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Abstract: Although the combination of Airborne Laser Scanning (ALS) data and optical imagery
and machine learning algorithms were proved to improve the estimation of aboveground biomass
(AGB), the synergistic approaches of different data and ensemble learning algorithms have not been
fully investigated, especially for natural secondary forests (NSFs) with complex structures. This
study aimed to explore the effects of the two factors on AGB estimation of NSFs based on ALS data
and Landsat 8 imagery. The synergistic method of extracting novel features (i.e., COLI1 and COLI2)
using optimal Landsat 8 features and the best-performing ALS feature (i.e., elevation mean) yielded
higher accuracy of AGB estimation than either optical-only or ALS-only features. However, both
of them failed to improve the accuracy compared to the simple combination of the untransformed
features that generated them. The convolutional neural networks (CNN) model was much superior
to other classic machine learning algorithms no matter of features. The stacked generalization (SG)
algorithms, a kind of ensemble learning algorithms, greatly improved the accuracies compared to
the corresponding base model, and the SG with the CNN meta-model performed best. This study
provides technical support for a wall-to-wall AGB mapping of NSFs of northeastern China using
efficient features and algorithms.

Keywords: ensemble learning; machine learning; feature extraction; AGB; NSFs

1. Introduction

The Asian temperate mixed forest in northeastern China is one of the three major
temperate mixed forests in the world (i.e., northeastern North America, Europe, and
East Asia) [1], which is of great strategic importance to the carbon trading of China. The
forests of Northeast China have experienced three periods of excessive timber harvesting
in the last century, including the period of Russian and Japanese aggression (1896–1945),
the period of encouraging excessive harvesting for timber production (1950–1977), and
the period of national economic reforms and the broadening of international relations
(1978–1998) [2]. The excessive logging and neglected cultivation of forests nearly exhausted
exploitable forest reserves in the region [3]. Since the Natural Forest Conservation Program
(NFCP) was put into practice in 1998, there was a profound shift in focus from timber
production to environmental protection by rehabilitating damaged forest ecosystems,
afforesting desertified and degraded areas, and banning logging in natural forests [2].
In this context, natural secondary forests (NSFs) are gradually expanding and gaining
importance. NSFs, which account for as much as 70% of the forests of northeastern China,
refer to as the natural-regeneration forests after stand-replacing disturbances of primary
forests by anthropogenic activities or by extreme natural events [4,5]. Nowadays, the NSFs
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of northeastern China are gradually recovering from the excessive logging of the 20th
century, which led to an extraordinary reduction in the quality of the forest ecosystem.
NSFs are of significance to China not only for timber supply, but also for a vital reservoir
of biodiversity, potential carbon sequestration, a destination of ecological tourism, and a
broad ecological shelter for northeastern China [2].

The accurate estimation of forest aboveground biomass (AGB) has a critical effect on
the understanding of forest quality and recovery in the NSFs of northeastern China. AGB
is defined as the dry mass of live or dead matter from tree or shrub life forms, typically
expressed as a mass per area density (e.g., Mg/ha) [6]. In general, AGB could be obtained
by (1) direct harvest method; (2) allometric equation-based method; (3) biomass expansion
factor (BEF)-based method; (4) process-based biogeochemical modeling; (5) remote sensing-
based estimation method. Although the direct harvest method is the most exact among
these methods, it is time-consuming, destructive, and labor-intensive. It is only suitable
for AGB estimation of a small area or of individual trees with a small sample size [7] and
is usually applied as reference data to establish allometric equations of AGB (e.g., [8,9]).
An allometric equation-based method is more flexible and feasible than the direct harvest
method to estimate AGB on both individual tree and plot levels. A variety of allometric
equations are developed for diverse tree species by modeling the relationship between
AGB and various physical parameters of trees, such as diameter at breast height (DBH),
tree height, crown diameter, etc. (e.g., [8,10–13]). Similar to an allometric equation-based
method, the BEF-based method applied BEF defining as the ratio of all stand biomass to
growing stock volume to convert timber volume to biomass [14]. However, the allometric
equation-based and BEF-based methods are still time-consuming and expensive because
both of them are based on the acquisition of field measurements (such as DBH, tree height),
and still limited to plot-level or individual tree-level AGB estimations. Process-based
biogeochemical models consider the processes including photosynthesis, absorption, and
carbon allocation, and generally couple biology, soil, climate, hydrology, and anthropogenic
effects [15]. To some degree, these models could improve the conventional, point-based
estimation of biomass over large areas [16]. However, the high uncertainties in biomass
estimation due to constraints in data source, spatial resolution, homogeneous assumption,
and inaccuracy of models greatly limit the usage of process-based biogeochemical mod-
els [15]. The remote sensing-based method is exceedingly appealing for estimating forest
biomass on a large scale (e.g., local, regional or global) because of its unique characteristics
such as repetitive data acquisition, large coverage, digital format, and so on [15], and of the
capability of providing spatially explicit AGB estimates for every pixel location, instead
of only the mean or total biomass within a given inventory unit [17,18]. Nowadays, it
becomes the most commonly used method for large-scale AGB estimation [19–21].

In the last three decades, researchers have attempted a variety of remotely sensed
data sources to estimate AGB. With a relatively long history of data availability, optical
satellite imagery (such as Landsat, MODIS, etc.) has become a primary data source for
biomass estimation (e.g., [22–25]). In particular, Landsat series satellite imagery is the
most commonly used data source for AGB estimation (e.g., [26–30]), mainly because of
the continuous, long-term, medium spatial resolution, and cross-calibrated data for global
surface observations, and free access policy [31]. However, it is of significance to notice
the data saturation in Landsat imagery, which refers to the phenomenon that spectral
reflectance values are not sensitive to the change in biomass of mature forest or advanced
successional forests even if AGB varies significantly [32,33]. For example, Steininger [34]
found that the canopy reflectance in Landsat imagery saturates when the AGB approaches
15 kg/m2 or over 15 years of age in Brazilian tropical secondary forests. Zhao et al. [33]
examined the saturation values in Landsat imagery for different vegetation types in a
subtropical region, and found the AGB saturation values for pine forest, mixed forest,
Chinese fir forest, broadleaf forest, bamboo forest, and shrub were 159, 152, 143, 123, 75,
and 55 Mg/ha, respectively. Data saturation in optical imagery like Landsat significantly
lowers the accuracy and increases the uncertainties of AGB estimation [15]. Data saturation
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still exists in RADAR (Radio Detection and Ranging) data like SAR (Synthetic Aperture
Radar) [35]. Generally speaking, saturation values could be higher obtained by longer
wavelengths (such as L and P bands) and lower by shorter wavelengths (such as C bands),
and also vary for different forest structures [36]. Until now, the data saturation problem
caused by remote sensing signals is still one of the biggest obstacles to applying optical
imagery and RADAR data for AGB estimation [15,37,38].

Since the 1990s, it has been found that LiDAR (Light Detection and Ranging) is more
advantageous than optical imagery for AGB estimation because it is more relative to tree
height and produces less estimation error [39]. Meanwhile, LiDAR is unaffected by the
data saturation problem, even for high AGB values (>1000 Mg/ha) [40]. Thus, LiDAR
data is widely used in AGB estimation in the last two decades. According to the format of
return signals, LiDAR can be classified into discrete and continuous LiDAR; according to
platforms, LiDAR can be classified into spaceborne, airborne, UAV(Unmanned Aerial Vehi-
cle), terrestrial, backpack/handheld LiDAR; according to the size of the footprint, LiDAR
can be classified into small footprint (footprint size <1 m), mid footprint (footprint size:
10–30 m), and large footprint LiDAR (footprint >50 m) [41]. In recent years, Airborne Laser
Scanning (ALS) data, a kind of discrete, multiple returns, and small footprint LiDAR data
captured from an aerial platform, has received much scientific and operational attention
for AGB estimation than any of the other remote sensing data [42]. ALS emits laser pulses
towards the ground and receives the pulses reflected from the tree canopy, branches, leaves,
trunk, shrub, and then ground to form a three-dimensional profile of forest structure. ALS
is far more capable than optical and RADAR sensors in estimating forest parameters and is
considered the premier tool for large-scale AGB estimation (e.g., [43–47]). It is beneficial to
estimate AGB by capturing both two-dimensional spectral information of the upper canopy
and three-dimensional structural information of the canopy. However, the spectral charac-
teristics of vegetation provided by ALS are very limited since most LiDAR systems only
work at a single wavelength [48]. Thus, the integration of optical imagery and ALS data
has become the most promising approach for large-scale AGB estimation (e.g., [48–53]).

Features are the most direct representation or manifestation of data sources. Feature
extraction and selection could greatly influence the accuracy of AGB estimation [54]. A va-
riety of spectral-related features including band combinations, textures, diverse vegetation
indices, leaf area index, fraction of vegetation cover, and so on were derived from optical
imagery for AGB estimation (e.g., [29,55–58]). Similar, diverse point-based features includ-
ing height statistics (e.g., mean, maximum, variance, skewness, etc.), canopy-based quantile
estimators, canopy relief ratio, laser penetration rates, canopy closure, and so on were
extracted from LiDAR data for AGB estimation (e.g., [25,46,52,59,60]). Some researchers
directly combined optical imagery and LiDAR features (e.g., [21,61,62]) while a few of
them designed novel features derived from optical imagery and LiDAR data to improve
AGB estimation. For example, Zhang et al. [48] developed two novel groups of features
(i.e., COLI1 and COLI2) using seven vegetation indices derived from Landsat 8 and the
best-performing LiDAR variable (i.e., mean of height). The COLI1 and COLI2 were gener-
ated by the multiplication and ratio combinations of the best-performing LiDAR variable
and each vegetation index, respectively. They found that the stacked sparse autoencoder
network model with the combination of all COLI1, optical, and LiDAR features yielded
the highest accuracy of AGB estimation for the coniferous and broadleaf mixed forest of
southeast China. However, whether it is more efficient to use novel features extracted from
both data than directly combine all features is still needed to be further investigated.

In addition to data sources and features, it is vital to establish a reliable and suitable
model to estimate AGB. Currently, most remote sensing-based AGB estimation meth-
ods use data-driven empirical models, which can be divided into parametric and non-
parametric models [63]. Parametric models explicitly determine parameterized expressions
of independent variables (e.g., spectral bands) and the dependent variable of interest
(e.g., AGB) assuming the probability distributions of the variables being assessed [63].
Multiple linear regression, a classic parametric model with normality assumption, was
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the most widely used method in previous AGB studies due to their simplicity and inter-
pretability (e.g., [53,64,65]). Other parametric models, like non-linear regression (e.g., an
exponential, power, or polynomial fitting function), were also applied for AGB estimations
(e.g., [59,66,67]). Unlike parametric models, nonparametric models are distribution-free
methods in which the predictor does not take a predetermined form but is constructed
according to information derived from the data. Most machine learning models belongs
to non-parametric, such as artificial neural network (ANN), random forest (RF), k-nearest
neighbor (KNN), support vector machine (SVM), cubist (CB), classification and regression
tree (CART), convolutional neural networks (CNN) and so on. Without the assumption
of distribution, the non-parametric machine learning models are extremely flexible and
capable of capturing the complex relationships between remote sensing variables and AGB,
and widely applied in AGB estimation (e.g., [43,68–73]).

Ensemble learning, a branch of machine learning, is designed to learn tasks by con-
structing and then integrating multiple learners to produce a strong learner for improving
accuracy [74,75]. There are three basic categories of ensemble learning: bagging, boosting,
and stacking. RF and adaptive boosting (AdaBoost) algorithms are classic representatives
of bagging and boosting algorithms, respectively. RF builds trees using subsamples and
a random subset of predictors and can be very effective for estimating AGB due to its
robustness to overfitting and noise in the training dataset [43,76,77]. Adaptive boosting
is an iterative boosting algorithm that adaptively changes the distribution of the training
set based on the performance of previous learners. Another boosting algorithm, called
extreme gradient boosting (XGBoost), has been demonstrated to show great advantages in
decreasing overestimation of low AGB values and underestimation of high AGB values for
a forest type-based biomass estimation using continuous forest inventory data and Landsat
8 imagery [54]. Stacking, first proposed by Wolpert [78], is another method for combining
multiple models but is less used than bagging and boosting. Unlike the RF algorithm that
the base learner is homogeneous (e.g., regression tree), stacking are heterogeneous ensem-
ble algorithms that could integrate diverse base learners to generate a stronger learner. The
stacking algorithm was used to estimate canopy height in forestry (e.g., [79]), however, its
potential has not been fully explored in AGB estimation.

Although the synergistic utilization of ALS and optical passive imagery was proved
to improve AGB estimation [48], the synergistic approach (i.e., features) has not been fully
investigated, especially for NSFs with complex structures. For example, is it more efficient
to apply a novel feature extracted from passive imagery and LiDAR data (e.g., COLI1 and
COLI2 in [48]) or directly combine all the features from the two data sources (like [61])? In
addition, will ensemble learning algorithms improve the accuracy of AGB estimation for
NSFs? Inspired by these questions, this study aimed at exploring the effects of different
synergistic approaches of features and ensemble learning algorithms on AGB estimation of
NSFs of northeastern China based on ALS and Landsat 8 OLI (Operational Land Imager)
imagery. Specifically, the objectives of this study were (1) to investigate the effects of
different data sources and classic machine learning algorithms on AGB estimation of a
natural secondary forest; (2) to grope for a highly effective approach to combine ALS and
Landsat 8 OLI imagery on AGB estimation of a natural secondary forest; (3) to explore the
performances of ensemble learning algorithms in estimating AGB of a natural secondary
forest; (4) to generate an accurate wall-to-wall AGB map of a natural secondary forest for
future forest resources management.

2. Materials and Methods
2.1. Study Area

The study area is located in Maoershan Experimental Forest Farm of Northeast
Forestry University (NEFU), Shangzhi, Heilongjiang Province, China, ranging from 127◦29′

to 127◦44′ E and 45◦14′ to 45◦29′ (Figure 1). The landform of the forest farm belongs to
a low mountain and hilly area. The terrain gradually rises from south to north, with an
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average elevation of 300 m. The highest mountain is Maoer Mountain, with an elevation
of 805 m.

Figure 1. The location of study area: (a) The location of Maoershan Experimental Forest Farm within Heilongjiang Province;
(b) the locations of 195 plots (20 m × 30 m) within Maoershan (Background: Landsat 8 OLI image).

The total area of the forest farm is 26,496 ha, which belongs to a typical natural
secondary forest in northeastern China. The vegetation in the Maoershan area is a part
of Changbai plant flora, with the original zonal top-level community of Korean pine
broad-leaved forest. Due to the destruction in the last century, the original vegetation
has undergone reverse succession. It has formed a forest landscape in which natural
secondary forests are dominated by precious broad-leaved forests, poplar and birch forests,
oak forests, and so on, and plantations such as red pine and larch are inlaid. The main
species include Betula platyphylla, Quercus mongolica, Populus davidiana, Larix olgensis, Pinus
sylvestris, and Pinus koraiensis, etc. The average forest coverage rate is 95%, and the total
stock is approximately 3.5 million m3.

2.2. Data Collection
2.2.1. Remotely Sensed Data

The remotely sensed data utilized in this study include ALS data and Landsat 8 OLI
imagery. ALS data were obtained in September 2015. It is a secondary product scanned by
the LiDAR sensor (Riegl LMS-Q680i) carried by the LiCHY system of the Chinese Academy
of Forestry. The maximum frequency of the laser pulse of the LiDAR sensor is 400 kHz,
with a wavelength of 1550 nm, a scanning angle of ±30◦, a sampling interval of 1 ns, and
vertical accuracy of 0.15 m. The sidelap of this flight strip was designed to be greater than
60%, with an average point cloud density of 3.6 points·m−2.
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To be consistent with ALS data in time, the Landsat 8 OLI imagery acquired on
13 September 2015 was applied in this study (downloaded from https://earthexplorer.usgs.
gov/ (accessed on 1 September 2021)). The scene ID is LC81170282015256LGN01 (L1T-level
product), with cloudiness of 1.35%, sun elevation angle of 45.28◦, and sun azimuth angle of
154.91◦. Seven multispectral bands (band1–band7) of 30 m nominal spatial resolution were
utilized in this study. The radiometric resolution of the imagery is 12 bits and the swath
width is 185 km × 185 km.

2.2.2. Reference Data

The 195 fixed plots data of continuous forest resources inventory obtained in 2016
was applied as reference data in this study (see Figure 1b). The plot size was 20 m × 30 m
and the center of each plot was correctly determined using a GPS (accuracy ±5 m). The
diameter at breast height (DBH) of the trees larger than 5 cm and the tree species of each
plot were recorded.

The AGB of individual trees was calculated using the species-specific allometric
growth equations with DBH. In this study, the allometric growth models developed
by [80,81] for the major species of trees and understory in northeastern China were em-
ployed to calculate the AGB of individual trees. The allometric growth equation was
showed as Equation (1) and the parameters of major species of trees and understory were
listed in Table 1.

W = a·Db (1)

where W represents aboveground biomass (kg), D represents DBH (cm), a and b are
estimated parameters of different species in [80,81]. The AGB of the plot was the cumulative
summation of the AGB of individual trees of each plot.

Table 1. Estimated parameters (a and b) of the allometric growth models of different species applied
in this study.

Vegetation Types Latin Names of Species a b

Deciduous trees

Acer mono Maxim. 0.318 2.081
Ulmus pumila L. 0.350 1.995

Populus davidiana Dode 0.078 2.512
Betula platyphylla 0.313 2.114

Quercus mongolica Fisch. ex Ledeb. 0.097 2.501
Tilia mongolica Maxim 0.083 2.422

Fraxinus mandshurica Rupr./Juglans mandshurica
Maxim/Phellodendron amurense Rupr. 0.268 2.118

Coniferous trees

Larix olgensis Henry 0.168 2.248
Pinus koraiensis Sieb.et Zucc. 0.082 2.426

Picea asperata Mast. 0.067 2.517
Larix olgensis Henry 1 0.222 2.174

Pinus koraiensis Sieb.et Zucc.1 0.206 2.117
Pinus sylvestris var. mongolica Litv. 1 0.080 2.440

Understory

Acer ginnala 0.527 2.217
Syringa reticulata var. amurensis 0.395 2.300

Padus asiatica 0.090 2.696
Rhamnus yoshinoi 0.169 2.555

Arbor-like mixed species 2 0.182 2.487
1 Represents plantations; otherwise are natural forests. 2 represent arbor-like mixed species of understory that do
not have a specific Latin name.

2.3. Methods

To investigate the effects of different synergistic approaches of features and ensemble
learning algorithms on AGB estimation of NSFs, a five-step methodology with three ex-
periments of features (Feature experiments I-III) was implemented in this study, including
(1) data preprocessing, (2) feature extraction and selection, (3) establishment and evaluation

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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of classic machine learning models, (4) establishment and evaluation of ensemble learning
models, (5) wall-to-wall AGB prediction using the most effective algorithm and features.
Feature experiment I was designed to explore the effects of features from different data
sources (ALS, optical imagery, and combined data) on AGB estimation based on a variety
of machine learning algorithms; Feature experiment II was designed to investigate how to
efficiently combine the best-performing ALS feature (a unique feature) with several spectral
features for AGB estimation, is it better to use novel extracted features or directly combine
all the features?; Feature experiment III aims to compare the performance of combining all
features for AGB estimation. The feature experiment design and logic of this study were
shown in Table 2 and Figure 2, respectively.

Table 2. Feature experiments designed in this study.

Experiment Data Source Number of Features 1 Details

I

ALS 9 Feature 1: Optimal ALS features

Landsat 8 9 Feature 2: Optimal Landsat
8 features

ALS + Landsat 8 18 Feature 1 + 2: Optimal ALS and
Landsat 8 features

II ALS + Landsat 8

9 Feature 4: All COLI1 2

9 Feature 5: All COLI2 2

10
Feature 2 + 3 3: Optimal Landsat
8 features (9) + The best performing
ALS feature (1)

III ALS + Landsat 8

27
Feature 1 + 2 + 4: Optimal ALS
features (9) + Optimal Landsat
8 features (9) + All COLI1 (9)

27
Feature 1 + 2 + 5: Optimal ALS
features (9) + Optimal Landsat
8 features (9) + All COLI2 (9)

1 Number of features was determined by the procedure described in Section 2.3.2. 2 COLI1 and COLI2 were
calculated using Equations (3) and (4) described in Section 2.3.2. 3 Feature 3 is the best performing ALS feature.
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Figure 2. The flowchart of this study. Note: the number in parentheses represents feature number. Feature 1: optimal ALS
features; Feature 2: optimal Landsat 8 features; Feature 3: the best performing ALS feature; Feature 4: all COLI1s; Feature 5:
all COLI2s.

2.3.1. Preprocessing of Remotely Sensed Data

The preprocessing of the ALS data includes (1) noise elimination (such as air points,
low points, and isolated points). The radius of a fitting plane and the multiples of standard
deviation were set to 0.5 m and 1, respectively. The algorithm will automatically calculate
the standard deviation of the surrounding fitting plane of a point. If the distance from
this point to that plane is less than multiples of standard deviation, this point will be kept.
(2) classification of ground and non-ground points. The ground points were classified
by improved progressive triangulated irregular network densification (IPTD) filtering
algorithm developed in [82]. The maximum building size and maximum terrain angle
were set to 20 m and 88◦, respectively. (3) normalization of point clouds. A digital terrain
model (DTM) with a resolution of 0.5m was generated based on ground points using the
inverse distance weighted (IDW) interpolation method. The power of the distance between
sampling points and an unknown point was set to 2, and the smallest number of points
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used for interpolation was 12. Then, the point clouds were normalized by subtracting
the DTM value from the elevation of all points. The preprocessing of the ALS data was
implemented using LiDAR 360 V3.2 of GreenValley International.

Preprocessing of the Landsat 8 OLI imagery including radiometric calibration, atmo-
spheric correction, and topographic correction was implemented using ENVI 5.3 software.
The Fast Line-of-sight Atmospheric Analysis of Spectral Hypercube (FLAASH) radiative
transfer model was implemented for atmospheric correction and conversion to surface
reflectance in the EVNI environment. The topographic correction was conducted with the
well-known Sun Canopy Sensor + C correction (SCS + C) approach using the extension
tool of “Topographic Correction_V5.3_4_S1”. The SCS + C correction approach reduces
overcorrection and is an effective topographic correction method in forested and moun-
tainous terrain [83,84]. The SCS + C topographic correction model can be expressed by
Equation (2).

Lt = L·
(

cosθ·cosα + C
cosi + C

)
(2)

where Lt is the corrected pixel radiance value of the image; L is the uncorrected pixel
radiance value of the image; i is the incidence angles on a horizontal surface; θ is the solar
zenith angle; α is the slope angle; C is the semi-empirical parameter. DTM generated from
ALS data was applied for topographic correction in this study.

2.3.2. Feature Extraction and Selection

• Feature Extraction

Four categories of 101 features related to forest, height, density, and intensity features
were derived from normalized ALS point cloud data. Forest features include canopy cover,
leaf area index (LAI), and gap fraction. Canopy cover refers to the proportion of the forest
floor covered by the vertical projection of the tree crowns [85]. LAI is one of the most
significant variables for representing canopy structure, with the definition of half the total
foliage area per unit ground surface area [86]. The gap fraction can be calculated by the
ratio of the number of ground points whose elevation is lower than the height threshold
(i.e., 2 m in this study) and the total return number. All 101 ALS features, including three
forest metrics, 46 elevation metrics, 10 density metrics, and 42 intensity metrics were
extracted using LiDAR 360 V3.2 of GreenValley International. The feature details were
listed in Table A1 of Appendix A.

A variety of features could be derived from optical imagery. According to previous
studies (e.g., [48,54,73,87]), band combinations, vegetation indices, textures (e.g., gray-level
co-occurrence matrix (GLCM)) of each band, and image transformations (e.g., principal
component analysis, tasseled cap, minimum noise fraction) were extracted as potential
predictors for AGB modeling. Therefore, 98 features were selected or extracted from
Landsat 8 imagery in this study, including seven original bands (band 1–7), ten band
combinations, ten image enhancement features (i.e., three principal components, three
tasseled-cap features, and four minimum noise fractions), 56 GLCM features, and 15 vege-
tation indices. The details of the 98 features derived from Landsat 8 were listed in Table A2
of Appendix A.

• Feature Selection

To avoid the “curse of dimensionality”, it is a prerequisite to select the most effective
feature for AGB estimation. In this study, the two-step feature selection procedure is
implemented, including (1) preliminary selection using Pearson correlation coefficient; and
(2) further selection based on variable importance measure using random forest. For the
first step, Pearson correlation coefficients of each feature and AGB were calculated and the
features with p-value less than 0.05 that significantly correlated with AGB were selected.
Then, the selected features were ranked according to variable important measures calcu-
lated with random forest. Due to the randomness, the ranking procedure was implemented
10 times to find out the most stable set of features with high ranking.
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The two-step feature selection was implemented for ALS and Landsat 8 data, respec-
tively, to select two sets of best-performing features. Among the selected ALS features, the
best-performing ALS variable was determined by establishing and evaluating the univari-
ate models of each ALS feature and AGB. The feature selection procedure was implemented
using R version 4.0.4 (https://www.r-project.org/ (accessed on 1 September 2021)).

According to [48], two types of indices (COLI1 and COLI2) incorporating optical
imagery and ALS information were established using the best-performing LiDAR variable
with each optical spectral vegetation index. The best-performing LiDAR variable was
determined by the univariate model of AGB and the LiDAR variable with the highest
R2. The best-performing spectral features of Landsat 8 were selected by the two-step
feature selection procedure described above. Then, the generation of COLI1 and COLI2
based on the best-performing LiDAR variable (only one feature) and the best-performing
Landsat 8 features (could be several features) included both feature selection and extraction
procedures. For convenience, we still used the notation of [48] but adjusted the equations
as follows.

COLI1 = SFi × BLV (3)

COLI2 = SFi_BLV =
(BLV − SFi)

(BLV + SFi)
(4)

where BLV is the best-performing LiDAR variable (only one feature), SFi is a set of best-
performing features derived from Landsat 8 imagery (several features). Thus, the number
of COLI1 or COLI2 is identical to the number of best-performing spectral features (SFi).

2.3.3. Classic Machine Learning Algorithms

In this study, seven classic machine learning algorithms were conducted to estimate
the AGB of NSFs, including extreme learning machine (ELM), backpropagation (BP) neural
network, regression tree (RegT), RF, support vector regression (SVR), KNN, and CNN. Tra-
ditional multiple linear regression (MLR) was applied as a baseline for model comparison.

• ELM

ELM is a class of machine learning methods built on the feedforward neuron network
(FNN) for supervised and unsupervised learning problems [88]. ELM is an improvement
of FNN and its backpropagation algorithm, which is characterized by random or artificially
given weights of the nodes in the hidden layer and does not need to be updated. Compared
to single-layer perceptron and SVM, ELM is considered to have possible advantages in
terms of learning rate and generalization ability [88].

• BP

BP neural network, proposed by Rumelhart et al. in 1986 [89], is a multilayer feedfor-
ward network trained by error backpropagation algorithm and is one of the most widely
used neural network models [90]. Its learning rule is to use the fastest descent method
to continuously adjust the weights and thresholds of the network by backpropagation to
minimize the sum of squared errors of the network. According to error and trials, the BP
algorithm was implemented with epochs of 1000 in this study.

• RegT and RF

A regression tree is a basic method built on the principle of minimizing the loss
function for a regression problem. The major advantage of the regression tree is the
readability of the model and fast computational speed, which make it particularly suitable
for integrated learning, such as random forests. RF, proposed by Leo Breiman [76], is based
on multiple regression trees, which is capable of capturing the complicated relationship
between a response and a set of explanatory variables with the following advantages:
robustness to reduce over-fitting, ability to determine variable importance, higher accuracy,
fewer parameters that need to be tuned, lower sensitivity to the tuning of the parameters,
fast training speed, and anti-noise property. The number of regression trees and the random
state of the RF algorithm were set to 1000 and 10, respectively, in this study.

https://www.r-project.org/
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• SVR

SVM is a class of generalized linear algorithms that performs the classification of
data in a supervised learning manner, where the decision boundary is the hyperplane
of maximum margins solved for the learned samples. SVR is a transformation of SVM
designed for regression problems and can perform nonlinear problems by kernel method.
Linear kernel and penalty factor of 1 were applied for SVR in this study.

• KNN

The KNN method is a multivariate nonparametric algorithm that uses a set of pre-
dictors (Xs) to match each target pixel to a number (K) of most similar (nearest neighbors)
reference pixels for which values of response variables (Y) are known. The number of
nearest neighbors was set to 5 and uniform weights were utilized in this study.

• CNN

CNN, firstly developed in 1995 for the classification of handwritten images [91],
is one of the most representative algorithms of deep learning. CNN interprets spatial
data by scanning it using a series of trainable moving windows and has the capability
of representation learning in a translation-invariant manner according to its hierarchical
structure. In this study, the CNN model had a simple structure with an input layer, a
hidden layer, and an output layer, and was implemented using an epoch of 1000 and a
batch size of 30.

2.3.4. Ensemble Learning Algorithms

Stacked generalization (SG) which is a layered ensemble learning algorithm [92] was
applied in this study. There are two layers designed in the SG algorithm here, including
basic models and meta models. The input of the base model is the original training set and
the output of the base model is applied as the training set for meta model [93]. The meta
model could be a single model or an ensemble model [93,94], like RF. To obtain a better
performance of SG, the base models should be accurate and different as much as possible.
Thus, the four best-performing machine learning algorithms described in Section 2.3.3
were selected for the base models according to leave-one-out cross-validation and meta
models for establishing SG algorithms in this study, which resulted in four SG algorithms.
The flowchart of the SG algorithm in this study was presented in Figure 3.
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Figure 3. Flowchart of stacked generalization (SG) algorithm in this study. Note: The number of the base model (N) was set
to four in this study and 195 iterations were running within each model because of the leave-one-out cross-validation of
195 sample plots.

2.3.5. Model Evaluation

This study adopted a leave-one-out cross-validation method to evaluate the model
accuracy. Since 195 sample plots were used in this study, the training and testing data were
194 plots and 1 plot, respectively; and 195 iterations were run for each model. Due to the
problems of coefficient of linear determination (R2) for nonlinear models [95], we avoid
applying R2 of machine learning models established by selected features and AGB. How-
ever, R2 of actual and predicted AGB could be used as an indicator since the relationship
of actual and predicted AGB can be described by a simple linear model. Therefore, six
indices were applied for model evaluation, including R2 of actual and predicted AGB, root
mean squared error (RMSE), relative root mean squared error (rRMSE), mean absolute
error (MAE), mean absolute percentage error (MAPE), and precision measure (PM). The
equations were shown as follows:

R2 =
∑n

i = 1(ŷi − y)2

∑n
i = 1(yi − y)2 (5)

RMSE =

√
1
n

n

∑
i = 1

(yi − ŷ)2 (6)

rRMSE =

√
1
n ∑n

i = 1(yi − ŷ)2

y
(7)

MAE =
1
n

n

∑
i = 1
|yi − ŷi| (8)

MAPE =
1
n

n

∑
i = 1

|yi − ŷi|
yi

× 100% (9)

PM =
∑n

i = 1(yi − ŷi)
2

∑n
i = 1(yi − y)2 (10)
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where n represents the number of observation samples, yi represents the actual AGB of
the ith plot, ŷi represents the predicted AGB of the ith plot, and y represents the mean of
the actual AGB. All the model fitting and evaluation procedures in this study were imple-
mented by python 3.7 (https://www.python.org/downloads/ (accessed on 1 September
2021)), TensorFlow 2.2 (https://tensorflow.google.cn/ (accessed on 1 September 2021)) and
sklearn (https://scikit-learn.org/stable/ (accessed on 1 September 2021)).

3. Results
3.1. Feature Selection

Due to a large number of extracted features (199 features in total), two-step feature
selection was implemented in this study, including preliminary selection using Pearson
correlation coefficient; and further selection based on variable importance measure using
random forest. Finally, nine ALS features were selected and sorted from highest to lowest
variable importance as follows: elev_mean, int_AII_5th, elev_cv, density_7th, int_max,
int_AII_40th, int_per_60th, int_per_80th, and int_AII_50th; nine features extracted from
Landsat 8 were selected and ranked in descending order of variable importance: MVI5, B1,
B76, B65, B53, Entr_B5, B2, ND563, and MVI7. The selected features and their descriptions
were listed in Table 3.

Table 3. Feature Selection of ALS and Landsat 8 imagery.

ALS Feature Descriptions Landsat 8 Feature Descriptions

elev_mean Mean value of height MVI5 (B5 + B4 − B2)/(B5 + B4 + B2)

int_AII_5th The cumulative intensity of
5% points in each pixel B1 Band 1

elev_cv Coefficient of variation of
height B76 B7/B6

density_7th The proportion of returns
in 7th height interval B65 B6/B5

int_max Max of intensity B53 B5/B3

int_AII_40th The cumulative intensity of
40% points in each pixel Entr_B5 Entropy of band 5

int_per_60th 60% intensity percentile B2 Band 2

int_per_80th 80% intensity percentile ND563 (B5 + B6 − B3)·(B5 + B6 + B3)

int_AII_50th The cumulative intensity of
50% points in each pixel MVI7 (B5 − B7)/(B5 + B7)

To grope for the best-performing ALS feature, simple linear regressions were es-
tablished to model the relationship between AGB and each ALS feature. The result of
univariate models showed that the elevation mean outperformed other ALS features due
to higher R2 and lower RMSE, rRMSE, MAE, MAPE, and PM (Table 4). Thus, elevation
mean was selected as the best-performing ALS feature to generate COLI1 and COLI2 using
Equations (3) and (4).

https://www.python.org/downloads/
https://tensorflow.google.cn/
https://scikit-learn.org/stable/
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Table 4. Accuracy assessment of the univariate models with AGB and each ALS feature.

ALS Features R2 RMSE rRMSE MAE MAPE PM

elev_mean 0.34 60.03 0.40 43.74 0.39 0.67
int_AII_5th 0.13 68.75 0.46 51.70 0.65 0.87

elev_cv 0.08 70.64 0.48 53.99 0.66 0.92
density_7th 0.05 71.89 0.48 53.27 0.87 0.95

int_max 0.19 66.41 0.45 49.03 0.64 0.81
int_AII_40th 0.20 65.97 0.44 49.85 0.63 0.80
int_per_60th 0.17 66.89 0.45 50.68 0.64 0.83
int_per_80th 0.17 66.94 0.45 50.51 0.66 0.83

3.2. Performance of Classic Machine Learning Algorithms
3.2.1. Experiment I

The goal of feature experiment I was to explore the effects of features from different
data sources (optical imagery, ALS, and combined data) on AGB estimation based on seven
classic machine learning algorithms, including ELM, BP, RegT, RF, SVR, KNN, and CNN.
MLR was implemented as a baseline for model comparison. Table 5 shows the performance
of the eight models using the three sets of features designed in Experiment I.

Table 5. Accuracy assessment of classic machine learning algorithms with three sets of features
designed in experiment I.

Features Algorithm 1 R2 RMSE rRMSE MAE MAPE PM

Optimal ALS features
(Feature 1)

MLR 0.31 52.76 0.37 41.09 38.37 0.67
ELM 0.31 56.79 0.40 42.61 35.49 0.69
BP 0.28 61.01 0.42 44.37 36.01 0.71

RegT 0.21 71.95 0.47 58.55 42.66 1.11
RF 0.29 61.84 0.41 45.80 37.08 0.72

SVR 0.40 57.84 0.38 39.32 32.35 0.66
KNN 0.31 60.95 0.4 45.21 35.36 0.81
CNN 0.49 51.54 0.34 37.31 30.82 0.41

Optimal Landsat
8 features
(Feature 2)

MLR 0.17 66.36 0.47 58.08 44.31 1.05
ELM 0.12 71.64 0.48 59.73 41.40 1.21
BP 0.13 68.58 0.49 57.19 42.76 1.04

RegT 0.14 66.24 0.48 58.59 42.53 0.89
RF 0.15 67.33 0.44 50.69 43.39 0.92

SVR 0.07 70.31 0.46 51.65 47.28 1.14
KNN 0.11 68.95 0.45 52.91 43.31 0.84
CNN 0.27 62.54 0.41 47.16 43.08 0.72

Optimal ALS and Landsat
8 features (Feature 1 + 2)

MLR 0.25 63.48 0.40 47.21 42.34 0.94
ELM 0.30 57.49 0.38 42.91 36.42 0.78
BP 0.29 55.65 0.39 43.4 37.87 0.72

RegT 0.24 60.86 0.45 55.07 39.18 0.87
RF 0.28 61.91 0.41 45.36 39.28 0.91

SVR 0.39 57.8 0.38 39.19 31.3 0.77
KNN 0.22 65.37 0.43 48.6 34.69 1.07
CNN 0.97 12.6 0.08 6.43 4.02 0.13

1 MLR- multiple linear regression; ELM—extreme learning machine; BP—back propagation; RegT—regression
tree; RF—random forest; SVR—support vector regression; KNN—k-nearest neighbor regression; CNN—
convolutional neural networks

In general, the optimal ALS features (Feature 1) performed significantly better than
the optimal Landsat 8 features (Feature 2) for AGB estimation, no matter of algorithms; the
combination of the optimal ALS and Landsat 8 features (Feature 1 + 2) performed differently
for various algorithms. For each data source, the accuracy of CNN was greatly higher
than that of other algorithms, especially for applying both ALS and Landsat 8 features
(R2 = 0.97, RMSE = 12.6, rRMSE = 0.08, MAE = 6.43, MAPE = 4.02, PM = 0.13). However, it
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is worth mentioning that the accuracies of other algorithms (except CNN) based on two
data sources (Feature 1 + 2) were not significantly improved compared with those based on
optimal ALS features (Feature 1), which suggested that the accuracy of AGB estimation not
only depends on data sources but also different algorithms. Some algorithms (like RF and
SVR) could provide very similar accuracy using both optimal ALS and Landsat 8 features
to that using only optimal ALS features, making it meaningless to involve optical imagery.
Thus, ALS data are of significance to AGB estimation.

3.2.2. Experiment II

After determining the best-performing ALS feature (i.e., elevation mean), we designed
feature experiment II to investigate how to efficiently combine the unique feature with
the optimal Landsat 8 features for AGB estimation. Is it better to utilize a novel feature
extracted from elevation mean and optimal Landsat 8 features (i.e., COLI1 and COLI2)
or directly combine all the features? A similar feature size in experiment II (i.e., 9 or 10)
could avoid the unfair comparison due to the big difference in feature number. Table 6
presented the accuracy assessment of classic machine learning algorithms with three sets
of features designed in experiment II. The results showed that the addition of elevation
mean significantly improves the accuracies of AGB estimation compared to those using
optical features only (Feature 2), no matter how to add it. The models except CNN had very
similar performances in AGB estimation for the three feature combinations in experiment
II. CNN still showed great advantages like Experiment I, especially for the case of simply
combining the optimal Landsat 8 features and elevation mean together (Feature 2 + 3) with
the accuracy of R2 = 0.88, RMSE = 24.48, rRMSE = 0.16, MAE = 10.19, MAPE = 7.23, and
PM = 0.24, followed by the case of all COLI2 (Feature 5), and then the case of all COLI1
(Feature 4). Thus, it seemed unnecessary to generate the new features (i.e., COLI1 or COLI2)
when CNN was applied for AGB estimation based on the optimal Landsat 8 features and
the best-performing ALS feature for NSFs.

Table 6. Accuracy assessment of classic machine learning algorithms with three sets of features
designed in experiment II.

Features Algorithm R2 RMSE rRMSE MAE MAPE PM

All COLI1
(Feature 4)

MLR 0.34 59.50 0.39 45.08 34.07 0.61
ELM 0.31 59.25 0.41 44.27 37.7 0.66
BP 0.30 57.34 0.38 45.68 39.39 0.68

RegT 0.28 62.62 0.43 50.22 45.45 0.72
RF 0.32 60.14 0.40 43.27 35.55 0.62

SVR 0.24 69.91 0.46 51.13 43.78 0.85
KNN 0.26 62.58 0.41 46.3 38.39 0.69
CNN 0.5 51.06 0.34 38.27 30.48 0.54

All COLI2
(Feature 5)

MLR 0.22 61.49 0.48 50.12 39.34 0.72
ELM 0.25 64.35 0.47 51.07 40.81 0.75
BP 0.30 62.14 0.47 50.39 38.24 0.78

RegT 0.24 67.07 0.49 52.41 43.93 0.79
RF 0.24 63.98 0.42 46.28 39.73 0.74

SVR 0.26 67.69 0.45 49.05 38.71 0.78
KNN 0.25 63.51 0.42 47.3 40.05 0.71
CNN 0.66 42.42 0.28 29.71 22.16 0.45

Optimal Landsat
8 features + The

best-performing ASL
feature (Feature 2 + 3)

MLR 0.33 60.14 0.40 44.45 40.76 0.70
ELM 0.29 64.26 0.43 48.39 42.59 0.69
BP 0.30 63.8 0.41 50.11 44.01 0.70

RegT 0.25 64.14 0.45 52.34 45.53 0.74
RF 0.28 62.29 0.41 45.62 41.69 0.71

SVR 0.29 62.25 0.41 42.00 40.21 0.82
KNN 0.24 63.38 0.42 46.95 39.24 0.69
CNN 0.88 24.48 0.16 10.19 7.23 0.24
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3.2.3. Experiment III

To investigate the effect of combing optimal ALS and Landsat 8 features and two types
of novel features (COLI1 or COLI2) using classic machine learning algorithms, experiment
III was implemented (Table 7). Comparing to the result of applying optimal ALS and
Landsat 8 features (Feature 1 + 2) in Table 5, the additions of the novel features, no matter
COLI1 or COLI2, slightly improved the accuracies of most models, like MLR, BP, RegT,
RF, and KNN. In addition, the accuracies of all models except RF using optimal ALS and
Landsat 8 features and all COLI2 (Feature 1 + 2 + 5) were slightly improved compared to
those using optimal ALS and Landsat 8 features and all COLI1 (Feature 1 + 2 + 4), indicating
COLI2 were more efficient than COLI1 for AGB estimation of NSFs. CNN was still much
superior to other algorithms and reached the highest accuracies (R2 = 0.99, RMSE = 6.85,
rRMSE = 0.04, MAE = 2.95, MAPE = 1.02, PM = 0.03) when optimal ALS and Landsat
8 features and all COLI2 (Feature 1 + 2 + 5) was applied.

Table 7. Accuracy assessment of classic machine learning algorithms with two sets of features
designed in experiment III.

Features Algorithm R2 RMSE rRMSE MAE MAPE PM

Optimal ALS + Landsat
8 features + All COLI1

(Feature 1 + 2 + 4)

MLR 0.32 60.50 0.40 45.08 36.07 0.68
ELM 0.28 63.26 0.42 44.15 37.84 0.81
BP 0.31 58.71 0.37 40.30 36.98 0.65

RegT 0.28 62.07 0.42 42.29 38.51 0.79
RF 0.31 60.32 0.41 43.41 39.26 0.73

SVR 0.39 57.74 0.39 38.05 35.31 0.66
KNN 0.29 61.11 0.44 42.87 36.47 0.69
CNN 0.92 12.02 0.09 11.37 8.3 0.11

Optimal ALS + Landsat
8 features + All COLI2

(Feature 1 + 2 + 5)

MLR 0.33 59.38 0.42 44.27 39.50 0.70
ELM 0.29 61.67 0.43 47.09 40.34 0.81
BP 0.32 57.74 0.42 48.29 41.60 0.72

RegT 0.33 65.59 0.42 49.26 42.17 0.83
RF 0.31 60.61 0.40 44.69 31.08 0.69

SVR 0.42 56.82 0.37 38.76 29.39 0.68
KNN 0.32 59.83 0.39 44.34 37.3 0.64
CNN 0.99 6.85 0.04 2.95 1.02 0.03

3.3. Performance of Ensemble Learning Algorithms
3.3.1. Experiment I

To explore the performances of ensemble learning algorithms in estimating AGB based
on different feature combinations, Experiment I, II, and III were also implemented using the
designed SG algorithms. According to the results of classic machine learning algorithms
(Tables 5–7), four best-performing models, that is, RF, SVR, KNN, and CNN, were selected
as base models for the SG algorithm. The predictions of base models were applied as
the input of the meta model of the SG algorithms, which were also RF, SVR, KNN, and
CNN. Thus, there were four SG algorithms due to four meta models, including SG(RF),
SG(SVR), SG(KNN), and SG(CNN). Table 8 presented the accuracy assessment of ensemble
learning algorithms with three sets of features designed in experiment I. Comparing to
the results of base models (Table 5), the SG algorithms greatly improved the accuracy
of AGB estimation using the optimal Landsat 8 features (Feature 2) and the combined
optimal features (Feature 1 + 2). However, for the case of optimal ALS features (Feature 1),
the SG algorithms had slightly lower accuracies than those of base models, except CNN.
In general, CNN still performed best as a meta model of SG algorithm, followed by SG
algorithm with SVR meta model, and finally with RF meta model as well as KNN model.
Although CNN was still an outstanding meta model for all the cases, it was worth noting
that the drastic improvements of accuracies brought by SG(SVR), SG(RF), and SG(KNN)
compared with their corresponding base model, especially for the Feature 2 and Feature 1
+ 2. For example, R2 of SG(SVR), SG(RF), and SG(KNN) increased approximately 30%–40%
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and 60%–70% for Feature 2 and Feature 1 + 2, respectively; alternatively, R2 of SG(CNN)
only increased 49% and 0% for Feature 2 and Feature 1 + 2, respectively. Other indices
(RMSE, rRMSE, MAE, MAPE, and PM) had similar trends, but in the opposite direction.
Thus, it had more room for improvement to apply the SG algorithms for relatively weaker
learners (like SVR, RF, and KNN) than strong deep learning learners (like CNN).

Table 8. Accuracy assessment of ensemble learning algorithms with three sets of features designed
in experiment I.

Features Algorithm R2 RMSE rRMSE MAE MAPE PM

Optimal ALS features
(Feature 1)

SG(RF) 0.20 65.38 0.43 50.66 42.35 1.03
SG(SVR) 0.24 63.98 0.42 45.75 41.03 0.92
SG(KNN) 0.19 66.07 0.44 50.70 42.22 1.24
SG(CNN) 0.61 45.42 0.30 31.59 24.28 0.37

Optimal Landsat
8 features
(Feature 2)

SG(RF) 0.44 54.24 0.36 40.20 32.47 0.57
SG(SVR) 0.45 54.36 0.36 38.85 34.59 0.65
SG(KNN) 0.44 54.34 0.36 40.37 32.08 0.53
SG(CNN) 0.76 35.28 0.23 24.29 18.17 0.26

Optimal ALS and Landsat
8 features (Feature 1 + 2)

SG(RF) 0.93 18.04 0.12 8.78 6.30 0.17
SG(SVR) 0.97 12.13 0.08 5.70 4.70 0.14
SG(KNN) 0.9 24.27 0.16 16.76 15.09 0.15
SG(CNN) 0.97 10.95 0.07 6.58 5.06 0.03

3.3.2. Experiment II

Feature experiment II was also implemented to investigate how to integrate elevation
mean and the optimal Landsat 8 features for AGB estimation based on ensemble learning
algorithms (Table 9). It showed that the SG algorithms greatly improved the accuracies
for all the cases except the SG(CNN) for Feature 5 and Feature 2 + 3, comparing to the
accuracies using the corresponding base model (Table 6). When SG algorithms were
utilized, the trend that the simple combination of optimal Landsat 8 features and elevation
mean (Feature 2 + 3) performed best, followed by all COLI2 (Feature 5), and finally all COLI1
(Feature 4) was much more obvious than that using classic machine learning algorithms
(Table 6 vs. Table 9). The advantage of applying deep learning algorithm CNN as meta
model decreased with the dramatic increase in the accuracies of the other three algorithms
(i.e., RF, SVR, and KNN), especially for Feature 5 and Feature 2 + 3. In other words, when
the feature set of all COLI2 or the feature set of optimal Landsat 8 features and elevation
mean was applied for AGB estimation, SG(RF), SG(SVR), and SG(KNN) had comparable
accuracies to SG(CNN).

Table 9. Accuracy assessment of ensemble learning algorithms with three sets of features designed
in experiment II.

Features Algorithm R2 RMSE rRMSE MAE MAPE PM

All COLI1
(Feature 4)

SG(RF) 0.38 57.84 0.38 41.72 33.69 0.68
SG(SVR) 0.48 52.83 0.35 38.69 32.08 0.62
SG(KNN) 0.36 58.5 0.39 43.04 34.36 0.71
SG(CNN) 0.63 43.78 0.29 31.86 25.13 0.49

All COLI2
(Feature 5)

SG(RF) 0.64 43.13 0.28 30.66 23.11 0.48
SG(SVR) 0.64 43.28 0.28 31.09 28.28 0.47
SG(KNN) 0.60 45.85 0.30 32.74 27.00 0.51
SG(CNN) 0.50 51.31 0.34 36.80 27.66 0.50

Optimal Landsat
8 features + The

best-performing ALS
feature (Feature 2 + 3)

SG(RF) 0.86 26.94 0.18 14.22 10.66 0.24
SG(SVR) 0.88 24.61 0.16 10.13 10.25 0.29
SG(KNN) 0.79 34.06 0.23 22.46 17.88 0.31
SG(CNN) 0.86 26.45 0.17 14.76 10.35 0.2
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3.3.3. Experiment III

The effect of combing optimal ALS and Landsat 8 features and two types of novel
features (COLI1 or COLI2) on AGB estimation using ensemble algorithms was investigated
with experiment III (Table 10). Unlike classic machine learning algorithms, the addition of
COLI1 in ensemble algorithms did not improve the accuracies of AGB estimation, compared
to the result of applying optimal ALS and Landsat 8 features (Feature 1 + 2) in Table 8. The
SG(SVR) or SG(KNN) with the addition of COLI1 even lower R2 by about 10%–20% than
SG(SVR) or SG(KNN) with only Feature 1 + 2 (Table 8). However, the addition of COLI2 in
ensemble algorithms slightly increased the accuracies of most models except SG(KNN),
even though SG algorithms with Feature 1 + 2 had already performed well (Table 8). In
general, the SG algorithms with optimal ALS and Landsat 8 features and all COLI2 (Feature
1 + 2 + 5) had more stable accuracies than that with optimal ALS and Landsat 8 features
and all COLI1 (Feature 1 + 2 + 4), no matter which meta model was used, indicating COLI2
were more efficient than COLI1 for AGB estimation of NSFs. It is still the SG model with
CNN meta model that has the highest accuracy (R2 = 0.99, RMSE = 2.02, rRMSE = 0.01,
MAE = 0.87, MAPE = 0.73, PM = 0.02) when optimal ALS and Landsat 8 features and all
COLI2 (Feature 1 + 2 + 5) was applied.

Table 10. Accuracy assessment of ensemble learning algorithms with two sets of features designed in
experiment III.

Features Algorithm R2 RMSE rRMSE MAE MAPE PM

Optimal ALS + Landsat
8 features + All COLI1

(Feature 1 + 2 + 4)

SG(RF) 0.95 15.35 0.11 12.44 9.34 0.14
SG(SVR) 0.71 58.84 0.38 24.02 15.76 0.49
SG(KNN) 0.86 57.00 0.38 21.38 15.49 0.38
SG(CNN) 0.97 12.35 0.08 2.02 1.07 0.03

Optimal ALS + Landsat
8 features + All COLI2

(Feature 1 + 2 + 5)

SG(RF) 0.98 10.13 0.06 2.48 1.98 0.10
SG(SVR) 0.95 4.10 0.18 3.20 2.34 0.08
SG(KNN) 0.96 15.76 0.10 9.04 8.28 0.17
SG(CNN) 0.99 2.02 0.01 0.87 0.73 0.02

In addition, the ensemble algorithms greatly improved the accuracies of the corre-
sponding features and base model (Table 10 vs. Table 7). For example, if the combination
of optimal ALS and Landsat 8 features and all COLI1 (Feature 1 + 2 + 4) was utilized,
the R2 of SG(RF) increased more than 60% compared with that of the RF model; RMSE,
rRMSE, MAE, MAPE and PM of SG(RF) decreased by 75%, 73%, 71%, 76%, and 81%,
respectively, compared with those of the RF model. Although the CNN base model had
already achieved high accuracy, especially when applying the combination of optimal ALS
and Landsat 8 features and all COLI2 (Feature 1 + 2 + 5 in Table 7), the SG(CNN) still
decreased the group of RMSE, rRMSE, and MAE and the group of MAPE and PM by about
70% and 30%, respectively.

3.4. Wall-to-Wall AGB Predictions

Based on the above results and algorithm efficiency, CNN and the feature set of
optimal ALS and Landsat 8 and all COLI2 (Feature 1 + 2 + 5) were selected for a wall-to-
wall AGB prediction of the entire Maorshan Experimental Forest Farm of NEFU (Figure 4).
The predicted AGB varied from 0 to 491.04 Mg/ha, with a mean value of 59.9 Mg/ha and
a standard deviation of 48.69 Mg/ha. The area with AGB of 0 or low values was located
along rivers, roads, or residential regions, whereas the area with high AGB values was
located in the center part (e.g., Zhonglin, Yuejin, Beiling, Donglin, and Xinken working
districts) of Maorshan (Figure 4a). However, the embedded pattern of high and low AGB
values was obvious for most of the study area, as the enlarged area in Zhonglin working
district (Figure 4b).



Sensors 2021, 21, 5974 19 of 32

Figure 4. (a) The wall-to-wall AGB prediction of the entire study area estimated by the CNN model with optimal ALS
features, optimal Landsat 8 features, and all COLI2 (Feature 1 + 2 + 5); (b) Spatial distribution of AGB for a partial area in
Zhonglin working district.

Figure 5 showed the relationship of actual and estimated AGB (Mg/ha) of 195 plots
using the CNN algorithm based on different feature sets. For experiment I, it was better to
apply ALS than Landsat 8 to predict AGB if only one data source had to be used, which
indicated the vertical forest structure was more vital than spectral information for AGB
estimation of NSFs. The synergism of optical imagery and ALS markedly increased the
accuracy of a single data source (Figure 5c vs. Figure 5a or Figure 5b) since it could
effectively alleviate the underestimation of high AGB values. Even only one ALS feature
(i.e., elevation mean) was added to the Landsat 8 features (Experiment II), the improvement
was obvious and significant. However, it was unnecessary to generate novel features like
COLI1 or COLI2 using the optimal Landsat 8 and elevation mean. It was in evidence that
the performance of directly combining them was much better than that of new features
(Figure 5f vs. Figure 5d) or Figure 5e), but worse than that of all optimal ALS and Landsat
8 features (Figure 5f vs. Figure 5c) due to the smaller number of features (i.e., 10 vs. 18).
The effectiveness of COLI1 was very limited because Feature 1 + 2 provided a comparable
result to Feature 1 + 2 + 4 (Figure 5c vs. Figure 5g). It is the most efficient to combine all
optimal ALS, Landsat 8, and COLI2 features, especially for estimating high AGB values
(Figure 5h).
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Figure 5. The relationship of actual and estimated AGB (Mg/ha) of 195 plots using CNN algorithm based on (a) Feature 1:
optimal ALS features; (b) Feature 2: Optimal Landsat 8 features; (c) Feature 1 + 2: Optimal ALS and Landsat 8 features;
(d) Feature 4: All COLI1; (e) Feature 5: All COLI2; (f) Feature 2 + 3: Optimal Landsat 8 features and the best performing ALS
feature; (g) Feature 1 + 2 + 4: Optimal ALS features, optimal Landsat 8 features, and all COLI1; (h) Feature 1 + 2 + 5: Optimal
ALS features, optimal Landsat 8 features, and all COLI2. Note: The red and black lines represent the fitted regression lines
and the line of 45◦, respectively.

4. Discussion
4.1. AGB Estimation Using Different Features

The differences in features are responses to the characteristics of different data sources.
In this study, we extracted a variety of features and investigated the effects of different
synergistic approaches of features derived from ALS and Landsat 8 OLI imagery on AGB
estimation of NSFs of northeastern China. For ALS data, besides elevation features, density-
(e.g., density_metrics7) and intensity-related (e.g., int_AII_5th, int_max, int_AII_40th,
int_per_60th, int_per_80th, and int_AII_50th) metrics also had great potentials in AGB
estimation; for Landsat 8 imagery, band combinations and texture are more efficient
than vegetation indices, especially MVI5 (i.e., the band combination of band 5, 4 and 2).
Unfortunately, some traditional vegetation indices that commonly applied in previous
studies [48], for example, the normalized difference vegetation index (NDVI), enhanced
vegetation index (EVI), atmospherically resistant vegetation index (ARVI), soil adjusted
vegetation index (SAVI), etc., were excluded due to the low correlations with AGB. Only
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one vegetation index (i.e., ND563) was selected. It might be because that study area
is a natural secondary forest with high canopy density which could easily result in the
saturation (insensitivity to AGB) of the traditional vegetation indices, which was also
confirmed in [96,97]. The low accuracies (e.g., R2 < 0.3) of AGB estimations using the
optimal Landsat 8 features (Feature 2), no matter of algorithms, indicating the difficulties
of AGB estimation of NSFs as well. Due to the vegetation characteristics, near-infrared and
shortwave infrared bands (i.e., band 5, 6, and 7) were more related to AGB estimation than
other bands.

Similar to previous studies [48,52,98], it was beneficial to combine ALS data and optical
imagery, even only combining one significant feature derived from ALS (like elevation
mean). The synergistic method of extracting novel features (i.e., COLI1 and COLI2) using
optimal Landsat 8 features and the best-performing ALS feature (i.e., elevation mean)
yielded higher accuracy of AGB estimation than either optical-only or ALS-only features
when the same model was implemented. From experiment II and III, it showed that COLI2
had more advantages than COLI1 in AGB estimations of NSFs, which is different from [48]
due to different forest types (NSFs of northeastern China vs. mixed forests of southern
China). However, it is surprised to find out that the novel extracted features (COLI1 and
COLI2) were not efficient in improving the accuracy compared to the simple combination of
the untransformed features (optimal Landsat 8 features + BLV), which indicated the great
convenience and effectiveness brought by just adding the best-performing ALS feature (i.e.,
elevation mean) to the original set of Landsat 8 features for AGB estimation of NSFs. The
number of features was also a vital factor to influence the AGB accuracy. To make sure
a fair comparison of synergistic approaches of features, we keep the number of features
consistent as much as possible within each experiment. It is a trend that the accuracy of
AGB estimation raises with the increase in the number of involved features under the
same conditions (e.g., algorithms). Thus, it was not surprising that the combination with
27 features (i.e., Feature 1 + 2 + 4 or Feature 1 + 2 + 5) in experiment III provided the best
performances in this study, from a feature size perspective.

4.2. AGB Estimation Using Machine Learning Algorithms

The effect of classic machine learning and ensemble learning algorithms on AGB
estimation using different features was explored in this study. The RF algorithm that is one
of the most commonly used algorithms in forestry only provided very modest accuracy in
this study since it constantly overfits the data, often with poorer predictions [33]. CNN, a
deep learning algorithm firstly developed in 1995 for the classification of handwritten im-
ages [91], showed absolute advantages compared with other classic algorithms (e.g., ELM,
BP, RF, KNN, SVR, etc.). As a representative of deep learning algorithms that is a branch
of machine learning, a large and deep CNN (consisting of many-layered convolutions)
was further developed in 2012 and achieved a winning top-5 test error rate of 15.3% in the
ImageNet ILSVRC-2012 competition [99]. In recent years, the CNN model has been increas-
ingly applied in forestry, for example, for the prediction of forest inventory parameters and
identification of different tree species [100,101]. CNN interprets spatial data by scanning
it using a series of trainable moving windows and sufficiently complex artificial neural
networks and does not require human-derived feature selection in essence [100]. However,
to make sure a fair comparison of different models, we keep the feature selection procedure
consistent for all models. It means that the CNN model was applied for two-dimensional
data of AGB and a set of human-derived features instead of a three-dimensional image.
Although the CNN model lost the advantage of automatically extracting and selecting
features, it is still sensitive to changes in features and significantly superior to other models
(e.g., ELM, BP, RF, KNN, SVR, etc.).

The SG algorithms, a kind of ensemble learning algorithms, applied heterogeneous
ensemble methods with different base models and greatly improved the AGB estimation
accuracy in this study. RF, KNN, SVR, and CNN were selected as base models since SG
algorithms could take advantage of the good and stable predictions from base models.
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The good prediction of the CNN base model successfully made the accuracy of the SG
algorithms improved and stable no matter of meta-models, which indicated that SG has a
stronger generalization ability than base models. In other words, it is more beneficial for
weaker learners (e.g., RF, KNN, and SVR) to become stronger learners using SG algorithms
than strong learners (e.g., CNN).

However, although the SG algorithm is superior to its corresponding base model,
we still recommend employing the CNN model for AGB estimation in practice due to its
comparable accuracy and good efficiency. Table 11 summarized the efficiency (i.e., runtime)
of all the algorithms with the combination of the optimal ALS and Landsat 8 features,
and all COLI2 (Feature 1 + 2 + 5) for AGB estimation of 195 plots on a computer with
AMD RX3700x + 16GB + GTX960 4GB. It showed that the runtime of ensemble algorithms
(i.e., SG(RF), SG(KNN), SG(SVR), SG(CNN)) was dramatically augmented compared with
their corresponding base model (i.e., RF, KNN, SVR, CNN). For example, the efficiency
of SG(CNN) is only half of that of the CNN model. Other SG algorithms (i.e., SG(RF),
SG(KNN), SG(SVR)) raised the runtime of the corresponding algorithm (i.e., RF, KNN, SVR)
even more. The CNN model had the longest runtime but yield the highest accuracy (see
Tables 5–7) among classic machine learning algorithms due to the most complex structure.
Thus, to balance the workload and accuracy, the wall-to-wall AGB prediction map was
generated using the CNN model with the combination of the optimal ALS and Landsat
8 features, and all COLI2 (Feature 1 + 2 + 5) in this study.

Table 11. The runtime of all algorithms with the combination of the optimal ALS and Landsat
8 features, and all COLI2 (Feature 1 + 2 + 5).

Classic Algorithms Runtime (s) SG Algorithms Runtime (s)

MLR 1.2 SG(RF) 8168
ELM 45 SG(SVR) 7798
BP 38 SG(KNN) 7794

RegT 24 SG(CNN) 15170
RF 382

SVR 12
KNN 8
CNN 7384

4.3. Comparison of Estimated Forest AGB and Current Publications

From the AGB accuracy perspective, the highest accuracy (R2 = 0.99, RMSE = 2.02,
rRMSE = 0.01, MAE = 0.87, MAPE = 0.73, PM = 0.02) was yielded by SG(CNN) algorithm
with the combination of the optimal ALS and Landsat 8 features and all COLI2 (Feature 1
+ 2 + 5) in this study, which was better than other similar AGB studies that applied both
LiDAR and optical imagery (e.g., [48,61,69,98,102]). Besides features and algorithms, the
high accuracy of this study also benefited from the case of a local study with a relatively
small area. It tends to decrease the accuracy for national and global scales. For example, Su
et al. [69] provided the R2 of 0.75 and the RMSE of 42.39 Mg/ha for the AGB estimation
of China based on ICESat GLAS laser altimetry data, MODIS, and forest inventory data.
Yang et al. [103] produced a global forest AGB map with the R2 of 0.90 and the RMSE of
35.87 Mg/ha using gradient augmented regression trees algorithm based on multiple data
sources (e.g., LiDAR-derived forest AGB datasets, field measurements, high-level products
from optical satellite imagery, etc.).

Further, we dig into the predicted AGB values of the wall-to-wall map of the entire
Maorshan and compared the distributions of AGB values of the wall-to-wall prediction
map and 195 sample plots (Figure 6). Although the spatial distribution of AGB values
of the wall-to-wall prediction map seemed to be reasonable (Figure 4), it showed that
there was still a big difference between the two distributions, especially for the ranges
of 0–50 Mg/ha and >200 Mg/ha (Figure 6), indicating the underestimation of high AGB
values and overestimation of low AGB values. It suggested that the data saturation in
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Landsat imagery was not fully eliminated in this study of natural secondary forests. For
Heilongjiang province, the average forest AGB density estimated by [69,104] was 81 Mg/ha
and 85 Mg/ha, respectively (using a ratio of 50% for the conversion from forest AGB to
AGB carbon stock); for the entire northeastern China, the average forest AGB density
estimated by [57,105] was 83.50 Mg/ha and 89.30 Mg/ha, respectively. All these values
were significantly higher than the average AGB of 59.9 Mg/ha in this study. The first
reason for that could be the different study area: the area of either Heilongjiang province or
northeastern China is much larger than Maorshan Experimental Forest Farm and includes
the areas with high AGB values, such as Daxing’an Mountains, Xiaoxing’an Mountain, or
Changbai Mountains, which results in a higher average AGB value. The second reason
could be that the data saturation in this study greatly causes the relatively low average
AGB, although the range of predicted AGB (0–491.04 Mg/ha) is reasonable. Thus, how
to eliminate data saturation and quantitatively determine saturation for NSFs still need
further investigation.

Figure 6. The distributions of AGB values of wall-to-wall prediction map (blue bars with one slash)
and 195 sample plots (orange bars with double slashes).

4.4. Limitations and Recommendations

The AGB retrievals with high accuracy from remotely sensed data is not an easy task.
Every procedure or factor could greatly influence the accuracy, including data sources,
feature extraction and selection, estimation models, and model evaluation, and so on.
Although high accuracies of AGB estimation were yielded by the CNN and SG(CNN)
models based on the combination of the optimal ALS and Landsat 8 features and all COLI2
(Feature 1 + 2 + 5), there were still limitations in this study. First, in this study, we only
tested the features (COLI1, COLI2) proposed by [48] and compared them with the direct
combination of these original features that generated them for the AGB estimation of NSFs.
It is possible to find a more effective approach to combine ALS and Landsat 8 imagery
than COLIs for NSFs. Thus, it is still valuable to propose novel features or explore other
synergistic approaches based on multiple data sources for various forest types.

The second limitation is that the underestimation of high AGB values and the over-
estimation of low AGB values were not eliminated from the wall-to-wall prediction map,
although the CNN model had good efficiency and high accuracy according to model
evaluation results. Data saturation might be responsible for this phenomenon and lead
to a much lower average of AGB estimates of the entire study area than those values in
similar studies [57,69,104,105]. The high risks of overfitting resulted from the data-driven
models could be another possible reason for the big discrepancy between model evaluation
results and final wall-to-wall prediction. Thus, the development of models with good
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generalizability in the estimation of biomass and the interpretation of the physical meaning
of models are strongly recommended in further research [17].

In addition, the model evaluation procedure based on leave-one-out cross-validation
may be another incentive for the high accuracy of the CNN model using reference data.
Leave-one-out cross-validation is a special case of K-fold cross-validation where the number
of folds equals the number of records in the data set [106]. Since the evaluated model
is applied once for each record, using all other records as a training set and the selected
record as a single-item test set, it could tend to yield higher accuracy due to overfitting
compared to ten-fold cross-validation, for example, which only uses 90% records to train
the model. However, the quantitative effects of different cross-validation procedures on
AGB estimations still need to be further investigated. Sometimes, it could be a big difference
between the accuracy of the model evaluation procedure using reference data and wall-
to-wall prediction values. Thus, besides the traditional model evaluation procedure, we
strongly suggest assessing the spatial distribution of AGB estimates based on a wall-to-
wall prediction map and distribution of AGB estimates based on histogram compared to
existed data.

The AGB estimation in this study was based on an area-based approach (ABA) that
develops models to relate AGB with features derived from remotely sensed data at a plot
level and apply the models over the whole study area [17]. The fixed plots of continuous
forest resources inventory obtained in 2016 had an area of 20 m ×30 m with the geolocation
error of 5 m, while the pixel size of Landsat 8 was 30 m × 30 m. Thus, geolocation
mismatch between remotely sensed data (i.e., Landsat 8 imagery) and field measurements
is another source of uncertainty of AGB estimation [107]. Fortunately, the large plot size
(i.e., 195) in this study could greatly decrease the geolocation errors according to [107]:
the geolocation errors will be stabilized below 5 m with 20 measurement points and
below 3 m with 50 measurement points. Another drawback of this study is the lack of
assessing biomass uncertainty based on ABA. It is difficult for AGB estimation using ABA
to understand biomass uncertainties at different spatial scales [108]. In recent years, with
the development of automatic individual tree crown delineation algorithms in precise
forestry (e.g., [109,110]), the AGB estimation based on individual-tree-based approach (ITA)
has received more and more attention because field data are needed only for a sample of
trees instead of a sample of plots or stands [17]. In addition, ITA allows AGB estimation of
tree-level, plot-level, and propagation of errors in an up-scaling framework [108]. Thus, it is
appealing and worth estimating AGB based on ITA for a large-scale forest and quantifying
its uncertainty from tree-level to plot-level then to stand-level in an up-scaling framework
in subsequent research.

5. Conclusions

Accurate quantification of AGB plays a vital role in forest carbon sequestration in the
context of climate change. In this study, we investigated the effects of different synergistic
approaches of features and ensemble learning algorithms on AGB estimation of natural
secondary forests of northeastern China based on ALS and Landsat 8 OLI imagery. It is
conducive to combine active and passive data to improve the accuracy of AGB estimation.
Unlike the previous study implemented in southeastern China [48], we found that COLI2
features are more effective in AGB estimation than COLI1 features for the NSFs. Some-
times, it might be more convenient and efficient to adopt the simple combination of the
untransformed features (e.g., the optimal Landsat 8 features + BLV) than the novel features
(i.e., COLI1 or COLI2), especially for NSFs of northeastern China. The CNN model was
much superior to multiple linear regression and other classic machine learning algorithms
(i.e., ELM, BP, RegT, RF, SVR, KNN) no matter of feature sets, and reached the highest
accuracies (R2 = 0.99, RMSE = 6.85, rRMSE = 0.04, MAE = 2.95, MAPE = 1.02, PM = 0.03)
when optimal ALS and Landsat 8 features and all COLI2 (Feature 1 + 2 + 5) was applied.
Ensemble learning algorithms (SG(RF), SG(SVR), SG(KNN), SG(CNN)) that took advantage
of the good and stable predictions from the base models (i.e., RF, SVR, KNN, CNN) greatly
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improved the accuracy of AGB and had stronger generalization ability compared to its
corresponding base model. The ensemble learning algorithm is exceedingly adept to train
weaker learners to strong learners, especially when applying heterogeneous ensemble
strategy. The SG model with CNN meta-model performed best (R2 = 0.99, RMSE = 2.02,
rRMSE = 0.01, MAE = 0.87, MAPE = 0.73, PM = 0.02) with the feature combination of
the optimal ALS and Landsat 8 features and all COLI2 (Feature 1 + 2 + 5) in this study.
However, considering both the efficiency (i.e., runtime) and accuracy, a wall-to-wall AGB
prediction map of Maoershan was generated using the CNN model and Feature 1 + 2 + 5,
instead of the SG(CNN) model. The average and standard deviation of the estimated
AGB of Maoershan Experimental Forest Farm in 2015 was 59.9 Mg/ha and 48.69 Mg/ha,
respectively, ranging from 0 to 491.04 Mg/ha. The lower average value than that of similar
studies for northeastern China maybe because of the different study areas, data saturation,
overfitting of the algorithm, and leave-one-out cross-validation. Estimating data saturation,
developing advanced algorithms, understanding the effects of the different cross-validation
procedures, and quantifying the sources of error are still fundamental and significant to
AGB estimation at all levels.
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Appendix A

Table A1. The 101 features extracted from ALS data in this study.

Feature Group Feature Name Feature Descriptions [111]

Forest features 1

(3 features)

CC Canopy cover: CC = Nveg/N

G Gap fraction: G = N’/N

LAI Leaf area index: LAI = − cos(A)· ln(G)/k

Elevation features
(46 features) 2

elev_AAD Average absolute deviation of elevation:
∑n

i = 1
(∣∣Zi − Z

∣∣ )/n

elev_CRR Canopy relief ratio of elevation:
(Z − Zmin)/(Zmax + Zmin)

elev_AIH_ith
The cumulative height of i% points in each pixel is

the AIH of the pixel, i = 1%, 5%, 10%, 20%, 25%, 30%,
40%, 50%, 60%, 70%, 75%, 80%, 90%, 95%, 99%

elev_AIH_IQ AIH interquartile distance: AIH75%–AIH25%

elev_GM_2
Generalized means for the 2nd power:

2
√

∑n
i = 1 Z3

i /n
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Table A1. Cont.

Feature group Feature Name Feature Descriptions [111]

elev_GM_3
Generalized means for the 3rd power:

3
√

∑n
i = 1 Z3

i /n

elev_cv Coefficient of variation of elevation: Zstd/Z×100%

elev_IQ Elevation percentile interquartile distance:
Elev75%–Elev25%

elev_kurt Kurtosis of elevation

elev_MMAD Median of median absolute deviation of elevation

elev_max Maximum of elevation

elev_min Minimum of elevation

elev_mean Mean of elevation

elev_med Median of elevation

elev_per_ith ith elevation percentiles, i = 1%, 5%, 10%, 20%, 25%,
30%, 40%, 50%, 60%, 70%, 75%, 80%, 90%, 95%, 99%

elev_skew Skewness of elevation

elev_std Standard deviation of elevation

elev_var Variance of elevation

Density features
(10 features) density_ith The proportion of returns in ith height interval,

i = 1–10

Intensity
features

(42 features) 3

int_AAD
Average absolute deviation of intensity:

n
∑

i = 1

(∣∣ Ii − I
∣∣ )/n

int_cv Coefficient of variation of intensity: Istd/I×100%

int_AII_ith
The cumulative intensity of X% points in each pixel

is the AII of the pixel, i = 1%, 5%, 10%, 20%, 25%,
30%, 40%, 50%, 60%, 70%, 75%, 80%, 90%, 95%, 99%

int_kurt Kurtosis of intensity

int_MMAD Median of median absolute deviation of intensity

int_max Maximum of intensity

int_min Minimum of intensity

int_mean Mean of intensity

int_med Median of intensity

int_per_ith ith intensity percentiles, i = 1%, 5%, 10%, 20%, 25%,
30%, 40%, 50%, 60%, 70%, 75%, 80%, 90%, 95%, 99%

int_skew Skewness of intensity

int_std Standard deviation of intensity

int_var Variance of intensity

Int_IQ Intensity percentile interquartile distance:
Int75%–Int25%

1 Nveg: point number of vegetation; N: the total return number; N’: the number of ground points whose elevation
is lower than the height threshold of 2m for separating ground and tree points; A: average scanning angle; k:
extinction coefficient, which is closely related to the leaf inclination angle distribution of the canopy. 2 n is
the number of points in a pixel; Zi: the elevation of i point within a pixel, Z, Zmin, Zmax, Zstd are the average,
minimum, maximum, and standard deviation of elevation of all points within a pixel, respectively; AIH75% and
AIH25% represents the 75% and 25% AIH statistical layer, respectively. 3 Ii: the elevation of i point within a pixel,
I, Imin, Imax, Istd are the average, minimum, maximum, and standard deviation of intensity of all points within a
pixel, respectively; Int75% and Int25% are 75% and 25% intensity statistical layer, respectively.
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Table A2. The 98 spectral features extracted from Landsat 8 OLI imagery in this study.

Feature Group Feature Name Feature Descriptions

Original bands
(7 features) Bi 1 Band1–7 of Landsat 8 OLI image

Band
combination
(10 features)

Albedo 0.246 B2 + 0.146 B3 + 0.191·B4 + 0.304·B5 + 0.105·B6 +
0.008·B7 [112]

B4/Albedo B4/(0.246·B2 + 0.146·B3 + 0.191·B4 + 0.304·B5 + 0.105·B6 +
0.008·B7) [112,113]

B24 B2/B4 [113]
B74 B7/B4 [113]
B76 B7/ B6 [113]

B547 B5·B4/B7 [113]
B65 B6/B5 [113]

B345 B3·B4/B5 [113]
B53 B5/B3 [113]

VIS234 B2 + B3 + B4 [113]

GLCM
features 2

(56 features)

Mean_Bi Mean of each band
Var_Bi Variance of each band

Hom_Bi Homogeneity of each band
Cont_Bi Contrast of each band
Diss_Bi Dissimilarity of each band
Entr_Bi Entropy of each band
Sec_Bi Second moment of each band

Corr_Bi Correlation of each band

Image
enhancement

features
(10 features)

Bright Brightness from tasseled cap transformation: 0.3521·B2 +
0.3899·B3 + 0.3825·B4 + 0.6985·B5 + 0.2343·B6 + 0.1867·B7 [114]

Green
Greenness from tasseled cap transformation:
−0.3301·B2−0.3455·B3−0.4508·B4 +

0.6970·B5−0.0448·B6−0.2840·B7 [114]

Wet Wetness from tasseled cap transformation: 0.2651·B2 +
0.2367·B3 + 0.1296·B4 + 0.059·B5−0.7506·B6−0.5386·B7 [114]

PC1 The first principal component from principal component
analysis (PCA): 0.111·B3 + 0.870·B5 + 0.423·B6 + 0.192·B7

PC2 The second principal component from PCA: 0.198·B1 +
0.217·B2 + 0.267·B3 + 0.376·B4−0.436·B5 + 0.430·B6 + 0.571·B7

PC3 The third principal component from PCA: 0.295·B1 + 0.324·B2
+ 0.398·B3 + 0.473·B4 + 0.183·B5−0.615·B6−0.12·B7

MNF1
The first band of minimum noise fraction rotation (MNF):
−0.2632·B1−0.3528·B2−0.0737·B3−0.0618·B4−0.7457·B5

−0.4898·B6 + 0.031·B7

MNF2 The second band of MNF: −0.0441·B1−0.0781·B2 − 0.1869·B3
− 0.0389·B4 − 0.7523·B5 − 0.4280·B6 − 0.4542·B7

MNF3 The third band of MNF: −0.2387·B1 − 0.2230·B2 + 0.0947·B3
− 0.0195·B4 + 0.5277·B5 + 0.7731·B6 − 0.0885·B7

MNF4 The fourth band of MNF: 0.0199·B1 − 0.00013·B2 −
0.01021·B3 − 0.1027·B4 − 0.4377·B5 − 0.69145·B6 − 0.565·B7

Vegetation
indices

(15 features)

NDVI Normalized vegetation index 1: (B5 − B4)/(B5 + B4) [113]
RVI Ratio vegetation index: B5/B4 [113]
DVI Difference vegetation index: B5 − B4 [113]

EVI Enhanced vegetation index:
2.5·(B5 − B4)/(B5 + 6·B4 − 7.5·B2 + 1) [113]

MSAVI Modified soil-adjusted vegetation index:
[(B5 − B4)/(B5 + B4 + L)]·(1 + L) 3 [115]

ARVI Atmospherically resistant vegetation index:
(B5 − 2·B4 + B2)/(B5 + 2·B4 − B2) [113]

TVI Triangular vegetation index:√
(B5 − B4)/(B5 + B4) + 0.5 [113]
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Table A2. Cont.

Feature Group Feature Name Feature Descriptions

PVI
Perpendicular vegetation index:√

(0.355·B5 − 0.149·B4)
2 + (0.355·B4 − 0.852·B5)

2 [113]

MSR Modified simple ratio vegetation index :
(B5/B4 − 1)/

√
B5/B4 + 1 [113]

SLAVI Specific leaf area vegetation index: B5/(B4 + B7) [113]

MVI5 Moisture vegetation index 1: (B5 + B4 − B2)/(B5 + B4 + B2)
[116]

MVI7 Moisture vegetation index 2: (B5 − B7)/(B5 + B7) [116]
NLI Nonlinear index :

(
B2

5 − B4

)
/
(

B2
5 + B4

)
[113]

RDVI Renormalized difference vegetation index : (B5 − B4)/
√

B5 + B4
[113]

ND563 Normalized difference vegetation index 2:
(B5 + B6 − B3)/(B5 + B6 + B3) [113]

1 The index i represents the band index (1–7). 2 GLCM: gray-level co-occurrence matrix. 3 L = 2·s·(B5 − B4)·(B5 −
s·B4)/(B5 + B4) where s is the slope of the soil line from a plot of red versus near infrared brightness values.
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