
sensors

Article

Hyperspectral Image Classification Using Deep Genome
Graph-Based Approach

Haron Tinega 1, Enqing Chen 1,2,*, Long Ma 1 , Richard M. Mariita 3 and Divinah Nyasaka 4

����������
�������

Citation: Tinega, H.; Chen, E.; Ma, L.;

Mariita, R.M.; Nyasaka, D.

Hyperspectral Image Classification

Using Deep Genome Graph-Based

Approach. Sensors 2021, 21, 6467.

https://doi.org/10.3390/s21196467

Academic Editors: Panagiotis

E. Pintelas, Sotiris Kotsiantis and

Ioannis E. Livieris

Received: 19 August 2021

Accepted: 23 September 2021

Published: 28 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Information Engineering, Zhengzhou University, No. 100 Science Avenue,
Zhengzhou 450001, China; tinegaharon@gmail.com (H.T.); ielongma@zzu.edu.cn (L.M.)

2 Henan Xintong Intelligent IOT Co., Ltd., No. 1-303 Intersection of Ruyun Road and Meihe Road,
Zhengzhou 450007, China

3 Microbial BioSolutions, 33 Greene Street, Troy, NY 12180, USA; richard.mariita@microbialbiosolutions.com
4 The Kenya Forest Service, Nairobi P.O. Box 30513-00100, Kenya; dondieki@kenyaforestservice.org
* Correspondence: ieeqchen@zzu.edu.cn; Tel.: +86-158-0380-2211

Abstract: Recently developed hybrid models that stack 3D with 2D CNN in their structure have
enjoyed high popularity due to their appealing performance in hyperspectral image classification
tasks. On the other hand, biological genome graphs have demonstrated their effectiveness in
enhancing the scalability and accuracy of genomic analysis. We propose an innovative deep genome
graph-based network (GGBN) for hyperspectral image classification to tap the potential of hybrid
models and genome graphs. The GGBN model utilizes 3D-CNN at the bottom layers and 2D-CNNs
at the top layers to process spectral–spatial features vital to enhancing the scalability and accuracy of
hyperspectral image classification. To verify the effectiveness of the GGBN model, we conducted
classification experiments on Indian Pines (IP), University of Pavia (UP), and Salinas Scene (SA)
datasets. Using only 5% of the labeled data for training over the SA, IP, and UP datasets, the
classification accuracy of GGBN is 99.97%, 96.85%, and 99.74%, respectively, which is better than the
compared state-of-the-art methods.

Keywords: convolutional neural networks; hyperspectral images; hyperspectral image classification;
spectral–spatial features; hybrid convolution networks; genome graphs

1. Introduction

Hyperspectral imaging is a combination of spectroscopy and imaging technologies.
It involves using remote sensors to acquire a hyperspectral image (HSI) over the visible,
near-infrared, and infrared wavelengths to specify the complete wavelength spectrum at
each point on the earth’s surface [1]. Several efforts toward the enhancement of smart
cameras/sensors have been made over the past decades to produce high-quality hyper-
spectral image data for Earth Observation (EO) [2]. The recent improvement in camera
technology that utilizes complementary metal oxide semiconductor (CMOS) technology
and multi-camera schemes has resulted in even more sophisticated smart sensors that use
innovative algorithms such as adaptive cloud correction, which makes them adaptable to
dynamic conditions with uncertain geometric changes and vibrations [3]. When the vision
system or imaging device is combined with the main image processing unit, the resulting
sensor is called the smart camera/sensor. These advancements have led to improvements
in image resolution, acquisition speed, and the capability of providing images in which
single pixels provide information from across the electromagnetic spectrum of the scene
under observation, which in turn has improved the quality and speed of hyperspectral
image processing [1]. The HSI is acquired by moving the vision system across the earth
surface. The smart sensor raster-scans each scene in an image plane to extricate unique
spectral signatures, using thousands of spectral bands recorded in different wavebands,
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creating a complete hyperspectral image data cube I ∈ RW×H×L, where (W × H) are the
HSI pixels, and each Ii ∈ RL records the spectral signature of the observed material.

Hyperspectral imaging technology has emerged as an effective tool for remote sens-
ing applications, such as forestry, environmental monitoring [4], security [5], geology [6],
ocean [7], precision agriculture [8], and many more. Unlike natural color images, hy-
perspectral images contain hundreds of channels that provide spectral information and
detailed spatial cues [9]. The major benefit of hyperspectral images is that the unique spec-
tral signatures obtained from certain objects enhances the detection of materials that make
up a scanned object on the Earth’s surface, providing a much-improved comprehension
of the scene under investigation. The process of analyzing the variegated land cover in
hyperspectral images or data is called hyperspectral image classification (HSIC) [9]. An
HSIC process begins with the image acquisition phase, followed by the feature extraction
and learning phase. The extracted robust and invariant spectral–spatial features are then
finally sent to the classifier for classification purposes. Each pixel in a raw remote sensed
image is assigned a land cover class label or theme.

Currently, the application of deep learning in the HSIC process has resulted in im-
proved classification results. To tap the benefits of the readily available spectral and spatial
information in hyperspectral images, researchers developed deep 3D-CNN models for
feature learning. Although these models achieved better hyperspectral image classification
accuracy than 2D-CNNs, they are computationally complex and frequently overfit. Recent
developments in hyperspectral image classification have seen replacing 3D-CNNs with
low-cost 2D-CNNs, creating hybrid models that are less computationally complex. More-
over, biological graph genomes are known to radically enhance the scalability, speed, and
accuracy of genomic analyses [10].

Inspired by the work of Schatz et al. [11] and Rakocevic et al. [10] on graph genomes,
and following the work of Roy et al. [12] that promotes the development of the 2D/3D
CNN hybrid models, we propose an innovative genome graph-based bottom-heavy hybrid
model called the deep hybrid genome graph-based network (GGBN) for hyperspectral
image classification. This model is bottom-heavy because it utilizes 3D-CNN at the bottom
layers to simultaneously process spectral–spatial features and 2D-CNNs at the top layers
to process spatial features. The GGBN attains comparable results in terms of efficiency and
accuracy with the state-of-the-art HSIC methods, such as SSRN and HybridSN.

Our contributions are two-fold: (a) The development of a bottom-heavy hybrid model
for hyperspectral image classification, which utilizes 2D and 3D CNNs in its structure to
reduce the model complexity radically; and (b) unlike the HybridSN that also utilizes the
2D and 3D CNNs in its structure, the GGBN, in addition, utilizes the biological genome
graph structure in its the network design. The resulting network structure contains multiple
streams that independently extract spectral–spatial features, the residual layers that solve
the degradation problem in the network, and the intermediate feature fusion to extract more
abundant features. We attest that this is the first research that uses biological genome graphs
in hyperspectral image classifications. However, in terms of computational efficiency, even
though the test time of GGBN is better than HybridSN over IP and UP datasets, its training
time performance is worse than HybridSN. Moreover, given more training data samples,
the classification accuracy of SSRN and HybridSN becomes comparable with the proposed
model. Therefore, our model is robust using small training sample data.

The rest of this paper is organized as follows. Section 2 discusses the related work.
Section 3 discusses the proposed method. Section 4 discusses the materials and methods.
Section 5 discusses the experimental results and analysis. Section 6 contains the conclusion
of this article.

2. Literature Review

This section will present insights concerning feature extraction and learning in the
HSIC process and genome biology.
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2.1. Extraction and Learning in the HSIC Process

Early works on hyperspectral image analysis relied solely on spectral cues for HSIC,
resulting in the development of feature extraction approaches, such as independent compo-
nent analysis (ICA) [13], linear discriminant analysis (LDA) [14], and principal component
analysis (PCA) [15,16]. In addition, this led to the development of pixel-wise classification
methods, such as multinomial logistic regression [17], support vector machines (SVM) [18],
random subspace [19], and one-dimensional neural networks [20]. However, these methods
gave unsatisfactory classification results because they did not utilize spatial information.

The advancements in remote sensors have resulted in a drastic increase in research that
considers spatial context information, which can significantly increase HSIC accuracy. The
strategies for the extraction of spatial context information can be classified into handcrafted
or deep learning. Most handcrafted spatial context feature extraction can be classified
under neighborhood window [21], Markov random field (MRF) [22], segmentation [23],
morphological, and texture features [24]. However, the handcrafted spatial feature extrac-
tion methods lack the discriminative power available in deep learning features for the
problem of HSIC.

The application of deep learning in the field of machine learning and pattern recogni-
tion has achieved tremendous results, especially in tasks such as object detection [25], image
analysis [26], and natural language processing [27], promoting their development in hyper-
spectral remote sensing tasks. In hyperspectral remote sensing, deep learning approaches
are introduced into the HSIC problem to learn hierarchical representations [28]. Recent
research in deep remote sensing tasks has considered the spectral and spatial information
available in HSI for classification purposes. Several researchers, such as Chen et al. [29],
Li et al. [30], and Hamida et al. [31], among many others, have proposed the use of deep
3D-CNN-based approaches to extract spectral–spatial feature maps for HSIC. Although
they achieved a state-of-the-art result compared with the 2D-CNN-based methods, 3D-
CNN-based approaches are complex and computationally expensive in parameter usage
and speed. Moreover, since most of the existing 3D CNN-based approaches have stacked
3D-CNNs in their structure, they cannot optimize the estimation loss directly through
such a nonlinear structure [28]. This resulted in the development of hybrid models that
combined 2D-CNNs with 3D-CNNs in their structure.

Several hybrid-based approaches take advantage of both the 2D and 3D CNN to
achieve better accuracy in HSI analysis. For instance, Roy et al. [12] proposed a HybridSN
model that uses the 3D-CNN layers at the bottom layers of the network to simultaneously
process spectral–spatial features and 2D-CNN layers at the top of the architecture to process
the spatial features. Yang et al. [28] combined 2D and 3D CNNs in the model structure to
develop a hybrid 2D/3D CNN.

2.2. The Biological Genome Graphs

Genomic tools have enabled the elucidation of the properties and distribution of com-
mon and rare genetic variations. The insights provided help to explain genetic diversity
and empower humanity to understand disease biology [32]. This is made possible by
algorithms that can enable the building of variant-aware graph genomes [33]. The imple-
mentation of genome graphs obtained after the alignment of sequence reads has enabled
genomic experts to map and decipher structural variations in genomes [10]. Generally,
a genome graph is a directed sequence graph used in genomic analyses [10]. Genome
sequencing is a term that combines two words: genome, which refers to all of the DNA
molecules in an organism’s cells, and sequencing, which refers to the scientific process
of identifying the sequence composition of biomolecules, including RNA, protein, and
DNA. Pertaining to genome assembly, genome sequencing is a computational process that
generally follows a hierarchical approach of entirely or nearly entirely deciphering the
DNA sequence of an organism’s genome at a single time using numerous short sequences
called reads derived from the portions of the target DNA as input. The advancements have
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accelerated this process in new technologies that provide an extensive view of the gene
space of organisms.

In plants, the first experiment in sequencing was done using first-generation auto-
mated DNA sequencing instruments on thale cress [34], maize [35], rice [36], and pa-
paya [37]. Unlike the first-generation sequencing instruments, the second-generation
sequencing instruments, which are the current state-of-the-art, sequence billions of bases
per day for millions or billions of dollars per gigabase [38]. These sequencing instruments
have been utilized to study the volumes of plant genomes, allowing for rich gene network
annotation [39], plant breeding optimization [40], and use in research that utilizes genome
sequences as the basis of analyses [41].

Assembling a voluminous genome, especially in plants, is operationally complicated
due to enormous error correction and filtering demands, considerable computational
resources, and susceptibility to the parameters used. Moreover, plants genomes are innately
sophisticated due to their high diversity [42] and higher rates of heterozygosity and
ploidy, which are absent in other kingdoms [11]. To overcome these challenges, several
techniques that implicitly or explicitly borrow ideas from graph-based models, which
we collectively refer to as genome graphs, have been devised to represent and organize
data gleaned from these cohorts. A genome graph is constructed from a population of
genome sequences, such that a sequence path represents each haploid genome in this
population through the graph [43]. Genome graphs use graph alignment, which can
correctly position all reads on the genome, as opposed to linear alignment, which is
reference-based and cannot align all reads or use all the available genome data. Graph
genomes can improve the volume of aligned reads, resolve haplotypes, and create a
more accurate depiction of population diversity [43]. Rakocevic et al. [10] experimentally
demonstrated that graph genome references improve read mapping accuracy, as well
as increase variant calling recall without any loss in precision. Therefore, it is clear that
graph genomes, if used appropriately, can radically enhance the scalability and accuracy of
genomic analyses. Genome graphs improve the representation of assembled genomes in
plant genome sequencing by providing graph-centric and population-aware formats that
can express the intricacies of plant genomes, especially the partially assembled ones [44,45].

Incorporating the genome approach into hyperspectral image classification can im-
prove classification results. It is from this perspective that we sought to experimentally
investigate the contribution of genome graphs and hybrid 2D/3D CNN in the feature
learning of hyperspectral remote sensing images. We propose a deep hybrid genome
graph-based network (GGBN) for hyperspectral image classification. The GGBN attains
comparable results in terms of efficiency and accuracy with the state-of-the-art HSIC
methods, such as SSRN and HybridSN.

3. The Proposed Model Framework

The proposed (GGBN) model is divided into preprocessing, feature extraction, and
classification sections.

3.1. The Preprocessing Section

The preprocessing section involves the dimensionality reduction of the bands using the
principal component analysis (PCA) and neighborhood extraction to extract overlapping
3D patches.

As shown in Figure 1, the preprocessing section involves the dimensionality reduction
of the bands using the principal component analysis (PCA). Once the depth of the HSI data
cube is reduced, then we extract overlapping 3D patches.
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Let the original HSI data cube be denoted as I ∈ RW×H×L, where W is the width, H
is the height, and L is the number of spectral bands. Every HSI pixel in I is made up of L
spectral bands, which form a one-hot label vector Z = (z1, z2, . . . zC) ∈ R1×1×C, where C
is the class categories for each dataset. Image cube I contains high spectral redundancy
due to high levels of interclass similarity and intraclass variability.

To reduce the spectral dimension’s redundancy, we apply PCA to the original HSI
data cube I, resulting in data cube B with dimensions W × H × D, where D < L. Before
we apply PCA, we begin by transforming the original HSI data cube I dimensions into a
two-dimensional matrix, M× L where M is the number of pixels obtained by multiplying
W × H, and L remains to represent the number of spectral bands. The first step in PCA
involves centering and standardizing the original hyperspectral image data by demeaning.
This is achieved by computing and eliminating the average value of every spectral band in
the original data cube (see line 2 of Algorithm 1). The next step involves computing the
covariance matrix, which is the product of the preprocessed data matrix and its transpose
(see line 3). This step is immediately followed by the extraction of eigenvectors associated
to the covariance matrix (see line 4). Finally, the dimensionality reduction is achieved by
projecting every single pixel of the original hyperspectral image data cube onto a subset of
eigenvectors (see lines 5 and 6).

Algorithm 1: Principle Component Analysis (PCA)

1 Input: Original Hyperspectral image I(M× L), M pixels, L spectral bands.
2 Centre and standardize I, putting it into matrix V.
3 Compute the covariance matrix C = 1

L VTV

4
Compute the eigenvalues and eigenvector of C, such that E = Y−1 CY, where Y holds the
eigenvectors of C, and E is the M×M diagonal eigenvalue matrix.

5 Sort D into the order of decreasing eigenvalues, and apply the same order to V.

6
Eigenvalues less than some η are rejected, leaving D dimensions in data which is the new
dimensional feature subspace.

7 Output: Reduced Hyperspectral image B(M× D), where D < L and M ∈ RW×H .

The new data cube B ∈ RW×H×D is further divided into G small overlapping patches
of spatial dimension K× K and depth D, of which the label of the central pixel decides the
truth labels at the spatial location (x, y).

3.2. Genome Graph-Based Network (GGBN)

According to Schatz et al. [11], a tetraploid genome with homozygosity/heterozygosity
shown as variegated blocks (see Figure 2a) can be intertwined to form a complex pattern of
the assembly graph without repeats or sequencing error (see Figure 2b).

The design of the genome graph-based network (GGBN) (see Figure 3) that efficiently
extracts highly discriminative HSI features, then flattens the output before passing it to
fully connected layers to learn deep features, and later to the softmax layer for classification
was inspired by the research work of Schatz et al. [11].
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The input to the network is a 3D patch of size K×K×D. Here, K is the length and the
width and D is the depth of the input patch. The first layer extracts spatial features using a
3D filter in the proposed network, while the rest of the remaining layers extract spectral–
spatial features using 3D kernels and later 2D kernels, as illustrated in Figure 3 above.
GGBN uses a residual layer between layer two and layer three to recover lost features at
the third convolution layer (see Figure 3). In addition, the model structure implements a
feature fusion at different network points that results in better classification accuracy. The
output from the fourth layer is flattened before being passed to fully connected layers and
later to the softmax layer for feature learning and classification, respectively. The output
from each layer is passed through an activation function to introduce nonlinearity. The
activation value at spectral–spatial position (x, y, z) in the jth feature map of the ith layer
denoted as vx,y,z

i,j , is given by:

vx,y,z
i,j = R

(
bi,j +

M

∑
m=1

Pi−1

∑
p=0

Qi−1

∑
q=0

Ri−1

∑
r=0

wp,q,t
i,j,m × v(x+p),( y+q),(z+r)

(i−1),m

)
(1)

where parameters Pi, Qi, and Ri are the width, the height, and the depth of the kernel,
respectively. Parameter bi,j is the bias value for the jth feature map of the ith layer and M
is the total number of feature maps in the (l− 1)th layer connected to the current feature
map. wp,q,r

i,j,m is the value of the weight parameter for position (p, q, r) kernel connected to

the mth feature map in the previous layer.
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To introduce nonlinearity in the 2D layer, the convolved feature maps are passed
through the ReLU activation function such that the activation value at position (x, y) in
the jth spatial feature map of the ith CNN layer is symbolized as vx,y

i,j and can be generated
using the equation:

vx,y
i,j = R

(
bi,j +

M

∑
m=1

Pi−1

∑
p=0

Qi−1

∑
q=0

wp,q
i,j,m × v(x+p),( y+q)

(i−1),m

)
(2)

where R is the ReLU activation function. The value wpq
i,j,m is the weight parameter for

spatial position (p, q) kernel connected to the previous layer”s mth feature map.

4. Materials and Methods

In this section, we present the detailed configuration description of the three publicly
available HSI datasets, namely Indian Pines (IP), University of Pavia (UP), and Salinas
(SA), used in this research. We use the overall accuracy (OA), average accuracy (AA),
and the kappa coefficient (k) to evaluate the performance of the models across the three
datasets. OA gives the percentage of the correctly classified samples, AA is per class
accuracy presented in percentage, and k involves commission and omission errors and
illustrates the classifier’s overall performance. For all three evaluation metrics, a higher
value represents better accuracy.

4.1. Description

We train and test the performance of the proposed method and competing state-of-
the-art methods on the three publicly available HSI datasets: Indian Pines (IP), University
of Pavia (UP), and Salinas (SA).

The Indian Pines (IP) dataset was collected by the Airborne Visible Infrared Imaging
Spectrometer (AVIRIS) sensor with a spatial resolution of 20 meters flying over the Indian
Pines site area Northwestern Indiana. It has a spatial dimension of 145 × 145 pixels
with 224 spectral bands ranging from 0.4 to 2.5 µm. After eliminating 24 spectral bands
covering the water absorption region, the resulting hyperspectral data cube dimension is
145× 145× 200. Its ground truth data contain 16 classes of vegetation.

The University of Pavia (UP) dataset was collected by reflective optics system imaging
spectrometer-03 (ROSIS-03) sensors with a spatial resolution of 1.3 meters flying over the
University of Pavia. The resulting hyperspectral data contain 135 spectral bands collected
in a wavelength range of 0.43–0.86 µm and a spatial resolution of 610× 340 pixels. Once 12
water absorption bands are discarded, the hyperspectral data cube’s resulting dimension is
610× 340× 103. The University of Pavia scene consists of 9 classes, with almost all classes
having more than 1000 labeled pixels. The AVIRIS sensor with a 3.7 spatial resolution
acquired the Salinas Scene (SA) dataset over Salinas Valley, CA, USA. The SA dataset
contains 224 spectral bands and 512× 217 pixels spatial dimension. The spectral bands’
wavelengths range from 0.36 to 2.5 µm. Once 20 water-absorbing spectral bands are
discarded, the resulting hyperspectral data cube dimensionality is 512× 217× 204. The
ground truth data include a total of 16 classes.

4.2. Parameter Settings

All experiments are conducted online using Google Colab Inc. We randomly divide
sample data into training and testing for all the three experimental datasets, namely IP, UP,
and SA. We compare classification results of the proposed method with the state-of-the-art
methods on 5% training and 95% testing data. We selected the optimal parameters based
on the classification outcome. We chose the Adam optimizer method with a learning rate
of 0.0005 for UP and 0.001 for both SA and IP. We used batch sizes 64, 256, and 256 to train
the network for 100, 150, and 150 epochs on IP, SA, and UP datasets. Finally, the dropout is
set to 0.6 for IP and SA and 0.8 for UP.
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5. Experimental Results and Discussion

This section reports the quantitative and qualitative results of the proposed GGBN
and a comparison with the other state-of-the-art methods on IP, UP, and SA datasets. We
will compare the performance of the proposed model with state-of-the-art methods, such
as SSRN [46] and HybridSN [12]. We selected these two models because the classification
performance of SSRN and HybridSN is far higher than that of previously studied methods,
such as 2D-CNN, 3D CNN [31], and M3D-DCNN [47] models

Figure 4 provides the performance summary (in percentage) when varying the spatial
dimensions of the overlapping 3D patch of the GGBN model over IP, UP, and SA datasets
on 5% training and 95% testing sample data.
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UP, and (c) SA datasets.

From Figure 4, we observed that considering the OA, AA, and Kappa, the optimal
performance of the GGBN over IP, UP, and SA datasets is achieved when the spatial
dimensions of the overlapping 3D patches of the input volume are set to 23 × 23 × 30,
15 × 15 × 15, and 23 × 23 × 15 respectively.

Table 1 summarizes the training and testing time in seconds of SSRN, HybridSN, and
the proposed GGBN models over the IP, UP, and SA datasets on 5% training and 95%
testing sample data.

Table 1. The training and testing time in seconds over IP, UP, and SA datasets using SSRN, HybridSN,
and GGBN model.

Data
SSRN HybridSN GGBN

Train Test Train Test Train Test

IP 70.9 1.5 36.9 2.7 163.5 2.5
UP 417.7 4.0 37.5 4.7 62.8 4.3
SA 527.7 4.9 45.4 5.6 227.8 7.4

The computational efficiency in terms of training and testing time (in seconds) shown
in Table 1 shows that the proposed method in terms of training time performance is better
than SSRN and worse than HybridSN. The proposed model performance in test time
is better than HybridSN over IP and UP datasets. Therefore, we can conclude that the
computational efficiency of the proposed model is comparable with that of SSRN and
HybridSN.

To show the robustness of the proposed method, we compare the proposed model
with the other state-of-art methods, such as SSRN and HybridSN, on 5% training sample
data and test on the remaining (95%) portion. Figures 5–7 show the robustness of the
proposed (GGBN) model in feature learning even with low (5%) training sample data.



Sensors 2021, 21, 6467 9 of 17

Sensors 2021, 21, x FOR PEER REVIEW 9 of 17 
 

 

To show the robustness of the proposed method, we compare the proposed model 
with the other state-of-art methods, such as SSRN and HybridSN, on 5% training sample 
data and test on the remaining (95%) portion. Figures 5–7 show the robustness of the 
proposed (GGBN) model in feature learning even with low (5%) training sample data.  

 
Figure 5. The confusion matrix for classification results of (a) SSRN, (b) HybridSN (c) GGBN over IP dataset. 

 
Figure 6. The confusion matrix for classification results of (a) SSRN, (b) HybridSN (c) GGBN over 
UP dataset. 

 
Figure 7. The confusion matrix for classification results of (a) SSRN, (b) HybridSN (c) GGBN over 
SA dataset. 

We observe in Figures 5–7 that most of the sample data lie in the diagonal line even 
with low training data. Therefore, the majority of the sample data were correctly classi-
fied. This demonstrates the robustness of the proposed model over small training sample 
data. 

Figure 5. The confusion matrix for classification results of (a) SSRN, (b) HybridSN (c) GGBN over IP dataset.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 17 
 

 

To show the robustness of the proposed method, we compare the proposed model 
with the other state-of-art methods, such as SSRN and HybridSN, on 5% training sample 
data and test on the remaining (95%) portion. Figures 5–7 show the robustness of the 
proposed (GGBN) model in feature learning even with low (5%) training sample data.  

 
Figure 5. The confusion matrix for classification results of (a) SSRN, (b) HybridSN (c) GGBN over IP dataset. 

 
Figure 6. The confusion matrix for classification results of (a) SSRN, (b) HybridSN (c) GGBN over 
UP dataset. 

 
Figure 7. The confusion matrix for classification results of (a) SSRN, (b) HybridSN (c) GGBN over 
SA dataset. 

We observe in Figures 5–7 that most of the sample data lie in the diagonal line even 
with low training data. Therefore, the majority of the sample data were correctly classi-
fied. This demonstrates the robustness of the proposed model over small training sample 
data. 

Figure 6. The confusion matrix for classification results of (a) SSRN, (b) HybridSN (c) GGBN over UP dataset.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 17 
 

 

To show the robustness of the proposed method, we compare the proposed model 
with the other state-of-art methods, such as SSRN and HybridSN, on 5% training sample 
data and test on the remaining (95%) portion. Figures 5–7 show the robustness of the 
proposed (GGBN) model in feature learning even with low (5%) training sample data.  

 
Figure 5. The confusion matrix for classification results of (a) SSRN, (b) HybridSN (c) GGBN over IP dataset. 

 
Figure 6. The confusion matrix for classification results of (a) SSRN, (b) HybridSN (c) GGBN over 
UP dataset. 

 
Figure 7. The confusion matrix for classification results of (a) SSRN, (b) HybridSN (c) GGBN over 
SA dataset. 

We observe in Figures 5–7 that most of the sample data lie in the diagonal line even 
with low training data. Therefore, the majority of the sample data were correctly classi-
fied. This demonstrates the robustness of the proposed model over small training sample 
data. 

Figure 7. The confusion matrix for classification results of (a) SSRN, (b) HybridSN (c) GGBN over SA dataset.

We observe in Figures 5–7 that most of the sample data lie in the diagonal line even
with low training data. Therefore, the majority of the sample data were correctly classified.
This demonstrates the robustness of the proposed model over small training sample data.

Further, the accuracy and loss convergence graphs shown in Figure 8 illustrate that
the GGBN converges faster than SSRN and HybridSN using the IP dataset, and second
with the UP and SA datasets.
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over the (a) IP, (b) UP, and (c) SA datasets.

5.1. Classification Results for the Indian Pines (IP) Dataset

Table 2 shows the class-specific classification accuracies of M3D-CNN, SSRN, HybridSN,
and GGBN using the IP image. The representative classification maps are provided in Figure 10.

It can be observed in Table 2 that the proposed method outperforms M3D-CNN,
SSRN, and HybridSN in terms of OA, AA, and Kappa. The GGBN improves the OA, AA,
and Kappa of HybridSN by 3.13%, 3.89%, and 3.59%, respectively. In comparison, the
SSRN is improved by 4.2%, 3.5%, and 16.12%, respectively. The OA, AA, and Kappa of
M3D-CNN are improved by the most significant margin of 29.43%, 20.76%, and 18.94%,
respectively. For similar classes, such as Grass-tress, Grass-pasture, and Grass-pasture
mowed, the proposed (GGBN) model records a higher performance of 5.14%, 0.39%, and
14.8%, respectively, than those obtained by the HybridSN method. Similar performance
trends can be observed over Soybeans-no till, Soybeans-min till, and Soybeans-clean
till classes. The result demonstrates the superiority of our model structure on datasets
characterized by small samples and classes with similar textures across multiple bands.

We observe in Figure 9 that the M3D-CNN, SSRN and HybridSN have more noisy,
scattered points in the classification maps, unlike the GGBN methods. Therefore, the
proposed method can remove the noisy scattered points and lead to smoother classification
results without blurring the boundaries.
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Table 2. Classification Results (%) over IP dataset.

Class No. Class Labels Samples
(Pixels)

Cover
(%)

M3D-CNN
(%)

SSRN
(%)

HybridSN
(%)

GGBN
(%)

1 Alfalfa 46 0.45 30.75 12.73 55.23 46.36
2 Corn-no till 1428 13.93 72.76 92.73 92.97 94.78
3 Corn-min till 830 8.1 61.76 93.59 90.18 98.38
4 Corn 237 2.31 57.46 72.80 84.22 94.49
5 Grass-pasture 483 4.71 85.19 98.19 94.01 99.15
6 Grass-trees 730 7.12 92.13 99.67 97.63 98.02
7 Grass-pasture-mowed 28 0.27 45.54 0.74 73.70 87.78
8 Hay-windrowed 478 4.66 94.01 99.82 99.76 99.85
9 Oats 20 0.2 20.45 0.00 88.95 78.95
10 Soybean-no till 972 9.48 70.97 91.54 95.41 97.82
11 Soybean-min till 2455 23.95 76.75 95.21 97.08 97.98
12 Soybean-clean 593 5.79 59.35 87.83 82.02 92.97
13 Wheat 205 2 94.36 98.62 94.31 97.64
14 Woods 1265 12.34 94.55 99.84 98.96 99.03
15 Buildings-Grass-Trees-Drives 386 3.77 51.21 83.68 79.84 92.29
16 Stone-Steel-Towers 93 0.91 64.39 81.25 77.61 88.75

Kappa 66.98 92.39 92.82 96.41
OA 76.09 93.35 93.72 96.85
AA 72.57 75.39 87.62 91.51
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Figure 9. Classification maps of Indian Pines data set: (a) Ground truth; (b) M3D-CNN; (c) SSRN; (d) HybridSN; (e) GGBN.

5.2. Classification Results for the University of Pavia (UP) Dataset

Table 3 provides a summary of the classification results of M3D-CNN, SSRN, Hy-
bridSN, and GGBN models with 5% training and 95% testing over the UP dataset. The
classification map accuracies are illustrated in Figure 10.

Table 3. Classification Results (%) of UP Dataset.

Class No. Class Labels Samples
(Pixels)

Cover
(%)

M3D-CNN
(%)

SSRN
(%)

HybridSN
(%)

GGBN
(%)

1 Asphalt 6631 15.5 95.44 99.65 99.55 99.58
2 Meadows 18,649 43.6 93.98 99.96 99.98 99.95
3 Gravel 2099 4.91 90.36 98.14 98.69 98.41
4 Trees 3064 7.16 97.37 99.67 98.20 99.43
5 Painted_metal_sheets 1345 3.14 99.75 100 98.85 99.95
6 Bare_Soil 5029 11.76 92.14 100 99.99 99.99
7 Bitumen 1330 3.11 92.62 99.59 99.89 99.99
8 Self-Blocking_Bricks 3682 8.61 94.62 98.56 97.42 99.47
9 Shadows 947 2.21 99.24 99.97 94.21 99.57

Kappa 95.06 99.57 99.10 99.65
OA 92.50 99.68 99.32 99.74
AA 90.19 99.50 98.46 99.59
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Figure 10. Classification maps of the University of Pavia (UP) dataset: (a) Ground truth; (b) M3D-CNN; (c) SSRN;
(d) HybridSN; (e) GGBN.

It can be seen in Table 3 that our proposed method attains the best classification
accuracy as compared to M3D-CNN, SSRN, and HybridSN methods with 5% training
sample data. Moreover, we observe in Figure 10 that the compared methods produced
almost identical classification maps to the ground truth at 5% training sample data. Table 3
and Figure 11 demonstrate the robustness of the proposed method over the UP dataset.
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5.3. Classification Results for the Salina Scene (SA) Dataset

Table 4 shows the classification results obtained by different classifiers for the SA
datasets, and the resultant maps are provided in Figure 11.

It can be observed in Table 4 that under the condition of the same training samples,
the proposed method records the highest results compared with the M3D-CNN, SSRN, and
HybridSN in terms of OA, AA, and Kappa. The better performance of the GGBN model
proves the capacity and effectiveness for multiple feature learning.

From Figure 11, we observe that, unlike the M3D-CNN, and SSRN that introduces
some “salt and pepper” to the classification map, the HybridSN and GGBN model produces
an almost identical classification map to the ground truth with 5% training sample data
over the SA dataset. This demonstrates the ability of the proposed (GGBN) model to
correctly classify the majority of the class labels using small training sample data.
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Table 4. Classification Results (%) over SA dataset.

Class No. Class Labels Samples
(Pixels)

Cover
(%)

M3D-CNN
(%)

SSRN
(%)

HybridSN
(%)

GGBN
(%)

1 Brocoli_green_weeds 2009 3.71 97.35 100.00 100.00 100.00
2 Brocoli_green_weeds 3726 6.88 99.81 99.99 100.00 100.00
3 Fallow 1976 3.65 97.98 100.00 100.00 100.00
4 Fallow_rough_plow 1394 2.58 99.21 99.85 99.95 99.99
5 Fallow_smooth 2678 4.95 99.18 99.76 99.71 99.54
6 Stubble 3959 7.31 99.17 100.00 99.97 99.98
7 Celery 3579 6.61 99.21 99.99 99.99 99.99
8 Grapes_untrained_ 11,271 20.82 87.9 99.29 99.99 100.00
9 Soil_vinyard_develop 6203 11.46 99.29 100.00 100.00 100.00

10 Corn_senesced_green_weeds 3278 6.06 94.13 99.82 99.98 100.00
11 Lettuce_romaine_4wk 1068 1.97 95.94 99.86 99.91 100.00
12 Lettuce_romaine_5wk 1927 3.56 98.11 100.00 100.00 100.00
13 Lettuce_romaine_6wk 916 1.69 97.4 99.92 99.87 99.99
14 Lettuce_romaine_7wk 1070 1.98 96.43 99.55 99.82 99.98
15 Vinyard_untrained 7268 13.43 79.97 96.99 99.87 99.96
16 Vinyard_vertical_trellis 1807 3.34 90.61 99.55 100.00 100.00

Kappa 95.73 99.32 99.95 99.96
OA 92.49 99.39 99.95 99.97
AA 91.66 99.66 99.94 99.96

5.4. Model Performance on Varied Training Sample Data over IP, UP, and SA Datasets

To further demonstrate the robustness of the proposed method, we randomly select
1%, 3%, 5%, 10%, and 20% of the data for training and test on the remaining portion for
SA and UP. However, for the IP dataset we omit 1% training sample data. The resulting
performance is as shown in Tables 5–7.

Table 5. Performance of the selected models on varied training sample data over IP dataset.

Model
Training Sample Data in Percentage

3% 5% 10% 20%

M3D-CNN 66.23 76.09 84.38 91.95
SSRN 87.89 93.35 97.30 98.93

HybridSN 87.35 93.72 97.97 99.16
GGBN 93.78 96.85 98.80 99.45

Table 6. Performance of the selected models on varied training sample data over UP dataset.

Model
Training Sample Data in Percentage

1% 3% 5% 10% 20%

M3D-CNN 86.29 90.78 92.50 93.82 94.60
SSRN 98.07 98.78 99.68 99.88 99.96

HybridSN 93.88 98.92 99.32 99.73 99.92
GGBN 98.13 99.42 99.74 99.92 99.95

Table 7. Performance of the selected models on varied training sample data over SA dataset.

Model
Training Sample Data in Percentage

1% 3% 5% 10% 20%

M3D-CNN 86.37 90.38 92.49 93.44 94.47
SSRN 98.85 99.00 99.39 99.77 99.97

HybridSN 98.85 99.85 99.95 99.98 100.00
GGBN 99.50 99.96 99.97 99.98 100.00
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Tables 5–7 show that M3D-CNN has the lowest classification accuracy compared to all
the other models, which can be attributed to its network structure nature that utilizes only
multi-scale 3D-CNN layers. The SSRN method performs better than M3D-CNN because it
uses residual connections to extract deep spatial and spectral features. The effectiveness of
combining the 2D and 3D convolutional layers is evidenced by the higher classification
accuracy attained by the HybridSN model. The GGBN method attains better classification
accuracy than all the other models across all the experimental datasets. We can attribute the
performance to the genomic structural network design that combines the benefit of residual
network layers, a more comprehensive structural network, intermediary feature fusion,
and the use of both 2D and 3D convolutional layers. We also observe that the classification
accuracy of all compared models decreased with the training sample proportion. However,
the decreasing speed varies across different models. For instance, with 5% training sample
in IP, GGBN improves OA of HybridSN by 3.13%, and as the training sample amounts are
decreased, the margin of accuracy improvement becomes even more pronounced. We note
the improvement of IP accuracy from 3.13% to 6.43% with 5% and 3% training samples,
respectively. The same trend is observed on PU and SA datasets.

Further, Figure 12 graphically shows the accuracy behavior under different training
sample portions. We note GGBN models fall at the slowest speed, which shows the
robustness of the model in hyperspectral image classification.
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6. Conclusions

This research has proposed an innovative deep genome graph-based network (GGBN)
for hyperspectral image classification. The GGBN contains three sections, namely (a) the
preprocessing section that involves the dimensionality reduction of the bands using the
principal component analysis (PCA), and later the extraction of the overlapping 3D patches
that are input into the model structure; (b) the feature learning section that is inspired by
the performance of the genome graphs in radically enhancing the scalability and accuracy
of genomic analyses, and the achievements of hybrid 2D/3D CNN in feature learning
of hyperspectral remote sensing images; and (c) the classification section that uses the
softmax function.

The GGBN uses the biological genome graph-based structure in its network to ex-
tract spectral–spatial features of hyperspectral images, resulting in increased classification
performance over the IP, UP, and SA datasets compared with the state-of-the-art methods
such as M3D-CNN, SSRN, and HybridSN. We observed that the proposed GGBN method
performed even better with insufficient training sample data than other state-of-the-art
methods (i.e., M3D-CNN, SSRN, and HybridSN), which confirms the superiority of the
GGBN method with extensive and minimal training data. Moreover, the GGBN outper-
formed the M3D-CNN, SSRN, and HybridSN in classifying similar classes, unlike the SSRN
and HybridSN, which introduce some “salt and pepper” to the classification map when
the training data are small. The proposed model produces an almost identical classification
map to the ground truth. This shows that GGBN has higher model representation ability
than the M3D-CNN, SSRN, and HybridSN models. The strength of the GGBN model lies
in its structural nature that allows multiple streams that independently extract spectral–
spectral features, the residual layer that solves the degradation problem in the network,
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and intermediate feature fusion to extract more abundant features. We attest that this is the
first research that uses the biological genome graphs in hyperspectral image classification.
However, in terms of computational efficiency, the GGBN lags behind the HybridSN, even
though its test time is better than HybridSN over IP and UP datasets. Therefore, more
research needs to be conducted on the use of various biological genome graphs to enhance
the structure of hyperspectral classifiers and prove their credibility. In the near future, we
will make an effort to run the model using various hyperspectral datasets and compare it
with other state-of-the-art methods to prove its robustness.
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