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Abstract: When a traditional visual SLAM system works in a dynamic environment, it will be
disturbed by dynamic objects and perform poorly. In order to overcome the interference of dynamic
objects, we propose a semantic SLAM system for catadioptric panoramic cameras in dynamic
environments. A real-time instance segmentation network is used to detect potential moving targets
in the panoramic image. In order to find the real dynamic targets, potential moving targets are
verified according to the sphere’s epipolar constraints. Then, when extracting feature points, the
dynamic objects in the panoramic image are masked. Only static feature points are used to estimate
the pose of the panoramic camera, so as to improve the accuracy of pose estimation. In order to verify
the performance of our system, experiments were conducted on public data sets. The experiments
showed that in a highly dynamic environment, the accuracy of our system is significantly better than
traditional algorithms. By calculating the RMSE of the absolute trajectory error, we found that our
system performed up to 96.3% better than traditional SLAM. Our catadioptric panoramic camera
semantic SLAM system has higher accuracy and robustness in complex dynamic environments.

Keywords: SLAM; semantic segmentation; multi-view geometry; dynamic environments

1. Introduction

With the development of the mobile robot industry, robots increasingly require their
own positioning when performing a variety of complex tasks. At present, visual simulta-
neous localization and mapping (SLAM) technology is one of the most common methods
used to realize robot localization [1]. However, the current visual SLAM systems typically
use a pinhole camera with a limited field of view, and assume that the scene is static. This
assumption imposes many restrictions on the application scenarios of visual SLAM. In
order to improve the accuracy and stability of the visual SLAM, it is an urgent task to use a
panoramic camera with large field of view to improve the accuracy of the visual SLAM
system in dynamic environments.

The distribution of features in the scene observed by the camera is one important
factor that affects the performance of visual SLAM. As the camera field of view (FOV)
increases, the number of features observed will also grow. When large field of view cameras
are used in SLAM, it has more precise and robust performance than when ordinary pinhole
cameras are used. A catadioptric panoramic camera can provide a 360-degree view of
the scene, at a lower cost than a fisheye camera; thus, we chose to apply a catadioptric
panoramic camera to the SLAM task.

In the past few decades, a variety of SLAM and visual odometry systems have been
proposed. Some representative examples are ORB-SLAM2 [2], LSD-SLAM [3], and direct
sparse odometry (DSO) [4]. ORB-SLAM2 is a visual SLAM algorithm that uses feature
points to solve the camera pose and spatial points. LSD-SLAM is the first monocular Visual
SLAM algorithm that uses the direct method to output semi-dense maps and optimized
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camera poses. DSO is a direct sparse odometry that joins the optimization of all parameters,
including camera poses, camera intrinsics, and inverse depth value of space points.

There are also many studies on panoramic camera SLAM and visual odometry. Caruso
et al. proposed a real-time, direct monocular SLAM method based on LSD-SLAM by
incorporating the unified camera model. Heng et al. presented a semi-direct visual
odometry for a fisheye-stereo camera [5]. In [6], a direct visual odometry for a fisheye-
stereo camera was proposed. In [7] a unified spherical camera model was used for the
fisheye camera, which was improved with the ORB-SLAM2 semi-dense map.

These methods are all based on the assumption that the objects in the scene are static.
When the extracted feature points are from dynamic objects in the scene, it will affect the
accuracy of the camera pose estimation. However, in reality there are not many completely
static scenes; most scenes contain dynamic objects which will occlude the features being
tracked, which may result in reduced accuracy of pose solution or loss of system tracking.
Therefore, improving the accuracy and stability of SLAM in dynamic scenarios is an
important research direction [8].

2. Related Work

The SLAM system in the classic dynamic environment does not consider using ma-
chine learning to detect dynamic targets. The dynamic objects in the environment are
considered as outliers. The typical algorithms for removing outliers are RANSAC [9] and
robust cost functions [10]. Sun et al. [11] proposed an online motion elimination method
based on an RGB-D camera. They identified the moving foreground pixels based on the
reprojection error, compared the current frame RGB-D image with the foreground model
pixels, and moved the foreground. Pixels are divided to achieve the purpose of removing
dynamic points. Li et al. [12] proposed a real-time depth edge-based RGB-D SLAM system
for dynamic environments. It calculates the possibility that each key frame point is a
static point, using this static weighting method to reduce the estimation of the camera
pose by dynamic objects’ impact. Cheng, Sun, and Meng [13] used monocular cameras
to distinguish dynamic points from static points through an optical-flow and a five-point
algorithm approach to improve the accuracy of camera pose estimation.

Although these geometric-based visual SLAM systems can eliminate the influence of
dynamic objects in the scene to a certain extent, they also have certain limitations. These
methods lack semantic information and cannot use prior knowledge of the scene to judge
the motion state of the object. Therefore, many SLAM systems combined with semantic
segmentation networks have been proposed to deal with dynamic objects in complex
environments.

Xiao et al. [14], based on convolutional neural networks, built an SSD object detector
combined with prior knowledge, which they used to detect dynamic objects in the scene.
The dynamic object detector was combined with the SLAM system. The selective tracking
algorithm in the tracking thread was used to process the feature points of the dynamic
objects, which significantly reduced the error of the camera pose estimation. However, the
SSD object detector can only detect the boxes of dynamic objects in the image. In order
to further improve the accuracy of the system, it is necessary to realize the detection of
dynamic objects at the pixel level. Bescos et al. [15] used Mask R-CNN to detect dynamic
targets, with the purpose of removing dynamic feature points. Nevertheless, their system
is a dynamic SLAM system based on an RGB-D camera, and the camera cost is too high. In
order to realize the SLAM system with low cost and high precision, it is very important
to select a low-cost monocular catadioptric panoramic camera as the sensor in the SLAM
system. Yu et al. [16] employed SegNet for the detection of moving objects, which improved
the accuracy and stability of the SLAM system. However, since they used a pinhole camera
with a limited field of view, when there are many dynamic objects in the image, after
removing the dynamic objects, the available features in the image may be insufficient. In
such instances, the camera pose calculation fails.
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In order to solve the above problems, we propose a catadioptric panoramic camera
semantic SLAM system for dynamic environments.

The rest of the paper is structured as follows: In Section 2, a brief introduction to
semantic segmentation of potentially dynamic features is given. We then analyze the
spherical surface pole constraints according to the projection model of the catadioptric
panoramic camera, and, combining the results of semantic segmentation of panoramic
images, a method is proposed to eliminate dynamic points in a tightly coupled manner
between the semantic results and the sphere epipolar geometry. In Section 3 we evaluate the
accuracy of our system on the Omni dataset and compare our system with state-of-the-art
SLAM systems. Finally, a summary is provided in Section 4.

3. Methods
3.1. Panoramic Image Semantic Segmentation

Knowing the types of objects in the scene can help us deal with complex tasks in a
dynamic environment. However, traditional methods cannot provide this prior information.
With the rapid development of deep learning, semantic segmentation networks can output
pixel-level semantic information. Therefore, combining semantic segmentation networks
with traditional SLAM systems can complete complex tasks in dynamic environments.
Because the semantic information is used to mark the potential dynamic points in the
environment, the image is input into the SLAM system with prior information.

MASK-RCNN is a representative instance segmentation network [17], but it cannot
meet the real-time requirements in SLAM. In order to be able to input images with semantic
information for the SLAM system in real time, we use YOLACT [18] to perform instance
segmentation on panoramic images. Through training, it can detect potential moving
objects including cars and people.

YOLACT divides instance segmentation into two parallel tasks: Generating a non-local
prototype mask over the entire image and predicting a set of linear combination coeffi-
cients per instance. It then generates a full-image instance segmentation from these two
components: For each instance, the prototype is linearly combined with the corresponding
prediction coefficient, then the predicted bounding box is used for cropping [8].

The size of the original RGB image input to the network structure is h× w× 3, the
output of the network is a matrix of size h × w × n, and n represents the number of
instances of cars and people in the image. Figure 1 shows the image we input to the
YOLACT network and the result of instance segmentation.
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3.2. Dynamic Point Removal

Through the results of instance segmentation output by the YOLACT instance seg-
mentation network, we obtain pixel-level semantic information of the panoramic image.
Under normal circumstances, according to the semantic label corresponding to the pixel in
the panoramic image, the type information in each instance can be distinguished, the corre-
sponding dynamic instance can be eliminated, and the pose estimation of the catadioptric
panoramic camera is not involved. However, vehicles in reality are not all dynamic. When
a static vehicle occupies most of the view of the panoramic image, if the vehicle is removed
as a dynamic point at this time, a large amount of useful information will be lost, or feature
points will be insufficient and the camera pose calculation will fail.

The result of YOLACT instance segmentation has nothing to do with the motion state
of the objects in the scene. Semantic tags cannot be used to distinguish the motion state of
objects in the scene. We need a method to distinguish the motion state of objects and reflect
the real movement of objects in the scene.

After analyzing the projection model of the catadioptric panoramic camera [19], the
sphere epipolar constraint is used to verify whether the feature points in the panoramic
image are dynamic or static. If a point is static, for a pair of matching feature points in
two panoramic images, the feature vector obtained by back projection should intersect the
polar line on the sphere., and the dynamic feature point does not satisfy this constraint.

In Figure 2, point P is a spatial point observed by both the previous and current frames.
pp =

(
usp vsp wsp

)
and pc =

(
usc vsc wsc

)
, respectively, correspond to the unit

vectors of the two frames of panoramic images that are back-projected from the catadioptric
panoramic camera projection model to the unit sphere, and

√
us2 + vs2 + ws2 = 1. The

line c1c2 connecting the center points of the two spheres is the baseline. The intersection
points ep and ec of the baseline and the two spheres are called epipoles. Suppose we know
pp in the left sphere and want to find the corresponding pc in the right sphere. Without

depth information, we know that the space point P is on the corresponding ray −−−→c1 pp ,
but the specific position on the line is not known. When the spatial point P is static, there
should be a correct feature match, and we can know that point pc is on the epipolar line of
the sphere on the right. This geometric constraint is the sphere epipolar constraint of the
catadioptric panoramic camera.

pp
Tt∧Rpc = 0 (1)

E = t∧R (2)

t∧ =

 0 −t3 t2
t3 0 −t1
−t2 t1 0

 (3)

R is the rotation matrix, t is the translation vector and E is the essential matrix.
According to the epipolar constraint, when the point P is a static point, pp and pc must
satisfy the constraint. However, due to the error of feature matching and the uncertainty of
the essential matrix, in the actual solution process the static point may not strictly meet the
constraint, when pc is not exactly on the line but some distance away from the epipolar
line. In such a case we can set a threshold; when the distance is less than the threshold, the
point is considered to be a static point, and when the distance is greater than the threshold,
it is a dynamic point.
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Figure 2. Sphere epipolar geometry.

We need to request the essential matrix before we can use the sphere epipolar con-
straint to determine the state of the scene point. Usually, E has five degrees of freedom,
indicating that we can use at least five pairs of matching feature points to solve E, but the
inherent property of E is a non-linear property, which is troublesome to estimate, and thus
we use the eight-point-algorithm to solve E. When we have a pair of matching points whose
back-projection vectors are pp =

(
usp vsp wsp

)
and pc =

(
usc vsc wsc

)
, according to

the epipolar constraint:

(
us2 vs2 ws2

) e1 e2 e3
e4 e5 e6
e7 e8 e9

 us1
vs1
ws1

 = 0 (4)

The E expansion is written in vector form:

e = [e1, e2, e3, e4, e5, e6, e7, e8, e9]
T (5)

Formula (4) can be written as a linear formula related to e:

[us2us1, us2vs1, us2, vs2us1, vs2vs1, vs2, us1, vs1, 1] · e = 0 (6)

There are nine unknowns in Formula (6), but due to the equivalence of scale of E,
the degrees of freedom of e can be reduced to eight. At this time, we select eight pairs
of matching feature points between consecutive image frames and solve Equation (6) to
obtain E.

With the essential matrix, E, and the result of instance segmentation, a thread of
dynamic point elimination can be added to the SLAM system. Figure 3 presents the
overall algorithm framework we propose to eliminate dynamic points in the catadioptric
panoramic image. First, the essential matrix between the previous frame and current frame
of the catadioptric panoramic camera model is calculated, and the instance segmentation
network is used to find the potential dynamic objects. Then, the sphere epipolar constrained
is used to further verify the pixels of the potential dynamic objects, the real dynamic objects
are found, and a mask image is generated; finally, the dynamic points in the panoramic
image are eliminated according to the obtained mask image during the detection of the
ORB feature points.
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4. Experiment and Analysis
4.1. Public Dataset Experiment

In order to verify the performance of the SLAM system based on the catadioptric
panoramic camera in a dynamic environment, experiments were conducted on the Om-
nidirectional public dataset [20]. This dataset was collected by a car loaded with two
catadioptric panoramic cameras on a city street, and contains 12,607 frames of images
in total. There are a large number of dynamic and static cars and people in the images,
which is very suitable for testing the performance of the SLAM system of the catadioptric
panoramic camera in a dynamic environment. Figure 4 shows the result of feature point
extraction in the original image and after removing the dynamic objects. After implement-
ing our dynamic object culling method, the moving cars selected in the box in (a) were all
successfully eliminated when extracting feature points in (b).
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A number of image sequences containing dynamic objects were selected in the dataset,
and we divided them into low dynamic sequences, high dynamic sequences and sequences
containing high dynamic and low dynamic objects. To verify the SLAM algorithm proposed
in this paper, we evaluated the absolute trajectory error (ATE) and relative pose error
(RPE) indicators for our SLAM system. ATE is used to calculate the error between the
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estimated trajectory and the ground truth, which can directly reflect the accuracy and
global consistency of the pose estimation algorithm, and is usually used to evaluate the
performance of the entire SLAM system. RPE is an indicator for evaluating system drift. It
calculates the difference between two pose changes in a fixed period of time.

ATE =

√√√√ 1
N

N

∑
i=1

∥∥∥log
(
Tgt,i

−1Testi,i
)∨∥∥∥2

2

(7)

Formula (7) is used to calculate RMSE of ATE. Testi,i represents the trajectory of the
calculated Lie algebra form. Tgt,i represents the trajectory of the Lie algebraic form of
ground truth, for i = 1, · · · , N. N represents the total number of poses included in the
trajectory.

We used RMSE, mean error, median error, and standard deviation (SD) to evaluate
ATE indicators, and average relative translation to evaluate RPE indicators. The trajectory
calculated using our method was compared with the monocular catadioptric panorama
VO method and the ground truth. The monocular catadioptric panoramic VO [21] is based
on the ORB-SLAM2 improved VO algorithm that is suitable for catadioptric panoramic
cameras. We collected statistics on the calculated data including the RMSE, mean error,
median error, and standard deviation, and recorded them in Table 1. We then used average
relative translation to evaluate the RPE index. Figure 5 shows the error between our
calculated trajectory and the ground truth. The relative error can be seen by the color.
Analysis of the figure shows that the error between our calculated trajectory and the ground
truth remained within a small range of changes and there was no sudden change and drift
of the trajectory due to dynamic objects, which proves the robustness of the algorithm
presented this paper.

Table 1. Comparison of absolute trajectory error (ATE) on the Omnidirectional public dataset.

Sequence Catadioptric Pano VO Ours
RMSE

(×10 m)
Median
(×10 m)

Mean
(×10 m)

S.D
(×10 m)

RMSE
(×10 m)

Median
(×10 m)

Mean
(×10 m)

SD
(×10 m)

Low dynamic sequence 0.012 0.011 0.010 0.003 0.0096 0.0095 0.0092 0.0029
Low and high dynamic

sequence 0.972 0.971 0.972 0.218 0.0359 0.0355 0.0354 0.011

High dynamic sequence 0.923 0.914 0.916 0.304 0.0445 0.0440 0.0441 0.013Sensors 2021, 21, x FOR PEER REVIEW 8 of 11 
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Figure 6 shows the result of comparison of the trajectories obtained by different
methods and the groundtruth. The trajectory calculated by our system was closer to
the groundtruth, while the improved Catadioptric Pano VO based on ORB-SLAM2 was
the closest to our calculated trajectory in a low dynamic environment, because ORB-
SLAM2 uses the RANSAC algorithm in a low dynamic environment. As outliers, dynamic
points are not used for pose estimation, which is less affected by dynamic points. There
were highly dynamic targets in the other two sequences, where the RANSAC algorithm
failed, whereas our system could still effectively remove dynamic points. The trajectory
accuracy calculated by our system was higher than the trajectory accuracy calculated
by Catadioptric Pano VO and closer to the groundtruth. Analyzing the data in Table 1,
we conclude that our system performed better than Catadioptric Pano VO in the three
sequences: the low dynamic sequence, the high dynamic sequence, and the low and high
dynamic sequence. By calculating the RMSE of absolute trajectory error, we compared our
system with Catadioptric Pano VO, and found that our system improved the results by
20%, 95.2%, and 96.3% respectively. When facing complex dynamic environments, our
system effectively removed dynamic points for pose estimation, and the accuracy of pose
estimation was also greatly improved compared to traditional methods.
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4.2. Real-World Experiment

An indoor scene experiment on experimental platforms was conducted. As shown
in Figure 7, our experimental platform was an unmanned ground vehicle (UGV) with an
RGB-D camera and a catadioptric panoramic camera. An embedded development board in
the platform was used to collect and store images. During the experiment, the maximum
speed of our UGV did not exceed 3 m/s.
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We set a fixed route, and the trajectory calculated from the images collected by the RGB-
D camera in a static environment was used as the ground truth. During the experiment,
we added walking humans as dynamic objects. Image data were collected by the RGB-D
camera and the catadioptric panoramic camera. The collected image data were used to
compare the performance of our method with the state-of-the-art dynamic SLAM system.
DS-SLAM and VDO-SLAM [22] were adopted for comparisons. The trajectory obtained
by different methods in the real-world experiment is shown in Figure 8. We used ATE to
evaluate the accuracy of each method. The results are shown in Table 2.
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Table 2. Results of metrics of absolute trajectory error.

Method RMSE (m) Median (m) Mean (m)

DS-SLAM 0.285 0.216 0.252
VDO-SLAM 0.262 0.203 0.237

Ours 0.198 0.131 0.091

In the experiments, DS-SLAM, VDO-SLAM and our method all ran stably in the
environment with dynamic objects. Our method obtained the highest accuracy, with an
improvement of 30.53% over DS-SLAM and 24.43% over VDO-SLAM. This is because
we used a catadioptric panoramic camera, which has the advantage of a large field of
view. After removing dynamic objects, there still are rich scene features that can be used to
calculate the camera pose.

5. Conclusions

In this paper, we have presented a semantic visual SLAM system for a catadioptric
panoramic camera in a dynamic environment building on ORB-SLAM2. We added a
separate thread running YOLACT to obtain pixel-wise semantic segmentation, and a tight
coupling method of spherical epipolar geometry and semantic segmentation was proposed
to detect and remove dynamic features effectively. We used an instance segmentation net-
work to detect potential moving targets in the image, output the pixel-level segmentation
results, and then use sphere epipolar geometry to verify the motion state and find the real
dynamic features. When extracting ORB feature points, dynamic targets are eliminated,
thereby improving the accuracy and robustness of camera pose estimation. In order to
verify the performance of our system, experiments were conducted on a public omnidirec-
tional dataset. The results show that in a dynamic environment, the positioning accuracy of
our system is greatly improved compared to the traditional method. Comparing the RMSE
of absolute trajectory error of different methods, the positioning accuracy of our system in
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a high dynamic environment was up to 96.3% higher than the traditional method, which
proves the effectiveness of our system when faced with dynamic environments.

We built an experimental platform and conducted real world experiments. We com-
pared our method with the dynamic state-of-the-art SLAM system. As we use the semantic
segmentation result and geometry to detect and remove dynamic objects in the image in
a tightly coupled manner, and the catadioptric panoramic camera we use has the advan-
tage of a large field of view, in the experimental results, our method obtained the highest
accuracy, with improvements of 30.53% over DS-SLAM and 24.43% over VDO-SLAM.

However, our current system only uses two frames of information to verify the
dynamic points, and lacks the use of global information. The next step should be to
improve this aspect.
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