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Abstract: This perspective article highlights a recent surge of interest in the application of textiles
containing carbon nanotube (CNT) sensors for human health monitoring. Modern life puts more and
more pressure on humans, which translates into an increased number of various health disorders.
Unfortunately, this effect either decreases the quality of life or shortens it prematurely. A possible
solution to this problem is to employ sensors to monitor various body functions and indicate an
upcoming disease likelihood at its early stage. A broad spectrum of materials is currently under
investigation for this purpose, some of which already entered the market. One of the most promising
materials in this field are CNTs. They are flexible and of high electrical conductivity, which can be
modulated upon several forms of stimulation. The article begins with an illustration of techniques for
how wearable sensors can be built from them. Then, their application potential for tracking various
health parameters is presented. Finally, the article ends with a summary of this field’s progress and a
vision of the key directions to domesticate this concept.
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1. Introduction

Three decades have just passed since the (re)discovery of carbon nanotubes [1,2]. Over
this time, the interest in these materials has remained at an impressive level thanks to the
unique properties offered by these nanostructures. CNTs exhibit remarkable electrical [3–5]
(high current-carrying capacity, exceptional enhancement of conductivity of composites at
low filler loadings), biological [6–10] (antibacterial properties, drug delivery capabilities),
thermal [11–13] (excellent thermal conductivity), optical [14–16] (wide and tunable light ab-
sorption/emission spectrum), photocatalytic [17,18] (substantial applicability in pollutant
photodecomposition), and mechanical [19–21] (extraordinary tensile strength) characteris-
tics, so they are an excellent platform for innovation. What once was a scientific curiosity
is a market area of considerable size now, with the annual production of CNTs exceeding
thousands of tons. According to Research and Markets, the CNT market is predicted to
grow to 9.84 billion U.S. dollars by 2023 from 4.55 billion USD in 2018, translating to a
Compound Annual Growth Rate of 16.7% [22]. At this point, as envisioned by Japan’s Yano
Research Institute Ltd., the production capacity for CNTs should reach ca. 4000 tons [23].
The progress is driven by an increased application of these materials in coatings [24,25],
composites [26–28], electronics [29–31], and energy-storage systems [32–34]. One of the
areas, experiencing a considerable increase in the use of CNTs is health diagnostics.

The rapid progress in the miniaturization of electronic devices enables convenient
and detailed health monitoring. One can already buy wearable sensors off the shelf
embedded inside smartwatches and bands. Such devices can gather and analyze the data
day and night to improve the well-being of the owners. For example, they can monitor
parameters, such as heartbeat [35,36] and blood oxygen saturation [37–39], and track
sleep patterns [40,41]. Because such sensors are lightweight and require low power input,
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it is expected that the next generation of these appliances will be developed as a part
of the smart garment. Many wearable prototypes have recently been validated in the
scientific literature, which brings hope that this milestone will be reached in the upcoming
future. A considerable part of these e-textiles has been prepared with nanocarbon or other
nanomaterials at their heart [42–44].

Carbon nanostructures, such as CNTs or graphene, are ideal for this application be-
cause they are flexible [45–47], lightweight [48–50], highly electrically conducting [51,52],
and sensitive to a wide spectrum of stimuli [53–59], including biomolecules [60–64]. More-
over, their implementation is very welcome, as the typical materials used for wearable
sensors nowadays are rigid, which inconveniences the wearer [65], and of inferior me-
chanical characteristics, thereby making these devices prone to failure upon stretching or
bending. In light of the preceding, it is not surprising that the interest in employing CNTs
in smart textiles has steadily and rapidly increased over the past years (Figure 1).
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Recently, several reviews emerged demonstrating the potential of nanomaterials, such
as transition metal dichalcogenides or MXenes [66–68], for sensing. However, the field
lacks a comprehensive summary of how CNTs produced in large amounts can serve in this
area. In this perspective article, the most representative advances in the area of wearable
sensors for health monitoring using CNTs exclusively are presented. The paper starts with
a description of the primary methods of formation of such materials. These techniques
are then evaluated to present the fabrication routes, of which commercial implementation
is most feasible. Subsequently, several applications for such innovative materials are
highlighted, paying particular focus to their technology readiness level. Finally, the article
is concluded with a future outlook, which anticipates the upcoming breakthroughs and
suggests research directions that should receive the most immediate attention to catalyze
the development on this front.

2. Formation of Wearable Sensors from CNTs

Nanocarbon-based textiles are first assembled from individual CNT building blocks
for the material to serve the described purpose. Many methods have been devised to carry
out such a transformation [69], and they are is summarized in Figure 2. Two approach
routes can be discerned: those which involve a liquid medium or the processing techniques
conducted in the dry state entirely.

In the former case, the first goal is to “solubilize” the CNTs in a medium capable
of overcoming van der Waals interactions between the individual tubes. Although these
interactions are weak, the sheer number of them makes this task challenging. A solution
to this problem is to employ a surface-active compound, which can facilitate establishing
stronger interactions between the CNTs and the solvent rather than themselves.
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For water-based solutions, all the classes of surfactants can be employed: anionic
(e.g., sodium dodecylbenzene sulfonate [70], sodium cholate [71]), cationic (e.g., cetyltrimethy-
lammonium bromide [72], dodecyltrimethylammonium bromide [73]), nonionic (e.g., Triton
X-100 [74], Pluronic series [75]), or amphoteric (e.g., Amber 4001 [76], sodium lauroam-
phoacetate [77]). On the other hand, organic media typically employ conjugated polymers
as surfactants [59], which, as recently discovered, may also exhibit selectivity towards a dis-
persion of CNTs of a particular structure or electronic character. For instance, poly(N-decyl-
2,7-carbazole) was found to disperse almost exclusively semiconducting, single-walled
CNTs (SWCNTs) [78], while copolymers containing carbazole and binaphthol moieties
recognize monochiral SWCNTs of particular handedness [79].

As an alternative, to make the CNTs much more water-dispersible, one may exercise
oxidation, but functional groups on the surface often deteriorate the properties of the
material [80,81]. Many reports show that such chemical modification may considerably
decrease the capabilities of CNTs to transport charge [82–84] or transfer stress [85–87].
Thus, physical modification of the material by the incorporation of surface-active chemicals
is often engaged. However, a simple combination of CNTs with surfactants is insufficient
to make a dispersion from them. Thus, either of the two forms of agitation are typically
employed to promote the encapsulation of CNTs with surfactants: sonication [88] and
shear mixing [89].

After the dispersion is made, an arsenal of techniques is available to transform the
suspended CNTs into a macroscopic ensemble in the form of a coating to be integrated
with the textile [69]. Since some textiles may be incompatible with particular solvents, a
self-standing sensor can be made on a different substrate and then attached to the fabric in
the second step. These methods include dip-coating (Figure 3a—repetitive immersion of
the substrate into the CNT dispersion) [90–94], spin-coating (Figure 3b—deposition of the
CNT dispersion onto a rotating substrate) [95–97], and spray-coating (Figure 3c—use of
compressed gas to coat the substrate with CNT aerosol) [98] (both spinning and spraying
even out the thickness of the CNT coating on the substrate). To achieve the same effect,
one can also use vacuum filtration [99–101]. In this approach, a CNT dispersion is passed
through a porous membrane under reduced pressure.
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Due to the substantial aspect ratios of CNTs, which makes their properties highly
anisotropic, the CNTs are trapped on the filter while the solvent permeates to the receiving
flask. Lastly, a common method to deposit CNTs relies on the fact that the dispersed
material can migrate through an electric field (especially when CNTs are enveloped in
micelles made from arranged molecules of ionic surfactants, facilitating mobility in the
electrolyte). In such a case, the process is referred to as electrophoresis, and a conductive
substrate is required for the deposition [104–106]. Both of these techniques give rise to
the formation of CNT sensors, which are then integrated with an appropriate fabric to
create a smart textile. The advantage of the protocols described above is that the CNT
powder necessary to make the dispersion is available commercially in large quantities,
so they are scalable. Furthermore, the processes are also simple to conduct and free of
dangerous chemicals.

The second type of wet techniques, which can give a functional CNT textile, involves
their ensembles in the form of fibers (to learn more about the synthesis and properties of
CNT fibers, readers are advised to refer to dedicated reviews on this topic [107,108]). In
brief, this method also requires solubilization of the CNTs. One can either use surfactants
as described above [109,110] or engage superacids, such as concentrated chlorosulfonic
acid, 100% H2SO4, oleum, etc. [111–113], to create liquid-crystalline dispersion of CNTs.
The dispersion is then extruded through a bath, where it is precipitated out in a controlled
way to obtain a CNT fiber. The fiber created this way is collected continuously onto a
roll, the length of which is virtually unlimited. Such well-conductive fibers can already be
obtained from the market by the meter. The described concept is presented in Figure 4.
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To obtain a similar effect, it is also possible to use electrospinning. An electric field is
applied between a dispenser of CNT dispersion, usually kept in a syringe with a conductive
nozzle, and a rotating metal collector [115–119]. A DC voltage of sufficient magnitude (on
the order of several kV) between these two electrodes enables one to manufacture CNT
fibers, which are gradually deposited on the receiver. The largest disadvantage of this
process is the slow pace at which the material can be formed.

There are two more routes that can produce such materials, which, interestingly,
obviate the need to employ a liquid medium to disperse CNTs (Figure 5). In the former
approach, which is commonly called array-drawing, CNTs are first synthesized by Catalytic
Vapor Deposition (CVD) on a substrate in high-temperature conditions [120–122]. Then, the
material is slowly drawn in the perpendicular direction to the axis of CNT alignment. Due
to van der Waals forces, the CNTs adhere to each other well, enabling horizontal alignment
of the material [123–126]. In addition, the formed CNT fibers are often twisted to improve
the packing degree, which, in turn, enhances the properties of the material [127–129]. It is
essential to mention that not CNT arrays are spinnable, which is caused by factors such as
the degree of alignment of CNTs in the parent array, the purity, etc. [130,131].
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In 2004, it was discovered that this process could be compacted to a single step [132].
When the synthesis is conducted at a higher temperature under hydrogen in a semi-open
furnace, CNT fibers are synthesized inside in the form of aerogel. Thus, generated material
can be continuously collected on the rotating bobbin to obtain fibers of virtually any length.
This approach called direct-spinning can produce kilometers of CNT fibers a day of single-,
double-, and multi-walled structure [133].

A yarn produced by either of these methods may be effortlessly woven with a fabric
of choice like a regular thread to produce an eTextile. The health-monitoring applications
of such yarns and other CNT ensembles described earlier for health monitoring will be
presented in the following section.

3. The Opportunities Offered by Wearable Sensors from CNTs

It is more and more evident that one needs to combat the negative factors of our daily
lives as soon as possible to improve the quality of life and prolong it. That is because
the highest chance of a successful medical treatment is shortly after the so-called early
detection and then declines at a rate dependent on the disease type. Unfortunately, at this
point, the disease symptoms are often not evident at all, or they are so mild that a subject is
unaware of their existence. Ideally, to detect these disease indicators as many as possible,
health parameters should be monitored constantly and sensitively.
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The discovery of nanomaterials and CNTs, in particular, opened new opportunities
for this field, as they enable recording of the bioelectrical signals without inconveniencing
people too much. This approach was validated by monitoring various health parameters,
such as temperature, heart rate, and glucose level in the blood (Figure 6). Furthermore,
textile-compatible CNT sensors may be used to record electrocardiography (ECG), elec-
troencephalography (EEG), and electromyography (EMG) signals. The following sections
highlight the recent advances in these particular areas of development.
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3.1. Glucose Level

Monitoring glucose concentration in the blood is one of the most straightforward
methods to detect early signs of diabetes. Once a patient is diagnosed with this condition,
such a procedure becomes routine, conducted several times a day. However, invasive
needle-pinching is not only inconvenient to many people but also requires attention.
Furthermore, measurements carried out a few times a day provide discrete data points
rather than continuous results. As a consequence, one cannot accurately track the impact
of eating habits. Conversely, constant measurement of glucose concentration in blood
would enable predicting a potentially critical condition. For instance, high blood sugar may
impair the ability of the body to control blood pressure, which may result in fainting [134].
While passing out at home could result in serious injuries, if consciousness is lost during
driving, it may bring about critical/fatal consequences. Excess glucose may also damage
the kidneys [135] and induce blindness [136].

Thus, there is a growing interest in the development of non-invasive glucose sen-
sors [137,138]. Such devices can either be implanted or placed on the skin to gauge the
level of glucose in bodily fluids, such as sweat, saliva, tears, or interstitial fluid (Figure 7).
Glucose Oxidase (GOx) immobilization on CNTs gives a sensitive electrochemical platform
capable of detecting glucose at low concentrations [139–141]. Once glucose is contacted
with the hybrid material, it is oxidized to gluconic acid, thereby causing changes to the
electrochemical characteristics of the sensor. Kang, Park, and Ha showed that a wearable
sensor could be constructed from CNTs, which can detect glucose down to 50 µM with a
response time of 5 s [142]. The faradic currents generated by the redox process enabled
the detection. Although the system did not seem to not monitor glucose concentration
directly from the blood, it was nevertheless proven that the implementation of the concept
is feasible.
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So far, it was shown that glucose levels could be tracked in the venous blood by
CNT fibers [143]. Wang and co-workers used CNT fibers to prepare and evaluate CNT
fiber-based electrochemical sensors for in-vivo monitoring of various disease biomarkers.
Regarding glucose, the sensor’s operating range was 2.5–5 mM, which matched the glucose
level in the blood [144]. The real-time monitoring of the level of H2O2 generated during
glucose oxidation facilitated the sensing process. Although the technology-readiness level
of these solutions is not at the level of commercial implementation yet, further progress
in this area may pave the way towards the utilization of CNT-based textiles for glucose
sensing. For instance, the adaptation of microneedles employed in the graphene-based
drug-delivery system [145] in a CNT-based glucose sensor could significantly increase
its utility.

3.2. ECG

Perhaps the most explored area of research in the analyzed field deals with the use
of CNTs for electrocardiography [146]. As recently demonstrated by Kolanowska and col-
leagues, CNTs excel in this field due to their high flexibility, impressive electrical conductivity,
and low mass density, which dramatically reduces the device’s weight [147]. Acquisition of
ECG signal is conceptually simple, but it requires sufficiently sensitive electrodes of appro-
priate adhesion to skin to discern all the underlying phenomena. Figure 8a demonstrates
major electric features, the shape of which enables studying the condition of a heart. To
determine ECG accurately, the electrodes are commonly arranged into 12 leads [148], which
are interfaced with a human body at the positions indicated in Figure 8b.

An abundance of articles demonstrates how various types of CNTs can be used
for ECG acquisition [149–154]. Typically, the nanocarbon component is introduced to a
flexible polymer matrix, such as polydimethylsiloxane or polyurethane, to make the device
convenient to the user and ensure appropriate adhesion to the skin [155,156]. Recently, it
was shown that this concept could be taken a step further by incorporating such sensors
into textiles [147,157,158] (Figure 9). What is encouraging from the practical point of view is
that repeated washing of such textiles showed only a small decrease of performance of 6%
in terms of electrical resistance. Regarding the performance, Chi and co-workers showed
that a CNT-based sensor can be used for daily monitoring of ECG signals, outperforming
the traditional Ag/AgCl electrodes [149]. Despite the impressive progress in this area,
we are yet to find out how the proposed e-Textiles for ECG measurement perform in the
long term. It is crucial to prove that neither the user nor the smart textile suffers from
prolonged use.
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right Elsevier (2020); (b) woman’s smart vest modified and reproduced with permission from [147], 
Copyright Elsevier (2017); (c) smart garment with the indication of the placement of textile elec-
trodes and a pocket for a wearable instrument to collect the data modified and reproduced with 
permission from [158], Copyright The Authors (2019). 
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Figure 9. Prototype e-Textiles for ECG measurement: (a) t-shirt along with visualization of the
microstructure of the material by SEM modified and reproduced with permission from [157], Copy-
right Elsevier (2020); (b) woman’s smart vest modified and reproduced with permission from [147],
Copyright Elsevier (2017); (c) smart garment with the indication of the placement of textile electrodes
and a pocket for a wearable instrument to collect the data modified and reproduced with permission
from [158], Copyright The Authors (2019).
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3.3. EEG

Electroencephalography is employed to record brain activity in real-time by measuring
biopotentials through electrodes placed on the scalp [161]. It can be used to detect tumors
or track brain activity while the patient is anesthetized. It is also routinely used to study
brain disorders such as epilepsy.

The problem with many prototypes for recording EEGs is that the hair on the head
negatively affects the signal quality, so, if possible, the measurement is conducted on the
forehead instead [162]. As recently summarized by Tseghai and co-workers [163], there
is only a handful of reports on the use of textiles for EEG, and none examined CNTs.
The most similar material was a textile containing carbon fiber, which showed that a dry
electrode built on its base was softer and of lower impedance than conductive rubber [164].
Interestingly, it was observed that the electrode-skin impedance decreases in time as the
perspiration accumulation between the skin, and the electrode minimizes it considerably.

However, it does not mean that CNTs cannot be used for this purpose. Awara and co-
workers showed that a thin, multi-walled CNT electrode could monitor EEG signals [165].
The prototype electrode was free of metals, which eliminated one of the key problems
with the application of conventional Ag/AgCl electrodes. Ag/AgCl blocks X-rays, thereby
creating artifacts on Computed Tomography (CT) images during surgery, complicating the
procedure. Furthermore, the results showed that CNTs combined with polydimethylsilox-
ane elastomer could be used for EEG monitoring as well [156]. The concept was verified by
measuring signal changes in the alpha band while the sensor was placed on the forehead or
earlobe. The proposed fabrication method was simple, fast, and very cost effective. The au-
thors estimated the cost of manufacture of such sensor to be ~1–5 USD/g. Importantly, the
CNT/PDMS sensor was very robust, as its properties changed only slightly after subjecting
it to 10,000 strain cycles. Lastly, Ruffini and colleagues reported the results of a human
trial wherein CNTs were used for the described application [166]. The study showed
that (i) CNT-based dry electrodes perform similarly to state-of-the-art wet electrodes, and
(ii) there are no side effects such as itching, redness, or irritation six months after their
application even when the CNT array was directly exposed to skin. In light of what was
said, it is anticipated that the application of CNTs for tracking EEG signals in the form of
smart textile materials will emerge soon.

3.4. EMG

Electromyography is a technique used to monitor the well-being of muscles and nerve
cells controlling them. The measurement can either be done non-invasively by monitoring
the signals on the skin or intramuscularly. Since it was found that nanomaterials can
facilitate the detection of EMG signals via the first route, which is much more comfortable,
their role on this front has grown considerably over recent times [161,167]. Regarding
CNT perspectives, as demonstrated by Lee and co-workers, a combination of CNTs (to do
the monitoring) and polydimethylsiloxane (to improve the adhesion) can robustly detect
bioelectrical signals even in the presence of wrinkles in the skin. When a subject used
the muscles of the chest, EMG signals were discerned by the epidermal sensor (indicated
with arrows in the ECG shown in Figure 10a) [168]. There was no need to apply gel to
electrically couple skin to the electrodes or glue to improve adhesion, thereby enabling
comfortable, continuous, long-term monitoring of the subject.
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duced with permission from [168] Copyright The Authors (2014); and (b,c) forearm modified and
reproduced with permission from [169] Copyright The Japan Society of Applied Physics (2018).
Panels (b,c) demonstrate ECG signals while bending the arm during sitting and running, respectively.

The electroactivity can be tracked with higher resolution when the variations in
myoelectrical potential are gauged away from the chest. Kang and Ha showed that CNT-
based wearable electrodes, which can be incorporated in textiles, measure it accurately [169].
As the level of activity was increased from rest (Figure 10b), via walking (not shown) to
running (Figure 10c), the signal-to-noise ratio increased substantially. The CNT sensors
placed on the forearm showed comparable performance to Ag/AgCl electrodes, which
required a conductive gel film. Repeated bending even at a high bend angle did not affect
the performance due to the high flexibility of the components.

These advances are significant, as they open new perspectives for people ranging
from athletes to the disabled. In the former case, such ECG textile sensors provide means
of supervising the muscles’ state while exercising to avoid injury. In the latter case, the
solution can be used to evaluate the progress of rehabilitation. Moreover, such CNT sensors
can be easily integrated with textiles using various techniques available in the literature
for other conductive materials and nanomaterials [170]. For instance, Qi and co-workers
showed that yarns made of CNT-coated polyurethane nanofibers can be easily woven
to obtain a piezoresistive sensor capable of detection of wrist bending, cheek bulging,
swallowing, or respiration [171].

3.5. Temperature

The temperature of a human body indirectly informs about several health disorders
that may require attention. Furthermore, an excessive amount of heat stored by a body
can result in exhaustion and strokes. It is vital for athletes [172] and workers exposed
to elevated temperatures, such as miners [173], for whom such conditions may have
fatal consequences. The repercussions of the current COVID-19 pandemic could also be
minimized if people had means of immediate determination of a temperature rise, leading
to earlier self-isolation.

Body temperature is predominantly monitored by wearables operating either on the
principles of a thermocouple or by exploiting a phenomenon of a change in electrical
resistance with temperature (quantified by the Temperature Coefficient of Resistance—
TCR) [174]. Concerning the former, when two junctions composed of dissimilar conductors
are exposed to different temperatures, a voltage proportional to a temperature difference
is generated. On the other hand, the latter phenomenon capitalizes on the fact that the
capabilities of materials to transport charge increase (negative TCR) or decrease (positive
TCR) with a temperature rise. In the case of CNTs, the more metallic CNTs are in the
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material, the higher the probability that the sensor will have a positive TCR at room
temperature and above. One may also measure the temperature optically by tracking the
angular deformation of waves generated from the sensor reflected from a human body.
Still, this approach is less common, as monitoring the change in electrical properties of
CNTs is often more convenient.

Blasdel and Monty showed that multi-walled CNTs (6.6 wt.%) deposited on Nylon 6
could resistively determine temperature between 25 ◦C and 45 ◦C [175]. Polypyrrole was
employed on the top to protect the material from the external environment and improve the
electrical percolation between individual CNTs creating the network. The material revealed
a negative TCR of −0.228 ± 0.03%/◦C. What is important from the practical point of view
is that the sensor remained sensitive even after repeated bending and exposure to heating-
cooling cycles. No hysteresis was observed. Nevertheless, the operational parameters of
the device were affected by the humidity. Therefore, some means of compensation for this
effect should always be devised, as making the textile-based sensor impermeable to water
vapor would be unwelcome for the skin.

Rosace and co-workers addressed this challenge [176]. The authors combined multi-
walled CNTs and cotton to create a wearable sensor to detect changes in humidity and
temperature by analyzing the impact of these parameters on surface resistance [176].
CNTs were oxidized, and a number of chemical compounds were added to improve
the compatibility with cotton. The resulting eTextile had good mechanical integrity and
electrical conductivity. The CNTs adhered to the substrate well and were appropriately
interconnected. The parameters mentioned above were monitored, and the designed smart
textile showed good sensitivity and reproducibility of results.

Recently, Wu and colleagues reported that similar textiles based on biodegradable/
biocompatible materials could be manufactured for a prolonged time [177]. In their contri-
bution, silkworm fiber coiled yarns were combined with CNTs and an ionic liquid to create
a temperature-sensitive hybrid fiber, which was then woven into a textile (Figure 11). The
obtained material was breathable and durable. Multiple washing cycles did not deteriorate
the performance to a significant extent. The presence of 1-Ethyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide on the surface of CNTs enabled reaching the highest
temperature sensitivity among recently reported materials i.e., 1.23%/◦C. Due to the ap-
preciable performance, there was no need to employ digital converters or gain amplifiers,
the use of which complicates the design of many established temperature sensors. In-
terestingly, when silk yarns covered with Ag nanowires were additionally woven into
the fabric, a combo-sensor able to detect changes in both temperature and pressure was
constructed. The reported sensitivity was also high (0.123 kPa−1), while the relaxation tie
was as short as 0.25 s. Thus, the study demonstrates that a combination of various types of
nanomaterials in a smart textile may considerably increase the utility of such materials for
health diagnostics.
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4. Conclusions and Future Outlook

In a relatively short time, the CNT field experienced an impressive amount of progress.
What once was an unexpected, soot-like by-product on an electrode is now a multi-billion-
dollar industry with the potential to revolutionize many areas of daily life. One area,
which has some relation to the whole of humanity and could benefit from the wonders of
nanocarbon, is medicine. The ever-increasing pace of life urges the design of new means of
monitoring health to stop the growing number of health disorders per capita. To combat
this challenge, recently, wearable sensors became the focal point of researchers from every
corner of the globe. As this article shows, the majority of the progress has been achieved
in the past five years, and the interest from the scientific community in this area keeps
increasing. With this in mind, it is likely that the milestones necessary to transfer this
technology to our daily lives may be conquered in the upcoming future.

For that to happen, several issues of CNTs should be handled. First of all, despite their
merits, the price of the material should further decrease to make the use of the e-Textiles
widespread. Often, the best performance is obtained by using single-walled CNTs, which
remain much more expensive than multi-walled CNTs. Secondly, there is still a need to
gain more control over the structure of the synthesized material. The produced CNTs have
a diverse selection of chiralities, which complicates matching the material’s properties
with the operational conditions. Having means to synthesize exclusively semiconducting
or metallic CNTs, ideally of a pre-defined chirality, would be advantageous. This would
simplify the analysis of the signal obtained by their means. Alternatively, rather than
focusing on materials science, it may be helpful to adapt machine-learning protocols to
handle the complexity of the system.

Furthermore, it is crucial to ensure the biocompatibility of the developed smart textiles
having nanocarbon at their heart. CNTs after the synthesis contain residual metallic catalyst,
various hydrocarbons, and different forms of (nano)carbon. These components should
not be disregarded from consideration. We need to develop ways to purify the material
more effectively. One also needs to take into account the recent legislative transition from
the Medical Device Directive (MDD) to the Medical Device Regulation (MDR). The new
law takes much more precautionary measures for nanomaterial applications in medical
devices, so it is of high importance to focus on these issues. Consequently, the long-term
use of such e-Textiles should be studied thoroughly to analyze a possible influence of
prolonged exposure to CNTs. This is important to ensure the durability of such materials
and guarantee that the CNTs stay embedded in the fabric, so they do not affect bodily
functions negatively. Although these matters will, most probably, impact the time to market,
safety of the users is the priority. Lastly, recent research demonstrates that hybridizing
more than one type of nanomaterial can significantly broaden the application opportunities.
Thus, it is plausible that a multi-nanomaterial textile could have improved precision or
detect many health parameters at once. This would be particularly fruitful for personalized
medicine and telemedicine. The former would gain from having a sensitive platform to
detect health abnormalities, which could be anticipated for someone with a genetic burden.
The latter, on the other hand, would capitalize on the easily accessible, large amount of
data, which could be analyzed remotely by a doctor.
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