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Abstract: Accurate and reliable vertical ground reaction force (VGRF) measurement is essential in
various biomechanical and clinical studies. Recently, pressure–pad-embedded treadmills have been
widely used for VGRF measurement as a relatively less expensive option than the force platform-
mounted treadmills. Prior studies have shown that the popular Zebris treadmill is reliable when
used to measure peak VGRF for short walking sessions. However, comprehensive evaluation of
human walking requires information of gait parameters over sufficient gait cycles. In this study,
we quantify the long-term temporal changes in VGRF values measured by the Zebris treadmill.
Twenty participants walked on the treadmill for 10 min twice, with 10 min rest between trials.
We found an evident decline in the measured VGRF and impulse over time for both trials. The Zebris
system also consistently yielded the lower VGRF values during the second trials. These results
indicate that the Zebris treadmill is unreliable in measuring VGRF during walking, and a 10 min break
is not enough for the embedded sensors to recover their sensitivity. We provided a way to resolve
these time-dependent errors; using the impulse-momentum theorem and collected kinematics of the
participants, we formulated a curve-fitting model encapsulating the growing VGRF estimation error.

Keywords: vertical ground reaction force (VGRF); Zebris treadmill; capacitive sensors; walking;
measurement reliability; estimation errors; curve-fitting model

1. Introduction

The vertical ground reaction force (VGRF) is the major component of a salient external
force acting on the body during locomotion. Accurate and reliable measurement of VGRF
is necessary for estimating the precise load exerted on the body segments and joints [1–4].
VGRF has been typically measured using a force platform fitted with load cells or force
transducers mounted on the ground or a motorized treadmill. Numerous studies have
shown that the measurement of VGRF using these types of force platforms is highly reli-
able [5–8]. However, continuous VGRF measurement using floor-mounted force platforms
is difficult, and force plate-mounted motorized treadmills are costly. Relatively less ex-
pensive pressure-pad-embedded motorized treadmills are developed to overcome these
drawbacks. Among numerous brands, capacitive pressure sensor-embedded Zebris
treadmills are extensively used to measure spatiotemporal and kinetic gait parameters.
Several studies have shown high reliability of Zebris treadmills for measuring spatiotem-
poral gait parameters [9–12]. However, studies verifying the reliability of such a system for
measuring VGRF are limited.

Technologies that use capacitive sensors to measure plantar pressure show drift during
VGRF measurement [13–15]. Common reasons behind the drift are temperature changes,
hysteresis, and prolonged pressure-induced sensor deformation [15,16]. Several studies
have assessed the reliability of such capacitive sensor-based systems, including Zebris
treadmills. Item-Glatthorn et al. reported highly reliable peak forefoot and heel forces
measured between-days when participants walked on a Zebris treadmill for 20 s with

Sensors 2021, 21, 5511. https://doi.org/10.3390/s21165511 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8031-949X
https://orcid.org/0000-0002-7964-5148
https://doi.org/10.3390/s21165511
https://doi.org/10.3390/s21165511
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21165511
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21165511?type=check_update&version=1


Sensors 2021, 21, 5511 2 of 14

increasing speeds and inclinations [17]. In another study, Nüesch et al. reported highly
reliable peak forefoot and heel forces measured between-trials and days when participants
walked and ran on a Zebris treadmill for 2 min with increasing speeds [10]. In contrast, Van
Alsenoy et al. reported only moderate reliability of peak VGRF measured between-trials
and days when participants ran on a Zebris treadmill for 20 s with increasing speeds [18].
In addition, the peak VGRF values measured during the second trial were lower than the
values during the first trial for all running speeds; the peak VGRF was underestimated in
the subsequent trials. Considering that reliable assessment of gait stability and variability
requires a sufficient number of gait cycles [19–22], these previous studies that addressed the
reliability of VGRF measurement using a Zebris treadmill have an important drawback; the
gait parameters were recorded only for a short period of time. Furthermore, the previous
studies only used one single peak force during walking or running to check the reliability
of VGRF measurement despite the fact that VGRF keeps changing with time.

In addition, the capacitance-based pressure sensors embedded into the Zebris tread-
mill have a spatial resolution of 8.5 mm [18,23], whereas the international guideline for the
maximum spatial resolution of the pressure sensor for an accurate measure of plantar force
is 5 mm [24]. Any system with a coarse spatial resolution plausibly underestimates the
maximum plantar pressure because the total force is to be divided by a larger area [25,26].
Using experimental data, Lord modeled plantar pressure distribution during standing and
found 67% accuracy when plantar pressure was measured using sensors with a spatial
resolution of 10 mm [27]. Pataky estimated the accuracy for sensors with various values of
the spatial resolution using the model proposed by Lord and standing plantar pressure
data measured by Xsensor and Zebris pressure pads [28]. In contrast with the results
from Lord’s study, Pataky found 90% accuracy for sensors with spatial resolution between
1.7 mm and 17.4 mm. However, he postulated that changes in the foot positioning could
have non-trivial effects on the plantar pressure and force measurement accuracy.

Unlike standing, walking involves continuous changes in foot positioning. To our
knowledge, no mathematical model or systematic method has been proposed to estimate
the errors in pressure measurement during walking using a pressure-pad-embedded
treadmill. Hence, in this study, we firstly aim to quantify any time-dependent estimation
error of the Zebris treadmill when the device is used to measure the VGRF of walking for a
prolonged time period. Our results show continuously growing but converging errors in
VGRF estimation; Zebris treadmills are unreliable for long-term VGRF measurement during
walking. Considering that the researchers in the field of human movement science widely
utilize pressure-pad-embedded treadmills to measures VGRF during walking, we secondly
aim to develop a viable method to compensate for these errors in VGRF measurement.
Using the impulse-momentum theorem, we formulated curve-fitting models encapsulating
the temporal declines in the VGRF with high goodness of fit. Our results suggest an
effective method for compensating for the low reliability of the Zebris treadmill and similar
capacitive pressure sensor-embedded treadmills for measuring VGRF during walking.

2. Materials and Methods
2.1. Participants

We recruited 20 healthy young adults (16 men and 4 women; age: 28 ± 4.68 years;
height: 1.73 ± 0.08 m; weight: 72.10 ± 12.64 kg). This number of the participants is larger
than the sample size required for a statistical power of 0.95. We conservatively set the effect
size between small and medium values as 0.35 [29]. We then selected the expected power
and p-value for statistical significance as 0.95 and 0.05, respectively. Under these conditions,
G-power software calculated the required sample size as 12 [30]. The recruited participants
had no known cardiovascular, orthopedic, or neuromuscular disorders. The participants
were informed about all the aspects of the study, and they provided informed, written con-
sent before participation. All aspects of the study adhered to the principles and guidelines
described in the Declaration of Helsinki and approved by the Institute Review Board of
Seoul National University (IRB No. 2007/001-009).
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2.2. Equipment

We asked the participants to walk on a pressure-pad-embedded treadmill (Model
Gait analysis FDM-TDSL-3i, Zebris Inc.®, Germany; belt length: 150 cm; belt width: 50 cm;
maximum incline: 15%; maximum speed: 24 km/h), which was used to record VGRF at a
sampling frequency of 50 Hz. A motion capture system consisting of ten infra-red cameras
(Optitrack PrimeX 13, Natural Point, Inc., OR, USA) was used to record coordinates of
the retro-reflective markers attached to the participant at a sampling frequency of 100 Hz.
A sync box was used to synchronize the initiation of data acquisition from the two systems.

2.3. Experimental Procedure

Initially, we estimated the preferred walking speed (PWS) of the participants. To measure
PWS, we asked each participant to walk on the treadmill, starting at a speed of 2.5 km/h.
We then increased the speed by 0.1 km/h every 10 s and asked the participants to report
once they perceived the speed that best described their normal walking speed. We further
increased the speed by 1.0 km/h and decreased it by 0.1 km/h, again asking the participants
to report once they perceived the speed that best described their normal walking speed.
We repeated this process three times and used the average speed as PWS. We measured
PWS within one week prior to the main experiment.

We attached 36 retro-reflective markers on the anatomical landmarks of the head: top,
left, right, and front temple; and left and right sides of the upper and lower body: acromion,
medial and lateral epicondyle of the humerus, radius- and ulna-styloid process, third
metacarpal, posterior superior iliac spinae, anterior superior iliac spinae, greater trochanter,
medial and lateral epicondyle, medial and lateral malleolus, first and fifth metatarsal, and
heel. After attaching the retro-reflective markers, we measured the participant’s body
weight (BW). We then asked the participants to perform two walking trials, 10 min each,
on the treadmill at their PWS. Each 10 min trial consisted of two 5 min data acquisition
sessions because the Zebris treadmill can record data only up to 5 min for a single session.
It took 5 to 10 s to save the file for the first session and start the second data acquisition
session. Participants were given 10 min to rest between trials. We also measured the
participant’s BW between trials and right after the final trial to check for any possible
change in the BW.

2.4. Data Processing

The VGRF curve was extracted for each step during the 10 min walking trials, sep-
arately for the left and right foot. We then extracted the specific VGRF values at three
stereotypical time points for each step; the time point of load response (LR), mid stance
(MS), and push off (PO). We selected LR and PO as the time points of two peaks of the
double bump pattern of the VGRF curve and MS as the time point for the minimal value of
VGRF between LR and PO (Figure 1). In addition, we calculated impulse by integrating
VGRF over time. We also calculated the stance duration of each step (the elapsed time
between initial contact and toe-off) and the stride duration. The VGRF values at each of the
three time points, impulse, stance duration, and stride duration were separately averaged
over every one-minute interval.

We filtered the raw coordinates of the retro-reflective markers using a zero-lag, fourth
order low pass filter with a cut-off frequency of 10 Hz. Using biomechanical modeling
software, Visual 3D (Visual3D v6TM, C-Motion, Inc., Germantown, MD, USA), we built
a fifteen-segment model, which included left and right foot, shank, thigh, upper arm,
forearm, and hand, trunk, and head segments. We identified the whole-body center of
mass (COM) using this model, and calculated the vertical velocity of COM (VCOM).
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Figure 1. An illustration of the VGRF curve for a single step. The red circles denote three stereotypical time points for each
step; the time point of load response (LR), mid stance (MS), and push off (PO). The LR and PO are the time points of two
peaks of the double bump pattern of the VGRF curve, and MS is the time point of the minimal value of VGRF between LR
and PO.

2.5. Statistical Analysis

We conducted a two-way repeated measures analysis of variance (ANOVA) to evaluate
any statistical differences between the VGRFs at LR, MS, and PO; impulses; stride dura-
tions; stance durations; and changes in the vertical velocities of COM for 20 participants
depending on time (10 levels: 1 to 10 min) and trial (two levels: trials 1 and 2) separately for
the left and right foot. We performed Mauchly’s sphericity test to evaluate the assumption
of sphericity. If the assumption of sphericity was violated, the Greenhouse-Geisser criterion
was used to reduce the degrees of freedom. Bonferroni correction was used as a post-hoc
test for multiple pairwise comparisons over time and between trials. The level of statistical
significance was set at p < 0.05. Additional statistical analysis methods used to evaluate the
goodness of fit of the curve-fitting models to encapsulate the errors in the VGRF estimation
are clarified in Section 5.

3. Results

The means and standard errors of VGRFs at LR, MS, and PO, and the impulse due to
VGRF of 20 participants, are shown in Figure 2. For all four measures (VGRFs at three time
points and the impulse), two-way repeated measures ANOVA showed significant main
effects of time and trial, and significant interaction between time and trial for both feet.
The statistical results are summarized in Table 1.
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every one-minute time interval for the both feet and two trials. (D) shows the means and standard error bars of impulse for
20 participants averaged over every one-minute time interval for the both feet and two trials.
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Table 1. The results of two-way repeated measures ANOVA for VGRFs and impulse.

Measure
Within-Subjects Effects

Time Trial Interaction

VGRF

LR
Left F[1.675,31.821] = 182.775,

p < 0.001
F[1,19] = 62.029,

p < 0.001
F[2.365,44.938] = 14.034,

p < 0.001

Right F[1.722,32.721] = 168.093,
p < 0.001

F[1,19] = 75.538,
p < 0.001

F[3.015,57.291] = 14.977,
p < 0.001

MS
Left F[1.512,28.730] = 139.023,

p < 0.001
F[1,19] = 75.538,

p < 0.001
F[3.032,57.600] = 17.979,

p < 0.001

Right F[2.045,38.862] = 135.190,
p < 0.001

F[1,19] = 77.021,
p < 0.001

F[2.577,48.955] = 16.322,
p < 0.001

PO
Left F[1.516,28.807] = 93.345,

p < 0.001
F[1,19] = 51.350,

p < 0.001
F[2.472,46.962] = 3.510,

p = 0.029

Right F[1.624,30.856] = 98.168,
p < 0.001

F[1,19] = 32.807,
p < 0.001

F[2.623,49.841] = 5.051,
p = 0.006

Impulse

Left F[1.260,23.934] = 120.867,
p < 0.001

F[1,19] = 52.881,
p < 0.001

F[1.841,34.970] = 18.048,
p < 0.001

Right F[1.391,26.423] = 134.003,
p < 0.001

F[1,19] = 56.153,
p < 0.001

F[2.060,39.143] = 21.252,
p < 0.001

For both trials and both feet, pairwise comparisons revealed that the estimated VGRFs
and impulse during a time interval of one minute were less than the estimated values
during the next minute with statistical significance in most neighboring pairs. The number
of neighboring pairs without statistically significant change always increased in the second
trial compared to the first trial for all the four measures and both feet. Pairwise comparisons
between trials also revealed that the VGRFs and impulse of 20 participants in the first trial
were significantly larger than those in the second trial at any one-minute time interval for
both feet.

We confirmed that the temporal decline in the estimated VGRFs and impulses are due
to imperfect sensing from the pressure pad rather than changes in walking kinematics and
dynamics by assessing four measures: (1) BW, (2) stance duration, (3) stride duration, and
(4) ∆VCOM (the difference between the VCOM values at the beginning of one stride and the
next one). The mean and SE of these four measures of 20 participants are shown in Figure 3,
and the results of the statistical analysis are summarized in Table 2. In contrast with the
ANOVA results for VGRF and impulse, two-way repeated measures ANOVA concluded
no significant main effect except for the effect of time on the stance duration of the left
foot. Even for the only observed effect of time on the stance duration of the left foot, the
post-hoc pairwise comparisons concluded no significant difference over each one-minute
interval. In addition, BW remained exactly the same for all participants across the three BW
measurement time points. Therefore, stance duration, stride duration, BW, and ∆VCOM
were seldom affected either by walking duration or the trial number.
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Table 2. The results of two-way repeated measures ANOVA performed for a sanity check.

Measure
Within-Subjects Effects

Time Trial Interaction

Stance duration
Left F[2.124,40.360] = 3.954,

p = 0.025
F[1,19] = 0.229,

p = 0.638
F[3.295,62.614] = 1.137,

p = 0.343

Right F[2.121,40.299] = 2.273,
p = 0.113

F[1,19] = 0.228,
p = 0.639

F[3.623,68.835] = 1.178,
p = 0.327

Stride duration F[1.991,37.835] = 1.623,
p = 0.211

F[1,19] = 0.462,
p = 0.505

F[3.072,58.369] = 1.662,
p = 0.184

∆VCOM
F[5.029,95.557] = 0.990,

p = 0.450
F[1,19] = 1.718,

p = 0.206
F[4.626,87.902] = 0.491,

p = 0.879
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4. A Curve Fitting Model of the Estimation Error

According to the impulse-momentum theorem, the time integration of the net vertical
force applied to the participant should be identical to the change in the vertical linear
momentum of the participant, i.e.,

I =
∫
(VGRFtotal − mg)dt = m∆VCOM , (1)

where the interval of integration is from a right heel strike to the subsequent right heel
strike; VGRFtotal is the total VGRF on the left and right foot; m is the mass of the participant;
and g is the gravitational acceleration. In typical walking, the kinematics is almost periodic,
and therefore VCOM after one gait cycle is expected to remain similar to the value at the
beginning of the cycle. Experimental data agree with this expectation; VCOM remains almost
constant, making ∆VCOM close to zero throughout 10 min of walking (Figure 3C). However,
experimental results also showed a time-dependent decline in VGRF, whereas BW remains
almost constant. Hence, the left hand side of Equation (1) should decrease, whereas the
right hand side remains close to zero. This discrepancy clarifies the time-dependent decline
in the estimated impulse. Combined with the time-dependent decline in VGRFs and almost
constant stance durations (Figure 3A), the experimental results conclude that the embedded
pad underestimates the pressure, and the error grows as the operation time of the treadmill
increases, i.e., if we calculate the error in the measured impulse as the difference between
the impulse estimated from the Zebris system, which is

∫
(VGRFtotal − mg)dt, and the

actual impulse obtained from kinematics, m∆VCOM, then, the magnitude of the error (∆I)
will grow as time, stride number, or the traveled distance increases.

We formulated a model encapsulating the evolving error. After inspecting the general
shape of the curves in Figure 2, we assumed that exponential decay would be an appropriate
approximation. Therefore, we fit the dynamics of the estimation error as,

∆I f it = ∆Isteady +
(

∆Iinitial − ∆Isteady

)
e−k(x−xinitial), (2)

where ∆Ifit is the fitted value of the error in the impulse measurement; ∆Isteady is the steady-
state value which ∆Ifit will approach after sufficiently many strides; k is the exponential
decay constant; x is the stride number; and xinitial and ∆Iinitial are the initial values of the
stride and the error, respectively. We set xinitial as one.

To find the optimal ∆Iinitial, k, and ∆Isteady iteratively, we need to select their proper
initial values for the iteration. We chose initial ∆Iinitial as the error in the impulse measure-
ment during the first stride. We chose the initial k as the overall slope of the impulse error
with respect to stride, calculated between the last and first strides. Finally, we chose the
initial ∆Isteady as the value of the error at the final stride. We iterated the values of ∆Iinitial, k,
and ∆Isteady using unconstrained multivariate optimization to find the values making ∆Ifit
closest to the true error, which we calculated as,

∆I =
∫
(VGRFtotal − mg)dt − m∆VCOM (3)

for each stride. The objective function of the optimization was the sum of the squared
Euclidean distance between ∆I and ∆Ifit, and the maximum number of iterations was set
as 1000.

5. Goodness of Fit of the Model

We assessed the model’s goodness of fit by calculating the coefficient of determination
(R2) between ∆I and ∆Ifit after the iteration, separately for each participant and trial.
The values of R2 indicate the proportion of variance explained by the curve-fitting model
used to encapsulate the error between ∆I and ∆Ifit. Considering that the model might be
sensitive to a slight fluctuation in ∆I during each single stride, we additionally assessed the
model’s goodness of fit after downsampling the data by averaging ∆I over 5, 10, 15, and
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20 strides. It is also highly plausible that the error depends more directly on the distance
traveled by the treadmill belt or the operation time of the treadmill rather than the stride
number. To address this, we calculated the R2 values after fitting ∆I with respect to time
and distance. Again, we performed the curve fitting after downsampling the data by
averaging the ∆I over 5, 10, 15, and 20 s; and 5, 10, 15, and 20 m.

The means and standard errors of the R2 values for 20 participants when fitting ∆I with
respect to strides, time, and distance are shown in Figure 4. The mean R2 of 20 participants
was above 0.88 in every case and above 0.95 in most cases. A representative fitting curve
that approximates the growing errors in VGRF estimation is shown in Figure 5. The R2

values for the first trials were larger than those for the second trial. Downsampling by
averaging increased the R2 values. We performed two-way repeated measures ANOVA to
evaluate any statistical differences between the values of R2 for 20 participants depending
on the data resolution (stride: 1, 5, 10, 15, and 20 strides; time: 5, 10, 15, and 20 s; distance:
5, 10, 15, and 20 m) and trial (2 levels: trials 1 and 2). The results are summarized in Table 3.
For all three variables (strides, time, and distance), there were significant main effects
of data resolution and trial on R2, and there was a significant interaction between data
resolution and trial.
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the means and standard error bars of the coefficient of determination (R2) for 20 participants when fitting the error (ΔI) 
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Figure 4. The goodness of fit of the curve fitting model of the VGRF estimation error. The figures from left to right are the
means and standard error bars of the coefficient of determination (R2) for 20 participants when fitting the error (∆I) with
respect to the stride number (strides), the operation time of the treadmill (time), and the distance traveled by the treadmill
belt (distance), respectively, for the two trials. We assessed the model’s goodness of fit for the curve fitting with respect to
every single stride, every 5, 10, 15, and 20 strides. Similarly, we assessed model’s goodness of fit after downsampling ∆I by
averaging it over 5, 10, 15, and 20 s; and 5, 10, 15, and 20 m for time and distance, respectively. Generally, downsampling
the data increased the mean R2 of 20 participants. The mean R2 of 20 participants for the first trial was larger than the
second trial.
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Figure 5. A representative figure illustrating the curve-fitting model that encapsulates the VGRF
estimation error over strides. The blue circles are the individual impulse estimation error values for
each stride, and the red line is the curve used to encapsulate the temporal changes in the impulse
estimation errors.

Table 3. The results of two-way repeated measures ANOVA for R2.

Measure
Within-Subjects Effects

Resolution Trial Interaction

Stride F[1.017,19.317] = 21.053,
p < 0.001

F[1,19] = 17.089,
p = 0.001

F[1.225,23.269] = 12.716,
p = 0.001

Time F[1.100,20.906] = 9.526,
p = 0.005

F[1,19] = 18.839,
p < 0.001

F[1.476,28.038] = 9.769,
p = 0.002

Distance F[1.035,19.661] = 14.530,
p = 0.001

F[1,19] = 15.773,
p = 0.001

F[1.238,23.526] =4.702,
p = 0.033

6. Discussion

The capacitive pressure sensor-embedded treadmill has been widely used as a reliable
alternative to expensive force platform-mounted treadmills. However, the plantar force
measured by capacitive sensors inherently shows drift due to its sensitivity to temperature
change, hysteresis, and prolonged pressure-induced sensor deformation. When we as-
sessed the VGRF of 20 participants who walked on a capacitive pressure sensor-embedded
treadmill, we found a continuous decline in the measured VGRF over time (Figure 1).
In addition, when subsequent measurements were performed after 10 min, the latter
measurement consistently yielded lower VGRF values compared to the former one.

We rigorously confirmed that the participants’ walking kinematics and bodyweight
did not contribute to the decline in the measured VGRF. According to Newton’s 2nd
law, the net external force should equal to mass times the acceleration of COM of any
system. During walking on a treadmill, the net external force applied to the walker is
the sum of the ground reaction force, body weight, and almost negligible air drag; the
only remote force applied to the body of the walker is gravitational force or body weight,
and the contact forces applied to the walker are only the ground reaction force and air
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drag. All other forces (e.g., from various muscles) are internal forces, and therefore cannot
contribute to the kinematics of the center of mass by virtue of Newton’s 3rd law. Note that
the air drag (in the vertical direction) is negligible (or at least almost zero on average per
stride) during walking on a treadmill. Therefore, if we integrate Newton’s 2nd law with
respect to time, the impulse in the vertical direction

∫
(VGRFtotal − mg)dt should be same

as m∆VCOM; the right hand side of Equation (3) should be very close to zero if VGRF,
body weight, and ∆VCOM are all measured correctly. However, this expectation directly
contradicts the experimental results. To assess body weight and ∆VCOM, we used the
gold-standards: a reliable and accurate scale and a motion capture system. Hence, the
only possible explanation for the time-dependent errors is erroneous sensing of VGRF;
capacitive sensor-embedded treadmills are not reliable in long-term VGRF measurement
during walking.

In contrast with previous studies that evaluated the reliability of capacitive sensor-
embedded treadmills only by assessing peak VGRF values for a short period of time, we
quantified relatively long-term time-dependent errors in the measured VGRF. Although
this finding has the merit of cautioning researchers to avoid long-term VGRF measurement
using the Zebris treadmill or similar systems, we went a step further. We estimated the
time-dependent errors using the impulse-momentum theorem and formulated curve-fitting
models. It might be possible to model the underlying mechanism of the erroneous measure
due to the repetitive mechanical stress that the foot exerts on the capacitive sensors during
walking. However, to develop a competent model based on such physical mechanisms, it
is necessary to know many parameter values that determine the sensor dynamics, which
the treadmill company does not disclose. Further, it is extremely challenging to make
an accurate model of the mechanical interaction between the foot and the sensors, and
the detailed dynamics inevitably depends on the walking pattern of each participant.
Therefore, rather than developing a model based on physical mechanisms, we developed
a straightforward curve-fitting model customized to individual participant’s walking
dynamics. Iteration of three parameters (rate of decay, initial, and steady-state VGRF
estimation errors) enabled the resultant curve to fit the growing errors in VGRF estimation
with high R2 values above 0.95 in most cases (Figure 4). Note that we developed one curve
fitting model per each individual participant; the three parameters of the fitting model are
different for each participant, which we summarized in the Supplementary Tables S1–S3.
Considering that the experimenter should collect the walking data of each participant,
deriving a curve-fitting model customized for each participant’s walking dynamics, rather
than a general model with universal parameter values, is more adequate and efficient.

Another finding of this study is that the VGRF values measured during the second
trials are significantly lower than those measured during the first trials. This finding is
consistent with the result of a previous study by Van Alsenoy et al. [18], which reported
that the peak VGRF values measured by a Zebris treadmill during the second trial were
lower than the values during the first trial for all running speeds. A previous study by Item-
Glatthorn et al. reported that a Zebris treadmill provided reliable peak forces measured
between-days [17], but the participants walked on a Zebris treadmill only for 20 s in this
study. Nüesch et al. also reported that peak forces measured by a Zebris system were
consistent across trials and days when participants walked and ran on a Zebris treadmill
for 2 min [10]. These studies support that a one-day break may be sufficiently long for
the sensors to regain their sensitivity after being used for a short period, such as 20 s or
2 min. However, our result clearly indicates that the underestimation of VGRF becomes
more severe as stride number increases during the 10 min of walking in the first trial,
and a 10 min break between the trials is not long enough for the sensors to recover from
the accumulated effects of mechanisms that cause the underestimation of pressure. It is
plausible that the minimum duration of the break session necessary for the pressure pad to
regain the original sensitivity depends on the strength of the actual mechanical stress and
the time interval during which the sensors were exposed to the stress. This speculation
leads to the need for considering the locomotion speed and weight of the participants and
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the length of the locomotion session to decide the length of the break session that secures a
reliable measure of VGRF. Such a concrete design criterion for the experiment should be
systematically addressed by additional future work.

In this initial study, we measured VGRF when the participants walked at their PWS,
which was within a small range, between 3.1 and 4.2 km/h. For high speed locomotion such
as running, VGRF increases substantially [31,32], and therefore may cause further sensor
deformation, decreasing the reliability of VGRF measurement. A previous study actually
reported underestimation of VGRF by a Zebris treadmill for high speed running [18].
In addition, the magnitude and trend of the measurement errors might depend on the
foot strike pattern during running, which can be categorized as fore, mid, or rear foot
strike [33,34]. Similarly, patients with foot pathologies or neurological dysfunctions alter
pressure distribution and increase the center of pressure trajectory variability during the
stance phase [35–38]. These plantar function irregularities during walking can also skew
the time-dependent trend of VGRF estimation errors. Hence, without proper future work,
the efficacy of our approach to developing a curve fitting model to encapsulate the VGRF
estimation error is not guaranteed for running or pathological gait.

7. Conclusions

Measuring foot pressure using capacitive sensors is a cost effective way to obtain
VGRF information during walking, but the affordability comes with the cost of inaccuracy.
We clarified the time-dependent growing errors in VGRF values measured by a capacitive
pressure sensor-embedded treadmill. Our results strongly suggest that researchers should
be cautious when using the VGRF values obtained from such systems to evaluate time-
dependent locomotor behaviors. As a quick solution to the identified problem, we propose
formulating a curve-fitting model customized for each participant. Instead of developing
a competent mathematical model of the sensor dynamics and the effect of the repetitive
mechanical stress due to foot contact, we suggest simple, quick and straightforward curve
fitting based on the obtained data and iteration. This approach may be an effective way to
estimate VGRF values during walking more accurately using treadmills with capacitive
pressure sensors. Hence, researchers in the field of human movement science can consider
the model proposed in our study as a viable method to compensate for the low reliability of
Zebris treadmills and similar capacitive sensor-embedded systems for VGRF measurement
during walking.

Supplementary Materials: The followings are available online at https://www.mdpi.com/article/
10.3390/s21165511/s1: Table S1: The equations of the curve-fitting model with respect to stride
number and the corresponding coefficient of determination (R2) for each participant, Table S2:
The equations of the curve-fitting model with respect to time and the corresponding coefficient of
determination (R2) for each participant, and Table S3: The equations of the curve-fitting model with
respect to distance and the corresponding coefficient of determination (R2) for each participant.
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