
sensors

Article

Inertial Measurement of Head Tilt in Rodents: Principles and
Applications to Vestibular Research

Romain Fayat 1,2 , Viviana Delgado Betancourt 3, Thibault Goyallon 4 , Mathieu Petremann 3, Pauline Liaudet 3,
Vincent Descossy 3, Lionel Reveret 4 and Guillaume P. Dugué 1,*

����������
�������

Citation: Fayat, R.; Delgado

Betancourt, V.; Goyallon, T.;

Petremann, M.; Liaudet, P.; Descossy,

V.; Reveret, L.; Dugué, G.P. Inertial

Measurement of Head Tilt in Rodents:

Principles and Applications to

Vestibular Research. Sensors 2021, 21,

6318. https://doi.org/10.3390/

s21186318

Academic Editor: Antonio Suppa

Received: 31 July 2021

Accepted: 13 September 2021

Published: 21 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Neurophysiologie des Circuits Cérébraux, Institut de Biologie de l’ENS (IBENS), Ecole Normale Supérieure,
UMR CNRS 8197, INSERM U1024, Université PSL, 75005 Paris, France; romain.fayat@ens.psl.eu

2 Laboratoire MAP5, UMR CNRS 8145, Université Paris Descartes, 75006 Paris, France
3 Preclinical Development, Sensorion SA, 34080 Montpellier, France;

viviana.delgado-betancourt@sensorion-pharma.com (V.D.B.);
mathieu.petremann@sensorion-pharma.com (M.P.); pauline.liaudet@sensorion-pharma.com (P.L.);
vincent.descossy@sensorion-pharma.com (V.D.)

4 Laboratoire Jean Kuntzmann, Université Grenoble Alpes, UMR CNRS 5224, INRIA,
38330 Montbonnot-Saint-Martin, France; thibault.goyallon@inria.fr (T.G.); lionel.reveret@inria.fr (L.R.)

* Correspondence: gdugue@bio.ens.psl.eu

Abstract: Inertial sensors are increasingly used in rodent research, in particular for estimating head
orientation relative to gravity, or head tilt. Despite this growing interest, the accuracy of tilt estimates
computed from rodent head inertial data has never been assessed. Using readily available inertial
measurement units mounted onto the head of freely moving rats, we benchmarked a set of tilt
estimation methods against concurrent 3D optical motion capture. We show that, while low-pass
filtered head acceleration signals only provided reliable tilt estimates in static conditions, sensor
calibration combined with an appropriate choice of orientation filter and parameters could yield
average tilt estimation errors below 1.5° during movement. We then illustrate an application of
inertial head tilt measurements in a preclinical rat model of unilateral vestibular lesion and propose a
set of metrics describing the severity of associated postural and motor symptoms and the time course
of recovery. We conclude that headborne inertial sensors are an attractive tool for quantitative rodent
behavioral analysis in general and for the study of vestibulo-postural functions in particular.

Keywords: inertial sensors; rodents; head tilt; attitude estimation; orientation filters; vestibular
system; unilateral vestibular lesion

1. Introduction

Microelectromechanical inertial sensors are the core components of a multitude of
wearable devices used to measure the orientation and kinematics of body parts. These
devices have found key applications in healthcare (e.g., for assessing balance, gait and
motor deficits, improving motor rehabilitation, monitoring daily activities or investigating
work-related physical risk factors) [1–3] as well as in sports biomechanics [4]. In animals,
wearable inertial sensors have been used predominantly for evaluating the welfare of farm
animals and as a quantitative approach for the ethological study of wildlife species [5,6].
Over the past decade, body-worn inertial sensors have also gained momentum as a new
strategy for tracking the behavior of laboratory animals [7–16], offering a cost-effective
solution complementary to video-based approaches [17–19]. Performing inertial recordings
of head movements in rodents is technically simple, as inertial measurement units (IMUs)
come in form factors which are small enough to fit on the head of a rat or mouse or
to be integrated into existing head implants. As an example, the majority of digital
headstage systems used for electrophysiological measurements in rodents now incorporate
accelerometers and/or gyroscopes by default. The growing use of inertial data in rodents
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is however in contrast to the limited perspective on the amount and level of precision of
behaviorally-relevant information they can provide.

Measuring head kinematics in rodents is particularly relevant as these animals heavily
rely on head movements for exploring their environment. Head mobility contributes
to efficient acquisition of olfactory and tactile (whisker-based) information in rats and
mice [20–22], but is also essential for visual exploration. Indeed, eye movements in rodents
occur predominantly in conjunction with head movements [12,15] and seem partially
devoted to keeping an overhead binocular field for detecting predators coming from
above [23]. Tracking head movements is also a relevant entry point for assessing the ongo-
ing behavioral state, since numerous behavioral activities have a specific head kinematic
signature (e.g., grooming, eating, scratching, sniffing, rearing or locomotion) [7,9,21,24].

Head orientation relative to gravity (i.e., head attitude, here referred to as head tilt) is
among the key parameters which can be computed using 6-axis IMUs (i.e., containing a
3-axis accelerometer and 3-axis gyroscope). As in humans, abnormal head tilt in rodents is
most often associated with a central or peripheral vestibular dysfunction. Experimentally-
induced lesions of the vestibular system in rats and mice are a classical approach for studying
the associated neuronal compensatory mechanisms [25] and provide useful preclinical
models for developing new vestibular rehabilitation strategies [26–28]. In such models,
precisely estimating head tilt is essential for assessing the severity and recovery time course
of postural deficits and, thus, for quantifying the efficacy of candidate treatments.

In the context of experimentally-induced vestibular lesions in rodents, head tilt has
traditionally been rated on a discrete scale by an observer, offering a qualitative estimation
rather than a quantitative measurement [26,29–35]. In non-vestibular rodent research,
approximations of head tilt angles have occasionally been calculated from photographs or
single video recordings [36,37]. Recent efforts in 3D videography have yielded methods for
estimating head tilt in rodents [19,38,39], but their accuracy has not been assessed. Finally,
head tilt estimates have also been computed using IMU data collected from behaving
rodents, either by simply extracting the low frequency component of the acceleration
signal [9,11,12] or by employing IMU filter algorithms [8,10,13]. Again, the accuracy of the
resulting head tilt estimates has not been properly quantified.

Here, we address the question of the appropriate methodology to obtain reliable
head tilt estimates in freely moving rats using readily available IMUs. We first discuss the
problem of dealing with sensor offsets and then assess the level of precision of different
IMU-based head tilt estimation methods using concurrent 3D video motion capture. Our
results show that popular IMU filters offer satisfactory results when implemented with the
right set of parameters in conjunction with sensor calibration, with average tilt estimation
errors below 1.5° during movement and a precision equivalent to the one of optical motion
capture in static conditions. We then illustrate the use of IMUs for quantifying the deficits
induced by a unilateral vestibular lesion in rats and propose a series of metrics describing
the severity of the associated motor and postural symptoms. Finally, we discuss how IMUs
can enhance the sensitivity of preclinical testing pipelines in rodent models of vestibulo-
postural dysfunction as well as their general usefulness in the study of rodent behavior.

2. Materials and Methods
2.1. Animals

Animals were adult Long Evans rats (a 9-week-old 300 g male in the IMU vs. motion
capture experiment and 58 12-week-old 200–250 g females in the unilateral vestibular
lesion experiment). These animals were housed in standard conditions (12 h non-inverted
day/night cycle, 21–24 °C, 50–60% humidity) with free access to food and water as well as the
appropriate cage enrichment (cardboard tunnels, shredded paper and dental cotton rolls).

2.2. Hardware

Inertial measurements were performed with wired and wireless IMUs (MPTek, Revel,
France). Wired IMUs consisted of a small printed circuit board (5× 7.5 mm) containing a
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9-axis digital sensor (MPU9250, TDK Invensense, Tokyo, Japan) and connected to a USB
acquisition board via a thin cable. They were used for assessing the accuracy of our offset
calibration method (Section 3.1) and for comparing the performance of IMU orientation
filters against 3D optical motion capture data (Section 3.2). Wireless IMUs were built using
a previously described Bluetooth-based architecture [9]. They consisted of a stack of printed
circuit boards containing a 9-axis digital sensor (MPU9150, TDK Invensense, Tokyo, Japan)
and a rechargeable coin battery (CP1254, Varta, Ellwangen, Germany). They were used
for inertial recordings in the unilateral vestibular lesion model (Sections 3.3 and 3.4). In
the current study, only 6-axis inertial data (3-axis acceleration and 3-axis angular velocity)
were used (magnetometer data were not exploited).

2.3. Cranial Implants

The most straightforward way of obtaining accurate inertial recordings of head move-
ments in rodents is to attach IMUs onto the skull. For this purpose, a cranial implant was
permanently fixed onto the parietal and interparietal skull plates of the animals using
dental cement, as detailed in previously described surgical protocols [9,40]. Rats were
allowed to recover for at least one week after this procedure. In the case of inertial mea-
surements performed in conjunction with 3D video motion capture (Sections 3.1 and 3.2),
the implant contained two threaded standoffs used to fasten a 3D-printed support con-
taining infrared reflective markers and a wired IMU. For the unilateral vestibular le-
sion experiment (Sections 3.3 and 3.4), the implant contained two inverted 3 mm bolts
enabling either the fixation of a wireless IMU or the immobilization of the head for
video-oculographic measurements.

2.4. Unilateral Vestibular Lesion Model

One week after cranial implantation, animals underwent three consecutive habituation
sessions (of 5, 10 and 15 min, respectively) to wireless IMU fixation followed by exposure to
the behavioral box in the dark (42× 42 cm with 31 cm walls). Unilateral vestibular lesions
were then induced under isoflurane anesthesia by a single trans-tympanic injection of
50 µL of a solution containing either kainate (45 mM, pH 9.5) or arsanilate (184 mM, pH 7.0)
dissolved in the same vehicle solution (physiological serum containing the round-window
permeabilizer benzyl alcohol at 4% concentration [41]). Injections were always performed
in the left middle ear. Animals were allocated to five different groups as follows: the first
group received a kainate injection (Kainate group, n = 20) while the corresponding control
group received an injection of the vehicle solution (ShamKainate group, n = 11); the third
group received an arsanilate injection (Arsanilate group, n = 11) while the corresponding
control group received an injection of the vehicle solution (ShamArsanilate group, n = 5);
finally, the fifth group (Healthy group) only underwent isoflurane anesthesia without
injection (n = 11). Head movements were recorded in the behavioral box in the dark during
20 min sessions distributed as follows: a first baseline session was recorded 1 h before the
lesion and, then, a series of sessions were conducted at various time points after the lesion
(1 h and then 1, 2, 7, 14 and 28 d). Before each session, IMU offsets were recorded using a
three-point tumble test (IMU sequentially placed in three different orientations on a flat
surface). Sham animals (ShamKainate and ShamArsanilate) were injected and recorded
the same days as their associated lesioned animals (Kainate and Arsanilate, respectively).
Because the entire protocol was conducted at different times for the two types of lesions
(Kainate/ShamKainate on the one hand and Arsanilate/ShamArsanilate on the other),
the two sham groups were not pooled for analysis. Instead, each sham group served as a
control for their associated lesioned group.

2.5. Sensor Offset Calibration

To assess the level of precision achieved by a multi-point tumble calibration proce-
dure, wired IMUs were fixed onto a custom two-axis motorized rotation stage assembled
using off-the-shelf servomotors (AX12A, Robotis, Toulouse, France) controlled by an Ar-
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duino Uno. To ensure an homogeneous sampling of tilt orientations, rotation angles were
programmed to align gravity with the points of a spherical Fibonacci lattice in the IMU
reference frame (Section 3.1 and Appendix A.1). Each orientation was held for 1.2 s before
initiating a new rotation. At the onset of each new rotation, the Arduino was programmed
to output a digital signal which was registered by the IMU acquisition board. The 400 ms of
immobility preceding the occurrence of a digital signal were used to compute sensor offsets.
Gyroscope offsets were calculated as median gyroscope values during these immobility
periods. To estimate accelerometer offsets, the average accelerometer values for each axis
(ap) were first calculated for each immobility period (p); offsets (oacc) were then obtained
through numerical optimization using the SciPy optimize [42] package by minimizing
the average squared difference between the norm of offset-corrected values and 1 g, i.e.,
by finding:

argmin
oacc

1
npositions

npositions

∑
p=1

(1−
∥∥ap − oacc

∥∥)2

2.6. Benchmarking IMU Filter Algorithms against Optical Motion Capture Data
2.6.1. Experimental Setup

A rat implanted with a rigid 3D-printed support containing a wired IMU and a
set of four infrared reflective markers (3 mm hemispherical markers, MoCap Solutions,
Huntington Beach, CA, USA; Section 3.2 and Figure A2) was left free to explore a 1.2× 0.8 m
elevated area around which four infrared cameras (Arqus M12, Qualisys, Gothenburg,
Sweden) were positioned. The optical motion capture system was geometrically calibrated
to achieve submillimeter accuracy (assessed by computing inter-marker distances). The
video and IMU acquisition frame rates were both set to 300 Hz. The camera sync unit
was configured to output a TTL signal every 6 frames (i.e., at 50 Hz). This signal was
registered by the IMU acquisition board, such that one out of six IMU samples contained a
video timestamp. A very small fraction (0.07%) of the intervals between two successive
timestamps contained five or seven IMU samples, indicating minor phase shifts between
the clocks pacing video and IMU acquisition, respectively. These cases were dealt with as
explained in Appendix A.2 and Figure A1, such that the lag between motion capture and
IMU data never exceeded one clock cycle (1/300th of a second).

2.6.2. Initial Calibrations

Prior to the recording session, both systems were calibrated: to compute sensor offsets
in the case of the IMU (see Section 2.5) and to establish a global optical reference frame
(mx, my, mz) in the case of the optical motion capture system. Intrinsic optical calibration
parameters were derived from the properties of the cameras while extrinsic parameters
were obtained during a dedicated calibration trial using a hand-held rigid wand and a
horizontally-positioned L-frame (indicating the origin of the reference frame and enabling
the alignment of mz with gravity).

2.6.3. Motion Capture Data Pre-Processing

The 3D coordinates of reflective markers in (mx, my, mz) were calculated offline us-
ing the rigid body tracking functions available in the Qualisys Track Manager software
(Qualisys, Sweden). Occasional gaps (i.e., missing marker coordinates for one or two
frames) were filled using quadratic interpolation and data were edited as explained in
Appendix A.2 to guarantee sub-clock cycle synchronization with IMU data. Inter-marker
distances (Figure A2) were calculated for every frame and used to assess data quality. An
overall standard deviation of σd12 = 0.44 mm (all recordings pooled, i.e., 36 min of record-
ing) was measured for the distance between markers 1 and 2 (d12) but aberrant fluctuations
of up to 4–5 mm were observed when the system occasionally failed to properly track the
markers (as a result of marker occlusions or spurious reflections caused by urine spots).
To work with reliable coordinates, the frames corresponding to the 2% highest values of
|d12 −median(d12)| were excluded. The standard deviation calculated from the remaining
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frames was σd12 = 0.21 mm. Using median(d12) as a proxy for the ground-truth distance
between markers 1 and 2, an estimate of the error of optical head tilt measurement was
given by a simple geometrical interpretation: arctan(σd12 /median(d12)) = 0.38°.

2.6.4. Calculating Head Tilt Using Motion Capture Data

The position of the first three markers (Figure A2) in the global optical reference frame
(mx, my, mz) was used to calculate the coordinates of an orthogonal head-bound reference
frame (hx, hy, hz) as follows:

hy =
v21

‖v21‖

hz =
v23 × hy

‖v23 × hy‖

hx = hy × hz

where v21 and v23 are the vectors joining markers 2 to 1 and markers 2 to 3, respectively. The
best approximation of head tilt using motion capture data was then obtained by calculating
the coordinates of mz in (hx, hy, hz).

2.6.5. Calculating Head Tilt Using IMU Data

Head attitude (i.e., head tilt) was computed from IMU data using an extended Kalman
filter (EKF) and two classical complementary filters (Madgwick and Mahony) [43,44]. These
algorithms were implemented using a custom numba wrapper [45] of the ahrs toolbox
(http://ahrs.readthedocs.io, accessed on 12 September 2021), enabling just-in-time code
compilation. The output of these filters are a unit quaternion for each sample representing
the rotation aligning the z-axis of the sensor reference frame with the gravitational acceler-
ation vector while preserving sensor azimuth. Time series of the gravitational acceleration
vector’s coordinates were then obtained by rotating z =

(
0 0 1

)ᵀ by the resulting unit
quaternions. Because gravitational acceleration tends to concentrate in the low frequency
range of the total acceleration signal [9], we compared these algorithms with a normalized
low-pass filtered version of acceleration. Prior to normalization (in order to have a norm
equal to 1 g), low pass filtering was performed using a second-order forward-backward
Butterworth filter.

2.6.6. Computation of IMU-Based Head Tilt Estimation Errors

Before calculating IMU-based tilt estimates and comparing them with motion capture
data, an initial step was to correct for the small misalignment between IMU axes and
the head-bound reference frame calculated using reflective markers (see Section 2.6.4).
This was achieved by computing the rotation minimizing the point-to-point Euclidean
distance between trajectories of the normalized low-frequency (<2 Hz) component of the
acceleration vector in the IMU reference frame and of the Earth-vertical axis in the head-
bound reference frame during periods of immobility, using SciPy’s implementation of the
Kabsch algorithm [46]. This rotation was then applied to raw IMU data before calculating
IMU-based tilt estimates as explained in Section 2.6.5.

The time-series of unit-vectors representing synchronized IMU ({GIMU,t}t) and mo-
tion capture ({Gmocap,t}t) gravitational acceleration estimates were compared by calculat-
ing their point-to-point angular distance ({θt}t):

θt = arccos(GIMU,t ·Gmocap,t)

This angular distance was calculated for each filter and taken as a measure of filter error in
the estimation of head tilt.

http://ahrs.readthedocs.io


Sensors 2021, 21, 6318 6 of 22

2.6.7. Computation of Optimal Filter Parameters

A grid-search approach was used over a broad set of parameter values for each filter
(Section 3.2 and Figure A4) in order to determine which one was most suited to the specific
properties of head movements generated by freely moving rats. The set of parameters
minimizing the average angular error of each filter over all recorded sessions (without
splitting periods of movement and immobility) were selected and used for further analysis.

2.7. Calculation of Head Tilt Maps

To compute head tilt maps, a spherical Fibonacci lattice of 5000 points was generated
and used as vertices for Delaunay triangulation. The number of IMU samples during
which the estimated gravitational acceleration vector fell within each triangle was com-
puted to obtain a spherical density map. These spherical head tilt maps were converted
to 2D maps using the Lambert azimuthal equal-area projection of the cartopy toolbox
(https://scitools.org.uk/cartopy, accessed on 12 September 2021).

2.8. Computing the Average Head Tilt Point

The mean direction of a set of three-dimensional vectors on the S2 sphere cannot be
obtained by averaging spherical coordinates of the points (longitudes and latitudes) because
of discontinuities in coordinate values at the poles and on both sides of the meridian with
longitude ±180°. To circumvent this problem, the estimator for the mean direction of a von
Mises–Fisher distribution was used as a measurement of the average head tilt point. This
distribution can be seen as an analogue to the Normal distribution on the unit sphere [47],
with a mean direction µ and a concentration parameter κ, respectively, analogue to the
mean and invert variance of a Gaussian distribution. The maximum likelihood estimate of
µ for a set of N 3-dimensional unit vectors {xi}i∈[[1,N]] is computed as:

µMLE =
x̄
‖x̄‖

where x̄ = 1
N ∑N

i=1 xi. Note that this formula can only be used when the set of vectors has a
preferred direction, i.e., when ∑N

i=1 xi 6=
−→
0 .

This formula was used to obtain the average head tilt point from head tilt maps
by computing x̄ as the average of vectors representing the centroids of the triangulated
sphere’s facets, weighted by the number of gravity estimate samples falling in each of them.

2.9. Detection of Periods of Immobility

Periods of immobility were defined as time intervals during which the norm of offset-
corrected gyroscope data (i.e., angular speed) was lower than 12 ° s−1. This value was
selected to match the separation between the peaks corresponding to periods of immobility
and activity in the bimodal angular speed distribution (Figure A3). After applying this
threshold, the resulting periods separated by less than 0.1 s were merged, discarding
short outliers during immobility. Finally, periods of immobility lasting less than 0.5 s
were ignored to avoid false positives due to brief incursions below the threshold during
movement.

2.10. Calculation of a Circling Index

The quaternion aligning the z-axis of the sensor reference frame with the gravita-
tional acceleration vector (see Section 2.6.5) was inverted and applied to offset-corrected
gyroscope data (i.e., to the angular velocity vector in the sensor reference frame) in order
to obtain gyroscope information encoded in a gravity-polarized reference frame. The z
component of this rotated angular velocity vector represented the head’s azimuthal angular
speed. Its average value computed from periods of movement was converted from [° s−1]
to [circles min−1] in order obtain a more interpretable metric of circling behavior.

https://scitools.org.uk/cartopy
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3. Results
3.1. Offset Calibration

Sensor offsets are among the main sources of errors in orientation estimation. They
correspond to non-zero intercept values in the sensitivity curves of gyroscopes and ac-
celerometers. While gyroscope offsets can be simply measured as angular velocity values
obtained during immobility, accelerometer offsets need to be calculated using static tilt
orientations. In the classical multi-point tumble test, offsets are calculated by placing each
accelerometer axis in the line of gravity (to register 1 g or −1 g), or perpendicular to it (to
register 0 g). Because precisely aligning each IMU axis with gravity can be cumbersome,
we opted for a different solution in which accelerometer calibration is based on a collection
of 50 different static tilt orientations obtained using a two-axis (pitch and roll) motorized
rotation stage. Rotations were calculated such that the resulting gravitational acceler-
ation vector orientations were homogeneously distributed in the IMU reference frame
(Figure 1 and Appendix A.1); as a result, all three accelerometer axes were exposed to sim-
ilar combinations of acceleration values. Accelerometer offsets were then computed by
numerical optimization using acceleration values measured for each orientation (Figure 1;
see Section 2.5). To assess the influence of the number of orientations N, offsets were cal-
culated using either the full set of tilt orientations (N = 50) or a subset of them. Figure 1c
shows the average absolute residual error in the norm of the acceleration vector after offset
correction as a function of N. A saturation is observed for N ≥ 5 with a residual error
of 0.0070 g, probably originating from other sensor imperfections (e.g., in the scale factor,
response linearity and/or axes alignment). Notably, N = 3 yielded a residual error of
0.0085 g when all three orientations were close to orthogonal to one another, corresponding
to 93.5% of the optimal error reduction (i.e., obtained with N ≥ 5 points). In conclusion, a
manual three-point tumble test is largely sufficient for obtaining reliable offset values on the
condition that orthogonality is respected; alternatively, a multi-point automated method
such as the one employed here provides a hassle-free solution for sensor calibration.

In our conditions, sensor offsets typically lay in the −0.1 to 0.07 g range for accelerom-
eters and in the −22.6 to 10.5 ° s−1 range for gyroscopes (5–95th percentiles, n = 9 IMUs
with a sensor temperature between 29 and 33 °C). Both were sensitive to sensor temper-
ature (Figure 1d) but did not vary significantly over a year in a temperature-controlled
environment (room temperature: 21–24 °C, Figure 1e).

3.2. Accuracy of Head Tilt Estimation in Static vs. Dynamic Conditions

Orientation relative to gravity (i.e., attitude, here referred to as tilt) is classically
calculated from 6-axis IMU data using Kalman filters or a family of less computationally
demanding algorithms designated as complementary filters. Because their performance
likely depends on movement statistics, we wished to compare these different types of
filters in our actual recording conditions, i.e., using head inertial data collected from freely
moving rats. To assess the level of precision of an extended Kalman filter (EKF) and of
two complementary filters (Madgwick and Mahony) [43,44], we used concurrent 3D video
motion capture as a ground-truth measurement of head tilt (see Figure 2a and Section 2.6).
Figure 2b shows an example trajectory of the actual (motion capture-based) and estimated
(IMU-based filter output) gravitational acceleration vector in the head reference frame.
Because gravitational acceleration tends to concentrate in the low frequency range of the
total acceleration signal [9], we also plotted the trajectory of normalized low-pass filtered
(<2 Hz) acceleration. Notably, the actual and estimated trajectories were similar while low
frequency acceleration significantly deviated from them in a region visited during belly
grooming (dashed ellipse in Figure 2b), a behavior associated with rapid head movements.
To assess the performance of head tilt estimation in the presence or absence of movements,
we split the data in periods of activity (movement, total duration = 25 min) vs. inactivity
(immobility, total duration = 11 min) by angular speed thresholding (Figures 2c and A3;
see Section 2.9). Head tilt estimation errors were calculated as the point-to-point angular
distance between the trajectories of gravitational acceleration vectors, taking motion capture
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data as a reference (see Section 2.6.6). The parameters of IMU filters were then optimized
to minimize this error (see Section 2.6.7).

Figure 1. Sensor offset calibration. (a) A two-axis (pitch and roll) motorized rotation stage was used
to orient the line of gravity (purple dot) along a series of 50 homogeneously distributed directions
(black dots) in the sensor’s reference frame (see Section 2.5). The orange and green arrows on the right
represent the trajectory of the gravity line during consecutive pitch and roll rotations. (b) Absolute
acceleration error (|1− ‖a‖|, where a is the acceleration vector) during immobility for all tested
orientations, with or without offset correction (data from one example sensor, n = 10 repetitions of
the test). Shaded areas represent the 5–95th percentile range. (c) Average absolute error in the norm
of measured acceleration as a function of the number of orientations (N) used to compute the offsets
(data from one example sensor). Red points represent the values obtained with 10 repetitions of the
test, with red lines connecting their average values. For N ≥ 5, a subset of the 50 orientations was
selected to best match a homogeneous distribution on the sphere for N points; for N = 2 and N = 3,
the set of orientations was selected to be the one corresponding to the mode of the error distribution
computed using all possible combinations of N points, which for N = 3 corresponded to orthogonal
point configurations. (d) Effect of the temperature on acceleration and gyroscope offsets for one
example sensor. The lines represent cubic polynomial regressions. (e) Stability of gyroscope and
accelerometer offsets for one example sensor over a year.

In the case of the Madgwick filter, correcting for sensor offsets reduced the optimal
average head tilt estimation error by 27% and 45% during movement and immobility, re-
spectively (Figure 2d). Our motion capture data confirmed that the optimal cutoff frequency
for using low-pass filtered acceleration as a proxy for head tilt was 2 Hz (Figure A4) [9].
During immobility, optimized IMU filters performed as well as optical motion capture
(average error < 0.5°) but accumulated variable amounts of error during movement
(Figure 2d,e and Table 1): normalized low-pass filtered acceleration became the least reli-
able (average error > 3°) while the EKF and complementary filters yielded comparable
average errors (in the 1.1–1.6° range). When splitting the data by angular speed values,
however, it became apparent that the EKF was more advantageous in the context of high
rotational activity while complementary filters behaved similarly (Figure 2f). The main
advantages of the Madgwick filter are its low computational cost and the fact that it only
requires to set a unique parameter. In conclusion, while using a normalized low-pass
filtered version of the accelerometer signal is appropriate for head-tilt estimate in static
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conditions, the Madgwick filter seems to be the best compromise for angular speed values
up to 100–150 ° s−1 and the use of an EKF is advisable for accurate tilt measurements at
higher angular speed values.

Figure 2. Calculation of the accuracy of IMU-based head tilt estimation using concurrent 3D optical
motion capture in freely moving rats. (a) Animals were equipped with a head-mounted 3D-printed
support containing four IR reflectors for motion capture (here shown in red) and a wired IMU (wire
not represented). (b) Example trajectories of the actual gravitational acceleration vector (motion
capture, left), of its estimate calculated with the Madgwick filter (middle) and of the normalized low
frequency acceleration (< 2 Hz, right) over a period of 45 s. The dashed ellipse highlights the region
visited during a belly grooming episode. (c) Example angular speed trace (i.e., norm of the angular
velocity vector) and corresponding periods of movement and immobility detected using a threshold
of 12 ° s−1 (orange line; see Section 2.9). (d) Average tilt estimation error for the Madgwick filter
plotted against the filter’s gain, during immobility (inactive, left) vs. movement (active, right) and
with or without offset correction. Dashed lines represent the average error calculated with the best
set of parameters for other filters as well as the uncertainty in motion capture data (see Section 2.6.3).
(e) Cumulative distribution of tilt estimation errors for all IMU filters during immobility (inactive,
left) vs. movement (active, right). The vertical purple dashed line represents the uncertainty in optical
motion capture data. (f) Tilt estimation error plotted as a function of the angular speed (left) and
median error values and interquartile intervals calculated by bins of angular speed (right). Motion
capture error was also plotted to confirm that the uncertainty in the optical estimation of tilt did not
increase for specific ranges of angular speed (e.g., due to high intensity movements such as grooming
occurring predominantly in conjunction with specific head orientations inducing marker occlusions).
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Table 1. Angular errors in IMU-based head tilt estimation for different types of filters. The following
optimal parameters were used: cutoff frequency of 2 Hz for the low-pass filter; β = 0.1 (filter gain)
for the Madgwick filter; kP = 0.3 (proportional filter gain) and kI = 1.8 (integral filter gain) for the
Mahony filter; vg = 1.0 deg2 s−2 and va = 0.002 g2 (noise variance for gyroscopes and accelerometers,
respectively) for the extended Kalman filter. Std: standard deviation; Q25, Q75 and Q95: 25th, 75th
and 95th percentiles, respectively.

Angular Error during Immobility (°) Angular Error during Movement (°)

Lowpass Madgwick Mahony EKF Lowpass Madgwick Mahony EKF

Mean 0.43 0.36 0.39 0.44 3.08 1.56 1.52 1.17
Std 0.41 0.25 0.25 0.27 2.58 1.23 1.26 0.99

Median 0.32 0.31 0.35 0.39 2.44 1.27 1.19 0.93
Q25 0.18 0.19 0.20 0.24 1.35 0.73 0.67 0.53
Q75 0.55 0.47 0.52 0.58 4.12 2.08 2.00 1.55
Q95 1.16 0.81 0.83 0.91 7.67 3.83 3.87 2.99

3.3. IMU-Based Measurements of Head Tilt in a Rat Model of Unilateral Vestibular Lesion

Translational rodent models of vestibular pathologies include lesional approaches
consisting in damaging the vestibular organs (the biological equivalent of accelerometers
and gyroscopes located in the inner ear) or the vestibular nerve [30,31,34]. These exper-
imental paradigms induce partial or complete loss of vestibular functions and may be
designed to allow partial or complete functional recovery. The acute unilateral vestibular
lesion model, in particular, is used to reproduce in rodents the main deficits induced by a
lateral vestibular concussion or vestibular neuritis in humans (chiefly a head tilt toward
and a rapid eye beating phase away from the lesion side) and their progressive recovery.
Preclinical pipelines have been established to test candidate treatments for accelerating
and/or enhancing recovery, but their sensitivity has been hampered by the use of poorly
resolutive head tilt measurements [48,49]. We therefore wished to evaluate the advantages
of introducing head-mounted IMUs in such pipelines. We chose to use wireless IMUs to
enable seamless head movement recordings in a longitudinal study of postural recovery
following a pharmacologically-induced unilateral vestibular lesion. Some animals received
arsanilate, a compound inducing an irreversible destruction (cell death) of the inner ear
sensory epithelium [31,50], while others received kainate, a treatment inducing reversible
excitotoxic synaptic damage [29,30]. IMU recordings were performed before and at various
time points after the lesion (see Section 2.4).

Head tilt estimation in rodents still largely relies on observational methods [26,29–32].
Compared to these approaches, IMUs can provide a comprehensive and quantitative
description of head tilt both in static and dynamic conditions. To capture the natural
dynamics of head tilt during free behavior, we constructed “head tilt maps” by first
triangulating the unit sphere in the IMU reference frame and then counting the number
of times gravity was aligned within each triangle (Figure 3a and Section 2.7). Such maps
provide a snapshot of the various tilt orientations explored by the animal, with certain
areas of the sphere associated with specific behaviors such as grooming and rearing [9].
For visualization purposes, spherical head tilt maps were 2D projected (Figure 3b) and
binarized. Differences between treatments were clearly visible on these maps: a strong
deviation of the gravitational acceleration vector away from the lesion side (indicating a
tilt toward the lesion side) with a moderate reduction of head mobility (the area of the
sphere visited by the vector) in the arsanilate group, and a moderate deviation coupled to
a strong reduction of head mobility in the kainate group (Figure 3c,d). To obtain a simpler
metric of head tilt, we fitted a von Mises–Fisher distribution onto each spherical head tilt
map computed during immobility and took its mean direction as an estimation of the
average tilt point, i.e., the average direction of the gravitational acceleration vector (see
Section 2.8). The trajectories of this average tilt point across all available time points show
that arsanilate-treated animals indeed developed a tilt toward the lesion side coupled with
a slight downward pitch (Figure 3e).
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Figure 3. Changes in static and dynamic head tilt following a unilateral vestibular lesion. (a) Illustration
of the method used to compute head tilt maps: a 45 s trajectory of the gravitational acceleration
vector (white line) was plotted in the IMU reference frame on a triangulated unit sphere, with colors
reflecting the fraction of time during which the vector passed through each triangle. (b) Representative
spherical head tilt map of a healthy rat (left) and its 2D projection (right). The white line represents
the equator. The dashed white ellipse highlights a region specifically associated with body grooming.
(c,d) Representative binarized 2D head tilt maps before and after a trans-tympanic injection of arsanilate
(c) or kainate (d), computed for active (green) and inactive (red) periods (data from one animal in each
case). Note the complete recovery of a normal head tilt map in kainate-treated animals. Injections were
performed in the left ear (y axis on the maps). (e) Trajectories of the average head tilt point during
immobility (red curves) for all available time points for arsanilate- and kainate-injected animals and
their respective control groups (sham). Individual (per-animal) trajectories and across-animal average
trajectories are shown in gray and red, respectively. Individual trajectories were rotated to align the
baseline head tilt point (i.e., before injection) with the North pole.
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3.4. Quantitative Assessment of Lesion-Induced Deficits and Their Recovery Using IMU Data

Having collected IMU data before and at various time points after the unilateral
vestibular lesion, we wished to identify a set of features which best described the severity
of induced symptoms and the extent and time course of recovery. One first obvious metric
was the time spent immobile (i.e., below an angular speed threshold), which peaked 24 h
later for the Arsanilate group compared to the Kainate group (Figure 4a). Notably, the
Healthy group, which underwent anesthesia without injection, displayed significantly
enhanced immobility up to 1 d after the procedure (Table A2), probably indicating that
the effects of anesthesia had not completely worn off at 1 h and that the procedure has
indirect effects lasting until the next day. For later time points, enhanced immobility could
be attributed to the lesion (Table A2) but was only significantly different from control
groups for Arsanilate animals (Table A1). A second feature was the percentage of the
sphere visited by the gravitational acceleration vector during movement, which can be
considered as a measure of head mobility as well as an indicator of changes in the animal’s
behavioral repertoire (e.g., loss and recovery over time of the area corresponding to body
grooming; Figure 3b,d). The reduction of head mobility peaked later for arsanilate- vs.
kainate-treated animals, and was significantly greater for the Kainate group vs. control
groups at t = 1 h (Table A3), indicating a specific acute effect of kainate (Figure 4b). A third
feature was our descriptor of the average head tilt point during immobility, obtained by
taking the mean direction of a von Mises–Fisher distribution fitted onto immobility head
tilt maps (Figure 3e, see Section 2.8). The angular distance of this point to the animal’s
sagittal (xz) plane was mostly significantly affected in the Arsanilate group (Table A5) with
an effect peaking at around 40° one week after the lesion (Figure 4c). Finally, the projection
of the angular velocity vector onto the gravitational acceleration vector provided a way to
quantitatively assess circling (see Section 2.10), a cardinal symptom of peripheral vestibular
lesions consisting in a rotational behavior toward the lesioned side. Differences between
the distributions of angular velocity values along z vs. x and y were indeed more consistent
when considering them in a reference frame aligned with gravity (Figure A5), with a bias
of values along z indicating a dominant azimuthal rotation toward the left. Notably, this
feature was only present in the Arsanilate group (Table A7), with a late-onset kinetics
different from the one of other features (Figure 4d) and probably linked to the partial
recovery of the baseline activity level (Figure 4a). Overall, these consolidated features
provide a comprehensive and quantitative snapshot of lesion-induced postural deficits
which can be observed at the level of the animal’s head.

Direct comparison of these results with previous UVL studies is not possible as these
studies used a global vestibular rating combining a series of discrete scores (obtained by
the observational assessment of head tilt and circling but also of other features such as
backward locomotion and postural reflexes). Our measurements are however consistent
with the typical time course of this global rating in kainate- and arsanilate-induced UVL: an
effect peaking in the first few hours after injection followed by an almost complete recovery
within days for kainate [26,29,30] and an effect peaking in the first few days followed by
partial recovery over the following weeks for arsanilate [31,32].
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Figure 4. IMU-extracted features describing lesion-induced deficits and their temporal dynamics.
(a) Fraction of the time spend immobile, calculated by angular speed thresholding (left) and plotted
for all groups and all time points (right). (b) Fraction of the unit sphere visited during movement by
the gravitational acceleration vector (Madgwick estimate) in the head reference frame plotted for
all groups and all time points. (c) Angular distance to the sagittal (xz) plane of the mean direction
of a von Mises–Fisher distribution (orange dot on the left) fitted on each head tilt map during
immobility, plotted for all groups and all time points (right). (d) Estimate of the average number
of counter-clockwise rotations per minute plotted for all groups and all time points (right), and
computed by integrating the azimuthal angular speed (i.e., the angular speed about the axis defined
by the gravitational acceleration vector). This figure uses Tukey boxplots, where the horizontal line
is the median, boxes are the interquartile range (IQR), whiskers extend to the most extreme points
within the median ± 1.5 IQR interval and outliers are points beyond this interval.
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4. Discussion
4.1. Accuracy of IMU-Based Head Tilt Estimation

Using optical motion capture as a ground truth measurement of 3D orientation, we
benchmarked IMU-based methods for computing head tilt estimates in freely moving rats.
Our results show that all methods achieved the same level of precision (<0.5°) during
phases of immobility (Figure 2d). In this context, low-pass filtering the IMU acceleration
signal is clearly the simplest solution. During movement, however, optical motion capture
remained the most accurate approach while the normalized low-frequency acceleration
yielded the least precise head tilt estimates. In contrast, optimizing the parameters of
IMU filters (Madgwick, Mahony and extended Kalman filters) could hold the average tilt
estimation error below 1.5° (Figure 2d) with a 95th percentile below 4° (Table 1), provided
that both accelerometer and gyroscope offsets are corrected (which can be achieved in a
satisfactory way using a three-point tumble test as shown in Figure 1c). Such values remain
more than acceptable given that in many cases inter-animal differences are potentially a
greater source of variability. Overall, the EKF outperformed all other filters but was also
the most computationally demanding solution. The Madgwick filter behaved like the
Mahony filter but only requires to set one parameter and is thus perhaps the wisest choice
for the sake of simplicity. For all IMU filters, head tilt estimation errors linearly scaled with
angular speed values above 50 ° s−1 (Figure 2f), a property which needs to be taken into
account depending on the regime of movements studied: for intermediate angular speed
values (up to around 100–150 ° s−1), using a Madgwick filter seems like a most reasonable
solution, while the EKF is probably a safer choice for higher angular speed applications.

4.2. Inertial vs. Optical Head Tilt Estimation

Unsurprisingly, a state-of-the-art 3D optical motion capture system achieved a higher
accuracy than inertial measurements for estimating head tilt, but also at the cost of cumber-
some calibration steps, stringent requirements on the experimental conditions (in particular
to avoid parasite reflections) and some data pre-processing dedicated to isolating tracking
errors. Optical motion capture nevertheless represents a powerful tool for obtaining ground
truth estimates of three-dimensional body movements, an approach adopted in the present
work but also successfully used for automatically annotating anatomical landmarks on
videos of rodents [19,39]. It nonetheless requires to attach reflective markers on the animal,
inducing the same amount of animal preparation work than IMUs. Markerless 3D video
approaches can circumvent many of the technical hurdles inherent to optical motion cap-
ture and enable the measurement of whole-body movements in rodents [18,19] but likely
provide a lower level of angular accuracy than inertial sensors for head tilt measurement.

Despite a lower accuracy compared to optical motion capture systems, IMUs have a
number of advantages which make them more tractable and versatile, besides of course
offering a considerably cheaper solution. They require a minimal calibration procedure
compared to a multiple-camera setup, generate small data files compared to markerless
3D video and do not bear the inherent difficulties of video recordings, such as occlusions,
parasite reflections and a necessary compromise between resolution and the size of the field
of view. Finally, the need for specifically preparing the animal for inertial measurements
will often not be an issue as a growing number of headborne devices such as electrophysi-
ology headstages already incorporate an IMU. For all these reasons, an IMU-based head
tilt estimation solution is significantly easier to deploy than most optical approaches, with
a minimal compromise in terms of precision. A direct comparison would however be
interesting to carry out between IMUs and affordable lighthouse-based 3D localization
systems used for virtual reality applications [51].

4.3. Application of IMUs to Rodent Vestibular Research

Head tilt and circling are among the main behavioral manifestations of an asymmet-
rical vestibular impairment in rodents together with nystagmus. Head tilt is of primary
interest in the context of preclinical research as it mirrors an equivalent symptom in patients
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with unilateral inner ear injuries. Contrary to eye movements, the assessment of head tilt in
rodents has traditionally suffered from a lack of objective and quantitative measurements.
In the case of UVL studies, a battery of static and dynamic features is typically rated on
a discrete scale by an observer [26,29–32]. Head tilt in particular is often rated from 0
to 4 by observing the animal over a couple of minutes. The reported metric is a unique
rating combining the scores obtained for all features. While this approach provides a global
assessment of vestibular deficits, it remains poorly quantitative and prevents the detailed
analysis of individual symptoms.

Here, we show that IMUs offer an attractive solution for a quantitative full scale
analysis of head kinematics, including both head tilt and circling but also complementary
features such as the degree of head mobility and the animal’s overall level of activity
(Figure 4). As illustrated in our model of unilateral vestibular lesion, these measurements
can offer a powerful platform for enhancing the resolution of preclinical vestibular re-
search pipelines aiming at identifying potential treatments. They can also be viewed
as a complementary approach to recently developed quantitative methods for assessing
vestibulo-postural deficits in rodents using video recordings or pressure sensors [33–35],
which provide information on the alteration of body posture and locomotor patterns.

IMU-based head tilt estimation also offers a route toward a more ethological assess-
ment of vestibulo-postural functions in rodents, such as the ones ensuring head stabilization
in space [52]. These functions have mostly been studied using passively applied sinusoidal
movements but can now be approached in the context of natural self-generated move-
ments. Similarly, the investigation of how the brain transforms vestibular inputs into a
representation of head kinematics can now be transposed to fully unrestrained animals [40].

4.4. Perspectives: Quantitative Rodent Behavioral Scoring and 3D Orientation Tracking

Beyond vestibular research, headborne IMUs offer new opportunities for quantitative
approaches in rodent behavioral studies. A wide range of different behavioral activities
indeed have a distinct signature in IMU data, such as locomotion, rearing, grooming or
sniffing [7,9,21,24]. The extent to which 6-axis inertial data can support accurate auto-
mated behavioral scoring algorithms remains to be determined. Focusing on intersectional
patterns of head tilt and gyroscope signals is probably relevant, as non-gravitational ac-
celeration signals seem to be mostly generated by head rotations in rodents [40]. Another
direction is the transition to 9-axis sensors (MIMUs, i.e., IMUs containing an additional
3-axis magnetometer), in order to compute the head’s full 3D orientation. These sensors
could be used, for example, in studies of how rodents maintain a neuronal representation of
their azimuthal direction or in the measurement of optomotor responses. A similar video-
based approach as the one employed here would be necessary to quantify the accuracy of
MIMU (i.e., AHRS) filters in freely moving animals.
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Appendix A

Appendix A.1. Obtaining a Spherical Fibonacci Lattice of Sensor Orientations Relative to Gravity

In order to homogeneously sample tilt orientations during sensor calibration, a set of
N target gravity coordinates in the IMU reference frame, {gi}i∈[[0,N−1]] was first computed
to be evenly distributed on the S2 sphere using the Fibonacci sphere formula:

gi =
(
cos θi sin φi sin θi sin φi cos φi

)T
=

(
gi,x gi,y gi,z

)T

where φi = arccos (1− 2i+1
N ) and θi = 2πi/Φ, with Φ = 1+

√
5

2 .
The two successive pitch and roll rotations (in the sensor reference frame) align-

ing gi with
(
0 0 1

)ᵀ were then calculated and converted into instructions sent to
the servomotors.

Appendix A.2. Correcting for Minor Phase Shifts between Motion Capture and IMU
Acquisition Clocks

The acquisition of video frames and IMU data was paced by two independent clocks
which were both set to 300 Hz. A synchronization signal was sent by the video sync unit to
the IMU acquisition board every six video frames, such that one out of six IMU samples con-
tained a video timestamp. In rare cases, the interval between two consecutive timestamps
either contained one extra IMU sample or lacked one IMU sample, indicating the presence
of small phase shifts between the two clocks. As illustrated in Figure A1, the two above
cases were dealt with by duplicating and deleting the last mocap sample, respectively, such
that the lag between mocap and IMU data never exceeded one acquisition period.

Figure A1. Strategy used to deal with phase shifts between motion capture and IMU acquisition
clocks. A TTL output was emitted for one out of six video frames (mocap frame 0, light gray). The
rising front of this TTL signal was detected by the IMU acquisition board and used to timestamp
the corresponding IMU sample (IMU frame 0, dark gray). Small clock irregularities could result in
a jump one IMU sample forward or backward of the timestamp (purple arrowhead in cases 2 and
3, observed for 0.07% of the synchronization cycles). These cases were dealt with by duplicating or
deleting the last mocap sample of the corresponding synchronization cycle.

https://github.com/rfayat/sensors_IMU_head_tilt_rodents
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Appendix A.3. Design of the Headborne Support Used for Concurrent Motion Capture and
IMU Recordings

Figure A2. Dimensions (in mm) of the headborne 3D-printed support used for concurrent IMU and
optical motion capture measurements (see also Figure 2a). The wired IMU was secured in a dedicated
socket using an additional piece (right) and a pair of nylon screws and nuts. Red areas represent the
location of infrared reflective markers. Numbers assigned to the markers are indicated in red.

Appendix A.4. Immobility Detection by Angular Speed Thresholding

Figure A3. The distribution of angular speed values (i.e., the norm of the angular velocity vector) for
one example recording is shown (solid black line) on top of the distributions obtained after applying
a threshold of 12 ° s−1 (dashed line), merging sub-threshold intervals close in time and discarding
very brief sub-threshold periods (see Section 2.9). The threshold was positioned to separate the two
modes of the original distribution.
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Appendix A.5. Filter Parameter Optimization

Figure A4. Parameter optimization for the low-pass, Mahony and extended Kalman filters. Optimal
parameters were the ones minimizing the average tilt estimation error on all recorded data (36 min).
For the low-pass filter (left panel), the optimal cutoff frequency was 2 Hz during movement and
lay in the 2–4 Hz during immobility. A grid search algorithm was used to find the optimal pair
of parameters for the Mahony and extended Kalman filters (middle and right panels; the optimal
combination of parameters is highlighted by a white circle).

Appendix A.6. Distribution of Head-Centered vs. Gravity-Centered Angular Velocity Values before
and after Arsanilate Injection into the Inner Ear

Figure A5. Per axis cumulative angular velocity distributions in a head-bound vs. a gravity-aligned
reference frame before and after arsanilate injection into the left inner ear (example from one rat).
In basal conditions, the distribution of pitch rotations (green curve) reaches larger values than roll
and yaw rotations (top left panel). The arsanilate lesion induces a change in head kinematics, with a
shift of yaw rotations in the counter-clockwise direction (a shift of the blue curve toward the bottom)
which is most apparent when angular velocity values are expressed in a gravity-centered reference
frame (with a z axis aligned with gravity and an x axis aligned with the animal’s nose by convention)
as seen in the bottom right panel.
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Appendix A.7. Significativity of Inter-Group and Inter-Time Point Differences in the Unilateral
Vestibular Lesion Model

Table A1. Bonferroni-corrected p values for fraction of the time spent immobile (one-sided Mann–
Whitney U test; p values lower than 0.05, 0.01 and 0.001 are highlighted in yellow, green and
blue, respectively).

1 h 1 d 2 d 7 d 14 d 28 d

Arsanilate vs. Healthy 6.202 <0.001 <0.001 0.790 1.702 2.379
Arsanilate vs. ShamArsanilate 1.751 0.003 0.004 5.951 1.945 13.413
ShamArsanilate vs. Healthy 16.376 14.032 9.000 5.250 9.349 1.990

Kainate vs. Healthy 0.001 0.861 0.089 1.017 0.512 0.714
Kainate vs. ShamKainate 0.070 4.500 4.945 14.855 9.853 4.945
ShamKainate vs. Healthy 4.991 3.876 0.686 0.321 0.136 1.511

Table A2. Bonferroni-corrected p values for fraction of the time spent immobile (one-sided Wilcoxon test;
p values lower than 0.05, 0.01 and 0.001 are highlighted in yellow, green and blue, respectively).

1 h 1 d 2 d 7 d 14 d 28 d

Healthy vs. Healthy baseline 0.003 0.009 0.961 0.126 1.239 0.618
Arsanilate vs. Arsanilate baseline 0.001 0.001 0.003 0.006 0.041 0.029
ShamArsanilate vs. ShamArsanilate baseline 0.188 0.188 0.562 0.188 3.469 0.188
Kainate vs. Kainate baseline <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
ShamKainate vs. ShamKainate baseline 0.003 0.009 0.202 0.073 0.009 0.249

Table A3. Bonferroni-corrected p values for fraction of the sphere visited during movement (one-sided
Mann–Whitney U test; p values lower than 0.05, 0.01 and 0.001 are highlighted in yellow, green and
blue, respectively).

1 h 1 d 2 d 7 d 14 d 28 d

Arsanilate vs. Healthy 3.350 0.002 0.001 4.603 5.394 6.684
Arsanilate vs. ShamArsanilate 1.166 0.003 0.016 2.407 5.317 14.032
ShamArsanilate vs. Healthy 16.376 16.592 2.407 13.204 5.944 5.951

Kainate vs. Healthy <0.001 9.000 1.617 3.512 0.426 0.449
Kainate vs. ShamKainate <0.001 9.000 7.819 4.985 0.125 1.617
ShamKainate vs. Healthy 7.594 8.060 2.641 6.684 8.060 6.684

Table A4. Bonferroni-corrected p values for fraction of the sphere visited during movement (one-sided
Wilcoxon test; p values lower than 0.05, 0.01 and 0.001 are highlighted in yellow, green and blue,
respectively).

1 h 1 d 2 d 7 d 14 d 28 d

Healthy vs. Healthy baseline 0.006 0.009 0.442 0.442 0.835 1.239
Arsanilate vs. Arsanilate baseline 0.001 0.001 0.003 0.021 0.442 0.721
ShamArsanilate vs. ShamArsanilate baseline 0.188 2.438 2.438 5.438 4.688 2.438
Kainate vs. Kainate baseline <0.001 0.126 3.044 2.471 0.863 1.712
ShamKainate vs. ShamKainate baseline 0.003 0.009 0.021 0.056 0.442 0.202
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Table A5. Bonferroni-corrected p values for average tilt point angle to xz plane during immobility (one-
sided Mann–Whitney U test; p values lower than 0.05, 0.01 and 0.001 are highlighted in yellow, green
and blue, respectively).

1 h 1 d 2 d 7 d 14 d 28 d

Arsanilate vs. Healthy 0.715 <0.001 <0.001 <0.001 <0.001 0.002
Arsanilate vs. ShamArsanilate 1.440 0.003 0.029 0.004 0.001 0.016
ShamArsanilate vs. Healthy 7.442 5.250 1.990 7.442 4.724 5.250

Kainate vs. Healthy 0.022 0.192 0.100 0.870 0.112 0.369
Kainate vs. ShamKainate 0.220 15.443 4.005 14.296 5.207 0.596
ShamKainate vs. Healthy 3.876 0.015 7.135 0.512 1.909 5.394

Table A6. Bonferroni-corrected p values for average tilt point angle to xz plane during immobility (one-
sided Wilcoxon test; p values lower than 0.05, 0.01 and 0.001 are highlighted in yellow, green and
blue, respectively).

1 h 1 d 2 d 7 d 14 d 28 d

Healthy vs. Healthy baseline 3.507 2.695 1.913 3.305 3.899 5.039
Arsanilate vs. Arsanilate baseline 0.081 0.001 0.003 0.003 0.003 0.003
ShamArsanilate vs. ShamArsanilate baseline 1.312 1.875 0.375 1.875 0.656 2.438
Kainate vs. Kainate baseline <0.001 0.024 0.005 0.018 0.042 0.109
ShamKainate vs. ShamKainate baseline 1.239 0.056 0.961 0.618 2.294 4.441

Table A7. Bonferroni-corrected p values for number of circles per minute (one-sided Mann–Whitney U
test; p values lower than 0.05, 0.01 and 0.001 are highlighted in yellow, green and blue, respectively).

1 h 1 d 2 d 7 d 14 d 28 d

Arsanilate vs. Healthy 14.650 15.706 1.511 0.012 0.003 <0.001
Arsanilate vs. ShamArsanilate 17.066 12.185 0.247 0.029 1.341 0.008
ShamArsanilate vs. Healthy 3.396 13.413 17.753 17.382 1.945 4.587

Kainate vs. Healthy 10.904 11.776 14.627 16.069 10.135 3.373
Kainate vs. ShamKainate 8.852 3.643 5.714 8.863 10.135 11.469
ShamKainate vs. Healthy 5.394 16.298 16.663 15.865 12.188 3.221

Table A8. Bonferroni-corrected p values for number of circles per minute (one-sided Wilcoxon test; p
values lower than 0.05, 0.01 and 0.001 are highlighted in yellow, green and blue, respectively).

1 h 1 d 2 d 7 d 14 d 28 d

Healthy vs. Healthy baseline 1.731 2.101 3.305 2.493 3.507 5.903
Arsanilate vs. Arsanilate baseline 5.096 3.627 0.161 0.015 0.006 0.003
ShamArsanilate vs. ShamArsanilate baseline 0.562 2.438 5.438 5.062 0.281 0.938
Kainate vs. Kainate baseline 0.990 0.537 1.425 2.324 0.961 2.782
ShamKainate vs. ShamKainate baseline 0.961 4.441 4.087 3.305 3.507 3.899
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