and stored
online. Grain moisture content would be measured off-line.

Sensors 2021, 21, x FOR PEER REVIEW 4 of 14 
 

 

Zone C

Zone B

Zone A

Temperature front

Moisture front

G
ran

 b
u
lk

 

Figure 1. Three zones and two fronts of the grain bulk during aeration with constant and uniform 

inlet air conditions. 

 

Figure 2. Possible psychrometric processes during aeration. 

2.2. Structure of the Platform 

To meet the requirements of the stored grain aeration process study, the experimental 

platform was designed with a structure shown in Figure 3a, and its picture was shown in 

Figure 3b. It was mainly composed by the pump, rotameter, humidifier, refrigeration sys-

tem, heating system, sensors, electric control panel and the storage bin. 

Sensor for 
room air

Storage bin

Humidifier

Refrigeration system

Heating 
system

Pump1

Sensor for 
inlet air

Rotameter

Pressure 
sensor

Sensor for 
stored grain

P
u
m

p
2

E
E

V

W
ater su

p
p
ly

 
b

in

Tank

Atomizer

Electric control 
panel

PLC
Data 
colle-
ctor

Touch panel
MCGS 

interface

Steel wire meshPlenum

 
(a) 

Figure 1. Three zones and two fronts of the grain bulk during aeration with constant and uniform
inlet air conditions.
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Figure 2. Possible psychrometric processes during aeration.

2.2. Structure of the Platform

To meet the requirements of the stored grain aeration process study, the experimental
platform was designed with a structure shown in Figure 3a, and its picture was shown
in Figure 3b. It was mainly composed by the pump, rotameter, humidifier, refrigeration
system, heating system, sensors, electric control panel and the storage bin.
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Figure 3. Structure and picture of the experimental platform: (a) Structure of the platform; (b) picture
of the platform.

As illustrated in Figure 3, the ambient air was blown into the air supply system by
pump1 (AC0-380, Guangdong Hailea Group Co., Ltd., Chaozhou, China) and its volume
could be adjusted with four LZB-10 glass rotameters (2500 L/h, Suzhou Chemical In-
strument Co., Ltd., Suzhou, China) and one LZB-6WB glass rotameter (600 L/h, Suzhou
Chemical Instrument Co., Ltd., Suzhou, China). Then, the air was cooled and dried by the
refrigeration system which consisted of a compressor (BSA357CV-R1AN, Hitachi Manu-
facturing Co., Ltd., Tokyo, Japan), an evaporator (FE0, Beijing Creative Communication
Technology Co., Ltd., Beijing, China) and a condenser (FC0, Beijing Creative Communi-
cation Technology Co., Ltd., Beijing, China). The humidifier was composed by pump 2
(FCY5015-24V, Chengdu Xinweicheng Technology Co., Ltd., Chengdu, China), electronic
expansion valve (EEV) (TS130CV, Saginomiya Seisakusho, INC., Tokyo, Japan), atomizer
(SH0, Beijing Creative Communication Technology Co., Ltd., Beijing, China), a tank and
the water supply bin. If the inlet air needed to be humidified, the EEV would be opened
and the inlet air was bypassed by pump2, and the air volume was controlled with EEV.
The air from the humidifier and the refrigeration system joined and then flew into the heat-
ing system (Electronic heaters H0, Beijing Creative Communication Technology Co., Ltd.,
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Beijing, China). At the end of the air supply system, temperature and relative humidity of
the air flown into the bin was measured with SHT11 (Sensirion AG, Staefa, Switzerland)
and used as feedbacks for control. Four holes were punched for sampling stored grain to
measure the moisture content. The intergranular air temperature and relative humidity
could be measured with four SHT11 sensors at the same heights of the holes. The pressure
difference between the inlet and outlet air was measured with a pressure sensor (DP102,
Beijing North Dahe Instrument Co., Ltd., Beijing, China). A touch panel (TPC7062KX,
Shenzhen Kunluntongtai Technology Co., Ltd., Shenzhen, China) was used to embed the
control method and display the real-time data gathered by a data collector (BEC-2103,
Beijing Creative Communication Technology Co., Ltd., Beijing, China) from the sensors,
and sent the control commands to a PLC (FP0R-C14RS, Panasonic Corporation, Osaka,
Japan), which would control the instruments and elements in turn as shown in Figure 3.

2.3. Running Mode Design of the Platform

To meet different stored grain aeration requirements, three running modes were
designed for the platform. They were the manual mode, T mode and T&H mode. In the
manual mode, the ambient air was used for aeration, during which only inlet air flow
rate could be adjusted. This mode could be used for ambient air aeration control studies.
In the T mode, inlet air temperature could be controlled to the desired value with varied
flow rate. This mode could be used for in-bin drying or cooling. In the T & H mode, inlet
air temperature, relative humidity could be controlled with varied air flow rate, which
could be used for various aeration objectives, such as model validation, advanced control
methods and so on. The modes could be chosen through the platform interface which
would be introduced in detail in Section 2.6.

2.4. Parameters Range Design for the Inlet Air

The inlet air temperature and relative humidity could be controlled for different
aeration objectives, such as cooling, drying or rewetting the grain. All these aeration
objectives were for the purpose of changing the grain temperature and moisture content to
a certain level for safe or economic grain storage. Inlet air temperature and humidity would
determine the final grain temperature and moisture content. Inlet air of low temperature
was used for cooling, and the air relative humidity was also calculated with the desired
equilibrium moisture content of grain to avoid over drying or over wetting. During the
drying process, the heated air was usually used, and the grain moisture content would be
reduced gradually which took a rather long time. After drying, the grain temperature was
usually high, if not cooled down in time, grain rewetting might happen. Aeration could
also be used for rewetting the stored grain for economic reasons and this process needed
to be controlled more strictly for grain safety. The aeration process consumed a lot of
energy, which could be optimized by setting appropriate inlet air parameters with no
harmful influence on the grain security and quality [18]. That is the reason why the inlet
air temperature and relative humidity were designed to be changeable on the experimental
platform for different aeration objectives. The inlet air temperature range was from 10 to
40 ◦C, and the relative humidity from 20% to 80%.

The inlet air flow rate also influences the aeration process. Bartosik [27,28] studied the
influence of three inlet air velocities and used the optimized option in the in-bin drying
study. Under a higher inlet air flow rate, more heat and mass would be transferred between
grain and air per unit time except when the drying or the cooling process was governed by
the mass or heat transfer speed inside grain kernels. However, a higher flow rate usually
meant more energy consumption. If the objectives, such as the grain security, quality and
energy saving were taken into account, there would be an optimized flow rate for certain
aeration objective. Therefore, the inlet air flow rate in the experimental platform was also
changeable. The air volume flow rate was 0~176 L/min, which can be set with the flow
meter. Different size of bins could be used for aeration. For example, if the diameter of bin
was 0.15 m, then the inlet air flow rate range was from 0 to 0.166 m/s.
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2.5. Control Method of the Inlet Air Temperature and Relative Humidity

In the T mode, the inlet air temperature could be controlled. In the T&H mode, both
the inlet air temperature and relative humidity were controlled automatically. For the T
mode control was part of the T&H mode control, the latter would be introduced in detail.

For the T&H mode control, the platform had multi-controlled variables, such as the
inlet air temperature Ta-in and relative humidity Ha-in, which were coupled with each other.
An ON/OFF-PID (ON/OFF and proportional integral derivative) based multi-variable co-
operative control method was proposed. The control architecture was shown in Figure 4.
Set points of Ta-in and Ha-in were Tset and Hset, respectively. The control variables were heat-
ing percent HP and refrigeration percent RP and EEV opening rate EP (used to adjust the
humidification capacity).
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The ON/OFF control and PID control were used in the control method. The con-
trol law of PID was shown in Equation (1) and its discrete form was used to develop
the controller [29],

u(t) = kp(e(t) +
1
Ti

∫ t

0
e(t)dt +

Tdde(t)
dt

) (1)

where e(t) was the difference between the set point and the real-time value of the controlled
variables in time step t; Kp was the proportional coefficient, Ti was the integral time constant,
Td was the differential time constant. Kp, Ti and Td were obtained with engineering design
method. Kp was determined first. Kp was increased until the system oscillated while Ti and
Td was set to zero. Then Kp was decreased until the oscillation disappeared and set Kp as
60–70% of the current value. Then, Ti was set to a large initial value and decreased until
oscillation appeared. The next step was to decrease Ti until the oscillation disappeared and
set Ti to 150~180% of the current value. Td was obtained with the same method. Finally,
the three parameters were fine-tuned until the system was well controlled.

The control scheme was shown in Figure 5. Two control loops were designed for
inlet temperature and relative humidity respectively. In the T mode, only the T control
loop was used. In the T&H mode, the control variables for Ta-in were HP and RP1, and for
Ha-in were EP and RP2. HP was calculated with PID controller 1, and EP was calculated
with PID controller 2. RP was obtained with the ON/OFF control method, and the ON
condition was determined by both the inlet air temperature error (eT, Equation (2)) and
relative humidity control error (eH, Equation (3)):

eT = Tset − Ta−in (2)

eH = Hset − Ha−in (3)
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If Ta-in was lower than Tset (eT > 0), the heater would work and HP was calculated.
The refrigeration system would not work and RP1 0. If eT < 0, the heater would not work
and RP1 100%. If Ha-in was higher than the set point (eH < 0), the refrigeration system was
used to dehumidify the air and the RP2 100%. If eH > 0, the humidifier would work and EP
would be calculated and RP2 0. If RP1 > RP2, RP1 would be used to adjust the refrigeration
system (RP RP1), else the RP2 would be used (RP = RP1).

The control logic of the proposed control method was presented in a flow chart as
shown in Figure 6.
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2.6. Monitoring Interface of the Platform

A monitoring interface embedded in the touch panel (shown in Figure 7) was devel-
oped with MCGS 7.7, a configuration software (Embed version, Shenzhen Kunluntongtai
Technology Co., Ltd., Shenzhen, China), functions of which were annotated in detail in
Figure 6. The three running modes could be chosen on the upper-left corner of the interface.
Since the panel was a digital embedded system with a high-speed calculation capability, the
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control method introduced in Section 2.5 was also realized in MCGS through programming.
The conditions of the inlet air and intergranular air inside the bin could be collected and
monitored. Ta-in and Ha-in could be set on the interface and the errors between the measured
parameters and the set points would be calculated, displayed and used as the input of
the controllers. Therefore, the data and parameter states could be displayed on the panel
and the system control task was executed as a background job of the panel. Moreover,
the outputs of the controller were sent to the PLC which would drive the actuators of
the system.
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3. Tests of the Experimental Platform

In order to validate the performance of the experimental platform, several tests were
undertaken.

3.1. Inlet Air Temperature and Relative Humidity Control Tests

The inlet air temperature, relative humidity and the air flow rate for stored grain
aeration would determine the aeration process and the final grain temperature and moisture
content. Tests for the inlet air temperature and relative humidity control (T&H mode) were
carried out. For wheat, the stored grain moisture content was set at about 13% d.b., in
accordance with which the inlet air temperature and relative humidity set points were
determined by Equation (4) (the Chung-Pfost equation [30]) without considering the grain
hysteresis state. This equation described the relationship between the grain equilibrium
moisture content Mge and the air conditions,

Mge = − 1
C3

ln[
(Ta + C2) ln H

−C1
] (4)

where, Ta was the air temperature in ◦C; H was the air relative humidity in %. C1, C2, C3
were constants obtained from experiments. For wheat, C1 = 660, C2 = 220, C3 = 13.8.

Ta-in and Ha-in were measured with SHT11 sensor. The temperature measuring range
was −40~123.8 ◦C, with accuracy of ±0.4 ◦C at 25 ◦C, and the relative humidity measuring
range was 0~100% RH, with accuracy of ±3%.

Three inlet air flow rate of 0.03 m·s−1, 0.08 m·s−1 and 0.13 m·s−1 were used for the
tests. The average pressure differences between the inlet and the outlet air for the three
flow rates were 778, 1997 and 3100 Pa respectively, measured with the pressure sensor
(0~10 KPa in range, with accuracy of ±1% full scale at 20 ◦C). The ambient air temperature
was 22 ◦C and relative humidity was 45%. The set points of the inlet air parameters for the
tests were set at 35 ◦C/61% and 15 ◦C/60%, which were constrained by Equation (4).
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3.2. Real-Time Data Acquisition Tests

Real-time data was essential for future aeration modeling and control study. The stored
grain cooling test was conducted on the platform to test the data acquisition function.
The stored grain intergranular air temperature and relative humidity were measured with
the SHT11. The grain storage bin used in the test was a PVC pipe (0.15 m in diameter, 1 m
in height, 0.001 m in thickness of the bin wall). Four holes were punched along the vertical
direction of the bin, through which connectors (0.016 m in inner diameter) were fixed for
the sensors and sampling pipes which would be plugged in and pulled out easily. For better
heat insulation, a layer of foaming NBR with a thickness of 0.055 m was used to cover the
outside of the bin, and the thermal conductivity of the material is 0.035~0.038 W/m ◦C. At
the bottom of the bin, a steel wire mesh was fixed to bear the grain and form a plenum
together with the bottom cover (as shown in Figure 3). Two holes were penetrated in the
bottom cover, where a connector with inner diameter of 0.016 m and a smaller connector of
0.005 m were fixed for the inlet air and pressure sensor respectively. A rubber pipe with
insulated outside was used to connect the inlet air connector and the air supply system.
All the connection parts of the bin were designed following the uniform size standard.
So, it was very easy to change the bin to another size according to different experimental
requirements, while using the same air supply system. All the real-time data acquired
would be transferred to the touch panel (as shown in Figure 3) and displayed on the MCGS
interface (as shown in bin part of Figure 6) every 30 s. The changing curves of the measured
data could also be displayed.

Wheat with initial moisture content of 10% was filled in the bin and the height was
0.95 m. The average initial intergranular air temperature was about 22 ◦C and relative
humidity was 54.7%. The inlet air temperature and relative humidity was set at 17 ◦C and
60% respectively, which would not change the wheat moisture content a lot in order to
observe the changing trends of the temperature and humidity inside the bin. The inlet air
flow rate was set at 0.13 m·s−1. Because the temperature and relative humidity of the inlet
air flown into the bin was the directly controlled variables, inlet air conditions would be
more stable and reliable during the tests.

4. Results and Discussion
4.1. Inlet Air Temperature and Relative Humidity Control Test Results and Discussion

The test results were shown in Figures 8–10. Figure 8 showed the inlet air temperature
and relative humidity changing curves. The set point was 15 ◦C/60% and 35 ◦C/61%
for (a) and (b), with air flow rates of 0.03 m·s−1. From the figure, we could get that the
inlet air temperature and relative humidity could be controlled around the set points.
The average control error of inlet air temperature was within ±1 ◦C, and ±10% for relative
humidity control. The adjusting time was about 15 min before the controlled variable
got into the control range of set point in both Figure 8a,b. Similar dynamic and static
control characteristics were observed in Figures 9 and 10. The results showed that this
platform could perform well during the inlet air temperature and relative humidity control.
This platform could be used in various aeration conditions, such as in-bin cooling, drying
or even rewetting, with good control performance.

4.2. Real-Time Data Acquisiton of the Stored Grain Bulk Test Results and Discussion

Intergranular air temperature and relative humidity of the stored grain at different
heights (20 cm, 40 cm, 60 cm, 80 cm) were acquired during aeration which last 1000 min.
The results were shown in Figure 11. Intergranular air temperature and relative humidity
parameters acquired by sensors of different heights obtained near to the set point of inlet air
temperature gradually, and those near to the inlet changed first and more sensitive to the
inlet air change. Different time delays of changing trends were observed at different heights,
which was in accorded with the phenomenon in real aerated bins. During the processing
of aeration, the distance between the sensor and the air inlet increased, and the larger
temperature deviation was observed, which was resulted from the grain thermal inertia.
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In real aeration process, hysteresis existed between the grain desorption and adsorption
state, so the relative humidity did not follow the equilibrium moisture content Equation (2)
all the time. The results showed that the four sensors fixed at different height inside the
bin for intergranular air temperature and relative humidity monitoring worked well and
managed to acquired data for aeration analysis.
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5. Conclusions

Experiments provided effective means for the stored grain aeration mechanism and
process control studies. This paper presented a new multi-functional experimental platform
for stored grain aeration, and introduced a ON/OFF-PID based multivariable cooperative
control method and the real-time data acquisition system in detail. Validation tests were
carried out that showed the average control errors were acceptable. The aeration process
could be monitored and real-time data of parameters of both the inlet air and intergranular
air inside the grain bulk was acquired. All the data could be displayed on a touch panel
and stored for analysis. Laboratory-scale aeration experiments of different objectives such
as cooling, drying or rewetting of the grain for mechanism or control study could be
executed on this platform. Moreover, this platform was compact, low-cost, easy to operate
and more automatic compared with the present work. To improve the accuracy of inlet
air temperature and relative humidity, more advanced control method will be needed.
Moreover, more sensors could be placed inside the bin to better understand the mechanism
of stored grain aeration.
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