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Abstract: In this work, we study and analyze the reconstruction of hyperspectral images that
are sampled with a CASSI device. The sensing procedure was modeled with the help of the CS
theory, which enabled efficient mechanisms for the reconstruction of the hyperspectral images from
their compressive measurements. In particular, we considered and compared four different type
of estimation algorithms: OMP, GPSR, LASSO, and IST. Furthermore, the large dimensions of
hyperspectral images required the implementation of a practical block CASSI model to reconstruct
the images with an acceptable delay and affordable computational cost. In order to consider the
particularities of the block model and the dispersive effects in the CASSI-like sensing procedure, the
problem was reformulated, as well as the construction of the variables involved. For this practical
CASSI setup, we evaluated the performance of the overall system by considering the aforementioned
algorithms and the different factors that impacted the reconstruction procedure. Finally, the obtained
results were analyzed and discussed from a practical perspective.

Keywords: compressive sensing; hyperspectral imaging; CASSI; sparse estimation algorithms;
snapshot devices; system evaluation

1. Introduction

Spectral imaging refers to techniques focused on capturing images from various wave-
length bands, thus providing spatial and spectral information of scenes. For instance,
RGB images contain information from bands within the visible region of light. In contrast,
spectral imaging covers a wider spectrum range including nonvisible light. Hyperspectral
imaging is usually mixed with multispectral imaging, but even though both are spectral
imaging techniques, they differ in that the first considers a high number of continuous spec-
tral bands, while multispectral imaging deals with a lower amount of discrete wider bands.

In general, spectral data are valuable as they allow extracting relevant information
from scenes by considering their spectral properties. This has been shown to have great
potential to be applied in numerous fields such as medicine [1,2], astronomy [3], agricul-
ture [4,5], or surveillance [6]. Nevertheless, despite being a solid and active field of study,
there still exist some limitations that prevent the popularization of the new techniques
emerging from hyperspectral technology:

• Hyperspectral imagers are quite expensive even to this day;
• There is a lack of accessible hyperspectral image repositories;
• Processing algorithms designed as extensions of the ones used for processing RGB

images could potentially miss certain special characteristics inherent to the spectral
properties of the data.

Numerous hyperspectral imagers have arisen in the last few years. Their focus is
to acquire a three-dimensional datacube from a scene, with two spatial and one spectral
dimension. Datacubes can be encapsulated in four different ways depending on how the
data are captured [7]:
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• Whiskbroom: A point of information is captured over the whole spectral information
at once [8]. Scanning point-by-point both spatial dimensions and mapping each
capture to a 2D detector would yield a complete datacube;

• Pushbroom: A slit image of the scene containing spatial information along one axis
and spectral information along the other is obtained at once [9]. Each slit image is
mapped onto a 2D detector. Scanning the spatial dimension perpendicular to the one
of the slit images provides a complete datacube;

• Staring: A single spectral band is captured at once containing the full spatial informa-
tion over a certain spectral slice. Changing the output wavelength of the filter over
time leads to a complete datacube;

• Snapshot: The three dimensions of the information are captured in a single shot with
the help of a dispersive element, which allows sensing the different wavelengths on
the spectrum at once [10–12]. Then, mapping the data onto a 2D detector leads to a
complete datacube.

In this work, we focused on the use of a snapshot imager to acquire the hyperspectral
data. More specifically, the CASSI method was considered as the strategy for sensing the
hyperspectral information of the scenes [13–15].

An important issue when dealing with hyperspectral images is the fact that having a
third (spectral) dimension largely increases the size of the images. In this way, depending
on the systems using this technology, memory and storage requirements may be a problem.
For instance, IoT devices such as drones, which are typically used for these types of
applications, could potentially have problems dealing with the processing or even the
transmission of hyperspectral data. For this reason, the use of schemes based on CS
is fundamental.

Traditional approaches to compression are oriented toward sampling based on the
Nyquist criterion, which states the minimum number of samples required to correctly
recover some particular data. In contrast, CS goes beyond the Nyquist limits and allows
recovering an image using a reduced amount of samples. As a result, huge compression
rates can be achieved while recovering an acceptable approximation to the original data [16].
This is possible because CS exploits certain properties and redundancies from compressible
measurements of the original data [17–19]. Nonetheless, this comes at the cost of a much
more complex process and the need to incorporate the data properties to define adequate
optimization problems.

These problems are partially solved by the multiple existing algorithms in the lit-
erature that obtain accurate reconstructions of the input data from their compressed
measurements [20,21]. Some of the most relevant ones are OMP [22,23], which belongs to
the greedy iterative methods, GPSR [24], which is a type of projected gradient algorithm,
LASSO [23], whose formulation is based on a convex relaxation of the original estimation
problem, IST [25] and Tw-IST [26] as representative methods of the iterative thresholding
techniques, and the AMP [27,28] algorithm based on message-passing approaches, among
many others.

The use of a snapshot imager based on CASSI allows integrating the principles of CS
theory in a simple way [14]. The whole sensing procedure can be modeled from the CS
perspective, leading to a mathematical formulation that fits the general sparse estimation
problem. However, the large size of hyperspectral images can complicate the reconstruction
procedure if it is directly applied to the entire datacube. For that, it is essential to carry
out a partial reconstruction process that ensures an affordable computational cost [29].
In this case, the information obtained after the sensing step is split into nonoverlapping
blocks, which are employed to obtain partial reconstructions of the original data. Then,
such partial reconstructions have to be assembled to generate an estimation of the image
datacube. This blocking-based approach considerably complicates the CASSI model due to
the dispersion effect in the sensing process of the snapshot imager. Furthermore, depending
on the specific application for which these images are taken, quality could be a trade-off
for faster processing and vice versa. This is the case of some real-time applications such as
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surveillance, for instance. Some parameters such as the size of each partial reconstruction or
the number of measurement shots could impact these factors, and the model settings have
to be adapted for each particular application. For this reason, it is important to analyze the
performance of the different reconstruction algorithms and the impact of the parameters
involved in the design of practical CASSI systems.

In this paper, we aimed at implementing and evaluating a functional block model
based on the CASSI scheme that was proposed in [29] in the context of hyperspectral images
sampled with CASSI. For this setup, we profusely describe the CS formulation required for
the modeling of the sensing and reconstruction procedures. We also provide the sequence
of steps for the construction of the main variables, especially the measurement matrix,
considering the physical particularities of the CASSI sensing and the corresponding block
structure. From the resulting system implementation, we analyzed the different parameters
that impact the performance of the reconstruction of the hyperspectral images and measure
such impact according to different evaluation metrics. Hence, the main contributions of
this work can be summarized as:

• A comprehensive overview of the block CASSI model is presented with all the details
required for the implementation of a practical sensing and reconstruction system
based on this technology;

• A comparison between several traditional reconstruction sparse algorithms is made
for the considered scenario;

• A detailed analysis of the different parameters that influence the reconstruction of
hyperspectral images is carried out. It is supported by a large variety of computer
experiments in which the obtained results are included and discussed.

The rest of the paper is organized as follows. Section 2 explains the fundamentals
for the sensing procedure of hyperspectral images with CASSI. The modeling of the
CASSI-based sensing according to the CS framework and the corresponding reconstruc-
tion/estimation procedure are described in Section 3. Section 4 presents the block CASSI
model to enable a practical reconstruction of the hyperspectral images. Section 5 describes
the computer experiments carried out in this work, and the obtained results are shown for
each experiment. Finally, a discussion of the most relevant points found in this study is
conducted in Section 6, and Section 7 is devoted to the general conclusions of the work.

2. Hyperspectral Images Sensing

As discussed, hyperspectral images are composed by a large number of spectral bands
for a given range of wavelengths. Therefore, their data are represented by a 3D matrix,
called a datacube, which is composed of data in two spatial dimensions and a spectral one.
In particular, each spatial position in a datacube takes several values across the spectral
dimension for the same pixel. It is worth mentioning that these images, considering the
CS framework, are represented by some vectorized measurements that the hyperspectral
camera senses.

In this work, the vectorized measurements from the hyperspectral images were ob-
tained from a prototype hyperspectral camera whose hardware components form a setup
referred to as CASSI. This setup was specifically developed to take advantage of the princi-
ples of CS for hyperspectral imaging. As the design of the measurement matrix and the
entire reconstruction procedure directly depend on this setup, we briefly describe the basis
for the generation of the image measurements by means of CASSI.

As observed in Figure 1, four main components should be considered in the procedure
to obtain the CASSI measurements from a hyperspectral image:

• Image data: In hyperspectral imaging, this information is represented by a datacube
(various spectral slices over two spatial dimensions). These data hence correspond to
the discrete representation of the scene captured with the CASSI camera across the
considered spectral bands. Let us denote f0(x, y, λ) as the input information from
the scene, where (x, y) are the spatial coordinates and λ represents the wavelength
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for a particular spectral band. The corresponding discrete datacube is modeled by
a 3D matrix, F(x, y, z), with dimensions N × N × L, where N determines the spatial
resolution and L the number of spectral bands;

• Coded aperture: Grids are used to block or unblock the wavelengths of electromag-
netic radiation at each spatial coordinate by following a known coded pattern in order
to cast a “shadow” upon a plane, which in this case would be the radiation detected
by the camera sensor. Their main goal is to obtain data samples with a structure that
allows compression while undersampling the data in a way in which measurements
obtained from them are highly compressed despite retaining sufficient information
to obtain an accurate reconstruction. Let us denote T(x, y) ∈ FN×N

2 as the binary
matrix that represents the coded aperture pattern applied to the spectral information
of the scene;

• Prism: This acts as a dispersive element shifting each of the spectral slices along the
columns of the datacube. In practice, this means that each 2D matrix representing a
fixed wavelength will be moved one column to the right from the previous;

• FPA detector: This corresponds to the image sensing element consisting of an array
(typically rectangular) of light-sensing pixels at the focal plane of a lens. In this sensing
step, the dispersed information corresponding to the different spectral bands is hence
integrated into a single 2D matrix. This resulting matrix will contain the compressed
representation of the hyperspectral images and will be called a measurement shot or,
directly, a shot.

Figure 1. Spectral optical flow in CASSI, reprinted from ref. [14] Copyright 2013 IEEE.

Considering these components in the CASSI setup, we next summarize the procedure
to obtain the compressive measurements:

1. An optimized coding was first applied to the spectral information of the scene, i.e., f0(x; y; λ).
It is worth highlighting that the same aperture pattern given by T(x, y) was applied to
all the L spectral bands obtained with the CASSI camera to generate a measurement
shot. Thus, the same spatial coordinates were blocked or unblocked across the spatial
dimension. However, note that different aperture patterns would be used for different
measurement shots in order to obtain different compressive representations;

2. The result from applying these coded apertures is f1(x; y; λ), which was subsequently
modified by the dispersive element (prism) as described above, thus producing the
dispersed data f2(x; y; λ). It is important to note that the coded aperture pattern and
the dispersive effect would decisively determine the construction of the measurement
matrix in the general formulation of the CS problem;
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3. Finally, these dispersed data were sensed by the FPA detector and integrated into
a two-dimensional FPA measurement shot. In this way, the dispersed information
from the different spectral bands at the same spatial coordinate collapsed into the
same area of the FPA detector, and such information was hence combined to obtain a
single value into the corresponding entry of the matrix that defines the measurement
shot. Let us denote Y(x, y) ∈ RN×V as the matrix that contains the compressive
measurements of the hyperspectral image. Note that the number of columns of the
matrix Y is given by V = N + L− 1 due to the aforementioned dispersive effect of
the prism.

In the ensuing section, we explain the mathematical formulation modeling the genera-
tion of the measurement shots from an input datacube according to the CS theory.

3. CS Formulation

Sparsity is a fundamental property for the successful application of CS techniques.
This framework can be used to acquire and reconstruct signals or images from a limited
number of linear projection measurements at sub-Nyquist sampling rates [16]. In particular,
a signal is sparse in some domain if a large portion of its values in such a domain are zeros.
However, images are not generally sparse in the natural domain as most pixels contain
values different from zero. However, the use of domain transforms allowed us to obtain
a sparse representation of an image in a different domain, thus making it suitable for the
application of the tools provided by CS. In particular, linear discrete transforms such as
the DCT or the DWT can be used to obtain a sparse representation of the hyperspectral
images [30].

Mathematically, any linear discrete transform can be represented as:

x = Ψs, (1)

where x ∈ RN is the vector that contains the coefficients in the new domain, Ψ ∈ RN×N is
the matrix that comprises the vectors of the basis, and s ∈ RN represents the data vector
in the original domain, which was assumed to be K-sparse (i.e., the number of nonzero
elements in x is K). The basis matrix Ψ was assumed to be unitary (i.e., ΨΨT = IN where
IN is the identity matrix of dimension N), and thus, the vector s in the original domain can
be recovered as:

s = ΨTx, (2)

Assuming that x is sparse in the domain defined by the basis in Ψ, we can formally
model the operation of CS-based measurement as:

y = Φs = ΦΨTx = Ax, (3)

where s ∈ RN is the input data, y ∈ RM is the vector that contains the M projection measure-
ments of the input data, Φ ∈ RM×N is the random projection matrix, and A = ΦΨT ∈ RM×N

is the overall CS matrix, referred to as the measurement matrix. In this case, the original
data would be represented by the M compressive measurements in y with M� N.

An important issue in the CS framework is the number of measurements M required
to accurately recover the input data from their compressive measurements. This is closely
related to the properties of the projection matrix Φ. In particular, the choice of an incoherent
dictionary for the CS projection ensures a unique identification of sparse data from a
minimum number of measurements [31,32]. In general, the suitability of the projection
matrix can be measured from its mutual coherence as:

µ(Φ) = max
i 6=j
|〈φi, φj〉|, (4)

i.e., as the largest absolute inner product between different columns of the matrix Φ. For the
particular case of applying CS in a transformed domain (as in this work), the fundamental
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aspect for the design of the measurement projections is the mutual coherence between the
basis matrix Ψ and the resulting projection matrix Φ [17], which can be defined as:

µ(Ψ, Φ) = max
i,j
|〈ψi, φj〉|, (5)

i.e., as the largest absolute inner product between any two columns of the matrices Ψ and
Φ. Several works have addressed the design of the projection matrix considering both
random projections of the sparse data [17,18,33,34] or more structured dictionaries [35–39].

3.1. Sparse Estimation from Compressive Measurements

Once the CS measurements are generated and the measurement matrix is properly
defined, the data are ready to be stored or transmitted efficiently. At this point, the recon-
struction of the original data from the compressive measurements requires solving a sparse
estimation problem. In general, this problem can be formulated as:

find x̂ subject to Ax̂ ≈ y and x̂ is sparse, (6)

where y is the vector corresponding to the measurements and A is the same measurement
matrix used in the sampling step. It is worth remarking that the equation system Ax̂ = y
is indeterminate, and therefore, the optimization problem in Equation (6) aims at forcing
solutions with a low number of nonzero coefficients. Furthermore, the formulation above
focuses on recovering the data in the sparse domain, and therefore, we need to carry out
the additional step ŝ = ΨT x̂ to recover the input data in the original domain.

Classical techniques to solve linear inverse problems generally produce nonsparse
solutions. Hence, it is required to develop specific algorithms that are able to provide
sparse solutions for the estimation problem in Equation (6). Different algorithms have
been proposed in the literature depending on the approaches considered to deal with the
intrinsic sparsity constraint in the sparse estimation problem. A natural approach consists
of introducing the `0 norm in the optimization problem to guarantee sparse solutions, i.e.,

min
x
‖x‖0 subject to ‖Ax− y‖2 < ε, (7)

where ε ≥ 0 is the error tolerance and the operator ‖ · ‖p represents the `p norm. Accord-
ing to the problem above, we actually aim at balancing two objectives:

• Large sparsity levels for the solution x by using the `0 norm;
• Low difference between y and Ax by using the `2 norm.

Using a mixed formulation, we can introduce a regularization parameter τ > 0 to
help in balancing the previous conditions such that:

min
x

1
2
‖Ax− y‖2

2 + τ‖x‖0. (8)

As observed, the parameter τ defines a trade-off between the two objectives for the
solutions of the sparse estimation problem. Small values for this parameter prioritize the
left term of the cost function in (8), i.e., to minimize the difference between the estimation
and the actual solution, while large values lead to sparser solutions.

However, by containing the `0 norm, the cost function in (8) is not convex, and it
necessarily leads to a combinatorial problem. Different alternatives have been proposed
to deal with this issue, including greedy approaches such as pursuit methods, convex
relaxation of the natural problem, or Bayesian methods. In the following, we provide a
brief overview about some of the most common algorithms proposed to solve the sparse
estimation problem that were considered in this work:

• OMP: This is an effective approach and one of the simplest algorithms that forms a
part of the greedy pursuit approaches. OMP defines a refinement iterative algorithm
where the best candidate from a dictionary is chosen at each step. The dictionary
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comprises the column vectors from the measurement matrix A, and therefore, the
best candidate corresponds to the vector of the dictionary that most contributes to
decreasing the difference between the current solution and the actual one (see the left
term in (8)). After selecting the best candidate, the solution vector is updated, and the
iterative algorithm continues the refinement procedure to minimize the residual term
‖Ax− y‖2

2.
Greedy pursuit approaches generally provide near-optimal sparse approximations for
incoherent dictionaries [27]. This premise can be extended for our scenario as long
as the dictionary elements and the basis of the sparse domain also satisfy mutual
incoherence. The main issue of the basic version of OMP is related to its computational
complexity because the number of required iterations is given by the number of
nonzero components of the vector to be reconstructed. Hence, its computational cost
is acceptable for very sparse solutions, but it could be large otherwise. Related to this
issue, it can lead to inaccurate estimations for input data with a large amount of small
values in the sparse domain.
To solve these drawbacks, more sophisticated methods have been developed based
on selecting multiple columns per iteration or pruning the set of active columns at
each step (see [23] and the references therein). In this work, we focused on the basic
version of OMP because the hyperspectral images were expected to be sufficiently
sparse in the frequency domain:

• LASSO: Another fundamental approach for sparse reconstruction consists of employ-
ing a convex relaxation of the natural sparse estimation problem. This is performed
by replacing the nonconvex `0 norm in (8) by the `1 norm, which is the closest convex
function to `0. Therefore, the optimization problem following this strategy reads as:

min
x

1
2
‖Ax− y‖2

2 + τ‖x‖1 , (9)

and the cost function is now convex. In this case, the cost function includes the
quadratic error term combined with a sparseness-inducing (`1) regularization term.
As a side note, the `1 minimization techniques can be optimized by using interior-point
methods, first-order gradient projection methods, or homotopy methods, although the
latter only works properly for small-scale problems [40].
It is also worth noting the difficulty in selecting an appropriate value for τ in advance.
Therefore, we would actually need to solve the problem above repeatedly for different
choices of this parameter and track the obtained solutions. An equivalent problem
to (9) is given by the LASSO formulation, which is stated as:

min
x
‖Ax− y‖2

2 subject to ‖x‖1 ≤ β , (10)

with β a positive parameter, which plays a similar role to the regularization parameter.
There exists several works that have analyzed the convergence of LASSO for the
estimation of sparse signals [31,41,42]. Such works confirmed the suitability of LASSO-
formulation-based algorithms as they provide accurate approximations for incoherent
dictionaries even for noisy CS measurements [41,43].
Although OMP and LASSO solve different minimization problems, they are based
on the same principles. Both approaches start from an all-zero solution and, then,
iteratively construct a sparse solution by considering the correlation between columns
of the measurement matrix A and the current residual vector. However, OMP usually
requires fewer iterations than LASSO to converge to the final solution due to the
strategy of handling the active set of candidates. On the contrary, OMP produces less
accurate solutions when there is a certain correlation between the dictionary elements
(columns of A);

• GPSR: This is one of the gradient projection methods. These iterative algorithms solve
the relaxed convex problem in (9) by updating the solutions at each step with the
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gradient of the cost function. These kinds of algorithms have been demonstrated
to perform well in a wide range of applications, although they tend to degrade as
the regularization term is de-emphasized [24]. Indeed, gradient-based methods are
especially suitable for the estimation of very sparse signals where the weight of the
regularization terms is significant. Their main advantage is that they are considerably
faster than other methods in spite of the fact that they also require solving a set
of problems for different values of the regularization parameter. GPSR is able to
efficiently solve a sequence of problems such as (9) for a sequence of values of τ.
There exist two main approaches for the implementation of GPSR-based algorithms,
although both share the same underlying formulation. The first approach is GPSR-
Basic [24], which is similar to a step descent approach. The optimization problem is
hence reformulated according to a BCQP formulation such that the resulting cost func-
tion is minimized following the negative gradient direction. The iterative solutions are
then projected onto the feasible set of solutions determined by the problem constraints.
A backtracking line search is also performed to optimize the step parameter.
The second approach is the Gradient Projection Barzilai-Borwein (GPSR-BB) algo-
rithm [44]. The main difference with respect to the previous approach is the choice of
the step size, which is based on an approximation for the Hessian of the cost function.
As a consequence of this choice, the objective function does not necessarily decrease at
every iteration, unlike the basic version of GPSR. However, this particular choice for
the gradient algorithm step has been proven analytically to produce accurate solutions
for simple problems [44];

• IST: Iterative thresholding algorithms [45] are some of the simplest known techniques
for sparse reconstruction, along with greedy approaches. Typical iterative threshold-
ing algorithms update the solution at each iteration as follows:

x[n+1] = Λα

(
x[n] + AT

(
y− Ax[n]

))
, (11)

where Λα(·) represents the thresholding function, which is applied elementwise to
obtain a sparse solution and α is the threshold considered in Λα(·). These algorithms
start with an initial solution x[0] = 0. As observed, the update rule in (11) decomposes
the sparse estimation into two separate steps: the unconstrained minimization of the
objective function and the thresholding operation to satisfy the sparsity constraint.
Hence, these iterative algorithms are able to converge to a local minimum of the
optimization problem in (8) under certain conditions [45]. In general, these algorithms
have empirically been shown to provide good sparse estimations if enough sparsity is
present at the input data and an appropriate threshold is chosen.
Iterative thresholding algorithms are mainly classified into two categories depending
on the type of considered thresholding operator: IHT and Iterative Soft Thresholding
(IST). In this work, we focused on IST as it generally provides better results for
sparse reconstruction. The algorithms based on IST are especially suitable for well-
conditioned problems since they have been shown to present slow convergence when
the sensing matrix is ill-conditioned. An alternative to solve this issue is the use of
the Tw-IST approach, which was proposed in [26] to accelerate the convergence rate
of IST algorithms with this class of problems. The main difference of the Tw-IST
algorithm with respect to the basic versions of IST is to consider the two previous
estimates at each iterate to update the current estimation, rather than considering only
the previous one. This modification in the update step has been shown to provide
significant gains in terms of execution time for ill-conditioned problems and moderate
ones otherwise.

All these algorithms address the sparse estimation problem from a similar perspec-
tive, but they present clear algorithmic differences that make them suitable for different
situations and different purposes. OMP is an adequate approach for input data with a
large sparsity level, and it imposes severe restrictions on the dictionary matrix to perform
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successfully. LASSO is more flexible and generally provides accurate estimates, but its
complexity is usually superior. The GPSR family of algorithms stand out for their lower
computational cost and smaller required execution time. They are generic algorithms
that can be suitable for a large range of applications, including scenarios with a lower
sparsity level. Their performance, however, is usually worse than the previous strategies
for sparse data. Finally, IST constitutes a trade-off between performance and computational
cost, but the choice of an appropriate threshold parameter is critical. In this case, Tw-IST
could also be employed to improve the convergence rate of the estimation algorithm and,
consequently, the time required for reconstruction, in the case of having ill-conditioned
measurement matrices.

For these reasons, the selection of the reconstruction strategy for CS-based applications
is not trivial and depends on multiple factors. The analysis of the reconstruction of
hyperspectral images from the CASSI measurements is hence a key point to evaluate the
practical suitability of the CASSI setup for sampling hyperspectral images.

3.2. CS Formulation for the CASSI Setup

As introduced, the CASSI model fits with the general formulation of any CS problem.
The input datacube corresponding to the hyperspectral image is represented by a smaller
set of compressive measurements, which are obtained following the procedure described
in Section 2. These measurements are then considered to obtain an accurate reconstruction
of the original hyperspectral image by using some CS estimation algorithm.

In particular, the CASSI-based sensing produces a 2D matrix of N ×V FPA measure-
ments (shot) from the original N × N × L datacube. Recall that N represents the spatial
dimensions in the original datacube and V = N + L− 1 is the dimension of the spectral
dispersive effect, which depends on the number of spectral bands L. By stacking the values
of the 3D datacube into a single vector, the CS formulation for the CASSI setup is:

y = H f = HΨTx = Ax, (12)

where f ∈ RN2L×1 is the vector containing all the elements of the 3D datacube F, y ∈ RNV×1

is the vector of FPA measurements, and A = HΨT is the CASSI measurement matrix
enclosing H ∈ RNV×N2L, which accounts for the effects of the coded aperture and the
dispersive effect of the prism. Furthermore, we have Ψ ∈ RN2L×N2L, which represents the
basis for the domain in which f is sparse. As observed, this CS formulation is equivalent
to the general formulation of the CS problem in (3) with M = NV and H playing the role
of the random projection matrix Φ.

The formulation in (12) requires rearranging the 3D datacube in a vector form. In this
case, the basis matrix Ψ should be able to provide a sparse representation of the input data
through the three existing dimensions (the two spatial and the spectral one). As presented
in [46], an appropriate mechanism to generate a sparsifying basis for multidimensional
CS scenarios is by means of the Kronecker product. Hence, a basis matrix is selected to
provide a sparse representation per dimension, and the overall basis matrix is obtained as
the Kronecker product of the individual bases. We obtained a single sparsifying basis for
the whole hyperspectral image as the Kronecker product of the sparsifying bases of each of
the dimensions, i.e.,

Ψ = Ψ1 ⊗Ψ2 ⊗Ψ3, (13)

where Ψ1 ∈ RN×N and Ψ2 ∈ RN×N correspond to the two spatial dimensions and Ψ3 ∈ RL×L

is the basis for the spectral one. The usual choices to obtain a sparse representation of
natural images are the wavelet transform or the DCT [47,48]. The former bases are known to
be mutually incoherent with structured projection matrices or even random projections for
the sensing step [36,37,49]. The DCT is a transform widely employed in image compression
and also in the context of CS [50]. The DCT is especially interesting for the considered
scenario because it is able to efficiently compact the signal energy when the input is highly
correlated and using a relatively small block size [48].



Sensors 2021, 21, 6551 10 of 31

At this point, one of the essential issues is the construction of the projection matrix
H. This matrix should incorporate the three main steps of the CASSI measurement pro-
cedure explained in Section 2: (1) coded aperture, (2) dispersive effect; (3) FPA sensing.
Figures 2 and 3 show a small example of the CASSI-based sensing procedure and the
corresponding equivalent CS formulation in (12), including the ideas for a systematic
construction of the matrix H from the matrix T , which specifies the coded aperture pattern.
As observed, we start from a simple datacube with L = 3 spectral bands and 2× 2 spatial
dimensions, i.e., N = 2. These spectral slices are individually coded with the matrix T and
dispersed by the prism effect (in practice, they are shifted one column to the right). Finally,
the values at the same spatial coordinates are summed to simulate the sensing in the pixels
of the FPA sensor. According to this procedure, the matrix H can be constructed as shown
in Figure 3 by considering the equivalent vector CS formulation. The vector representation
of the matrix T is placed at the matrix H following the same pattern:

• We first place the entries of T at the main diagonal;
• We next move N2 positions in the horizontal dimension and N positions in the vertical

one and place the entries of T again;
• We repeat this procedure L times to complete the construction of the matrix H;
• The rest of elements are set to zero.

As introduced at the beginning of the section, the key point to obtain an accurate
reconstruction of the original information from a minimum number of compressive mea-
surements is to guarantee the mutual incoherence between the columns of the sparsifying
basis matrix Ψ and the columns of the projection matrix H. As observed in Figure 3,
the matrix H has a particular structure, which eventually leads to selecting one or several
columns of the basis matrix Ψ to determine the overall sensing matrix A. This particular
construction of H hence ensures that the elements of the dictionary used for the sensing
of the hyperspectral images are incoherent, and as consequence, they should produce an
appropriate set of compressive measurements.

The CS formulation in (12) can be extended to the case of having several measurement
shots from the input hyperspectral image. In particular, we have:

yi = Hi f = HiΨ
Tx = Aix, i = 1, . . . , Ns (14)

where the subindex i refers to the i-th shot and Ns indicates the number of available shots.
As observed, the measurement matrix A depends on the specific shot since a different
coded aperture pattern is used for each shot. The equation above can be expressed in a
more compact way as follows:

yv = HvΨTx, (15)

where yv = [yT
1 , . . . , yT

Ns
]T and Hv = [HT

1 , . . . , HT
Ns
]T . Therefore, we can individually

construct each projection matrix Hi following the procedure explained above and obtain
Hv by stacking the resulting matrices vertically.

Note that this formulation still matches the general CS problem in such a way that we
can use the traditional approaches for the reconstruction of the hyperspectral image from
the vector of compressed measurements yv. The objective is hence to obtain an accurate
and sparse estimate of the vector x from the available shots by using any of the explained
algorithms. Then, the 3D datacube corresponding to the input hyperspectral image can be
reconstructed from such a sparse estimation with the help of the matrix ΨT .
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Figure 2. A simple example of the CASSI sensing procedure with N = 2 and L = 3.

Figure 3. Equivalent CS formulation with the particular structure of the projection matrix H.

Unfortunately, the computational complexity of the reconstruction procedure increases
as the resolution of the images becomes larger (the dimension of vector x quadratically
grows with N). However, we can circumvent this issue by using an alternative approach
known as the block CASSI model where the overall problem is divided into a set of smaller-
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scale subproblems [29]. This allows us to reconstruct the underlying datacube by using a
set of reconstructions obtained from nonoverlapping FPA windowed shots, as we explain
in the ensuing section. In addition, each block can be reconstructed independently in a
parallel fashion.

4. Practical Images Reconstruction Based on a Block Model

Exploiting the physical properties of the CASSI optical sensing phenomena, we can re-
construct the underlying 3D datacube from a set of reconstructions obtained from nonover-
lapped FPA windowed measurements. This means addressing the reconstruction of the
datacube using blocks of size B× B instead of using the entire datacube in a single step.
This approach is known as the block model in CASSI, and it clearly helps reduce the
computational complexity of the reconstruction procedure as the block size decreases.

For this alternative approach, we have to carry out the following steps:

• Dividing the N ×V shot into nonoverlapping blocks of a smaller size (B� N);
• Solving the sparse estimation problem individually for each measurement block in

order to obtain an estimate of the datacube chunk, which produces the considered
block of measurements;

• Assembling the entire datacube from the partial reconstructions of the different blocks.

It is worth remarking that the B× B portion of the spectral bands, which collapses to
the same B× B section at the FPA sector, is previously affected by the dispersive effect of
the prism. Thus, the datacube chunk corresponding to a windowed measurement block
will actually be a 3D oblique parallelepiped with L spectral bands, each one of them shifted
one column to the left. Figure 4 illustrates this situation caused by the dispersive effect.
As observed, the B× B portion of the L bands in the oblique parallelepiped is coded with
the corresponding section of the aperture pattern matrix and aligned after going through
the prism. Hence, it is fundamental to consider this particular shape of the datacube chunks
in order to reassemble the hyperspectral image from the estimates obtained for each B× B
measurement block. In addition, it also determines the construction of the partial projection
matrices that must be used in each sparse estimation subproblem.

Figure 4. Graphical representation of the impact of using a block model in the CASSI procedure;
reprinted from ref. [14] Copyright 2013 IEEE.

Consider that we have to reformulate the CS problem to accommodate the block
CASSI model. The total number of windowed blocks will be N′ ×V′ with N′ = dN/Be
and V′ = dV/Be. From this, we rearrange the entire i-th FPA shot as follows:
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Y (i) =


Y (i)

1,1 Y (i)
1,2 . . . Y (i)

1,V′

. . . .

. . . .

. . . .
Y (i)

N′ ,1 Y (i)
N′ ,2 . . . Y (i)

N′ ,V′

, ∀i = 1, . . . , Ns. (16)

Let F(i)
m,n denote the oblique parallelepiped in the datacube, which determines the

measurement block Y (i)
m,n. For notational simplicity, we disregard the super-index (i) from

now on. In that case, the elements of the matrix above can be obtained as:

ym,n = Hm,n fm,n, m = 1, . . . , N′, n = 1, . . . , V′, (17)

where ym,n ∈ RB2
is the vectorized form of Ym,n, Hm,n is the partial projection matrix

corresponding to the current block, and fm,n represents the vectorized form of the oblique
parallelepiped Fm,n. Note that the dimensions of the matrix Hm,n and the vector fm,n actu-
ally depend on the block size and the position of the windowed block in the measurement
shots. Again, the equation above fits the standard CS formulation such that the matrix
Hm,n plays the role of the projection matrix and fm,n is the data vector, which is sparse in a
certain domain. Equivalently,

ym,n = Hm,nΨT
m,nxm,n = Am,nxm,n, (18)

where Ψm,n is the basis matrix with the appropriate size and xm,n is the sparse representation
of fm,n in the domain defined by the considered basis.

Considering this block formulation, the main issue is now the construction of the set
of measurement matrices Am,n. In particular, the Hm,n submatrices cannot be generated
directly by partitioning the matrix H of the general model, but they have to be determined
by considering the dispersion effect at a smaller scale. However, it is worth remarking that
the effect of the Hm,n submatrices over each block altogether must be equivalent to the use
of the H matrix over the overall datacube.

Figure 5 shows a comprehensive example to illustrate the construction of matrices Hm,n
in the block CASSI model. As observed, the circled elements in the datacube slices represent
the oblique parallelepiped through the L = 3 spectral bands when considering a block size
B = 2. For the construction of the partial Hm,n matrices, we first have to determine the
section of the matrix T responsible for encoding the data of the considered parallelepiped
at each slice. The same colors are employed to mark the involved sections in the matrix T
for convenience. In the center of the figure, we show the result of applying the appropriate
sections of the matrix T to each spectral band in the considered parallelepiped, which
eventually produces the corresponding windowed 2× 2 block from the whole measurement
shot (in the general model). Finally, at the bottom of the figure, the construction of the
appropriate partial H matrix for the considered windowed block is presented by assuming
the required vectorization in the CS block formulation (see Equation (17)). As observed, it
basically consists of vectorizing the involved sections of the matrix T , constructing diagonal
matrices with the resulting vectors, and stacking them horizontally.

Considering the explained block model, we decomposed the general CS estimation
problem for the CASSI model into a subset of problems with an equivalent formulation,
but much smaller dimensions. A sparse estimation algorithm can hence be applied to each
problem in order to obtain x̂m,n, which will correspond to the estimated vector obtained
for the current block. As the last step, we have to perform an assembly procedure, which
includes the following actions:

• For each block, we transform the estimate sparse vector x̂m,n back to the original
domain, obtaining f̂m,n;

• We reconstruct the corresponding oblique parallelepiped from f̂m,n;
• We place the parallelepiped at the appropriate coordinates within the 3D datacube.
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As a result, we obtained a reconstruction of the input hyperspectral image given by
the assembled datacube.

Figure 5. Example to illustrate the construction of the matrices Hm,n in the block CASSI model.

5. Experimental Results

In this section, we analyze the impact of the different factors involved in the recon-
struction of hyperspectral images sampled with the CASSI setup. For that, we present
the numerical results obtained from several computer experiments carried out to evaluate
the practical suitability of the CASSI-based sensing procedure for hyperspectral images.
In particular, the computer experiments comprise the following steps:

• For each input hyperspectral image, Ns measurements shots were generated by using
different random aperture patterns;

• The block CASSI model is defined for a particular value of the block size B. The par-
tial measurement matrices Am,n were constructed for a given sparsifying basis and
considering the aperture patterns to generate the shots;

• The nonoverlapping blocks of the obtained shots together with the corresponding par-
tial measurement matrices were employed to reconstruct each oblique parallelepiped
in the datacube. Different algorithms proposed for the sparse estimation problem
were considered and assessed in this scenario;

• The datacube partial reconstructions were assembled to complete the recovering of
the hyperspectral image from its compressive measurements;

• This procedure was repeated for all the items of an image database and the parameters
of interest were averaged to obtain the numerical results presented in this section.

On the one hand, we employed a database containing 32 different images, which were
specifically selected from several repositories for hyperspectral images [51–53]. The selec-
tion was performed with the aim of considering a wide variety of images with different
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features and levels of detail. These images included nature scenes, buildings and urban
areas, people, different types of objects, etc.

On the other hand, since the main objective of this work was the evaluation of the
CASSI sensing procedure for the sampling of hyperspectral images with an affordable
computational cost, we were interested in analyzing the impact of different parameters in
the block CASSI model: the number of shots Ns, the block size B, the type of sparsifying
bases Ψ, and the sparse estimation algorithms. We considered two different relevant metrics
to measure such an impact: the objective quality of the reconstructed images according to
the PSNR metric and the computational cost according to the execution time required for
the image reconstruction. Finally, an additional and indispensable criterion to assess the
suitability of the different parameters is the visual or perceptual quality of the reconstructed
images. All the computer simulations were conducted and timed using an Intel Core i7
4770 3.4 GHz processor and 32 GB RAM memory.

5.1. Sparsity Level

Before starting with the performance analysis of the block CASSI model, an interesting
aspect to consider is the level of sparsity of the input hyperspectral images in the trans-
formed domain depending on the chosen basis matrix. Towards this aim, we introduced
the ratio between the number of zero coefficients and the total number of coefficients in the
sparse domain, that is,

γ =
#zero coefficients
#total coefficients

, where γ ∈ [0, 1].

This figure of merit provides a measure of how much data can be compressed by a
certain basis in the sparse domain. Indeed, large values of γ imply that the original data
are sparser in the transformed domain or, equivalently, the considered transform is able to
compact the signal energy into a smaller number of relevant coefficients.

Table 1 shows the sparsity level results obtained for different types of sparsifying
bases and block sizes. The following conclusions were drawn:

• A clear conclusion is that DCT was the basis that obtained the sparsest representation
of the data when it was transformed to the sparse domain. This is reasonable because
wavelet-based transforms are known to work better when they are applied to the
whole image (i.e., considerably large block sizes) to efficiently exploit the properties
of the multilevel decomposition [54];

• For a similar reason, the simple Haar transform (single-level) provided poor sparsity
values as it was only applied once to the different datacube blocks. Recall that the
capacity of the energy compaction of wavelet transforms increases with the number
of applied levels. This also explains that the sparsity level is practically the same for
this basis regardless of the block size;

• DCT worked well even for small blocks as it approached the optimal Karhunen–
Loève transform when the spatial information was highly correlated [48], as it was in
this case;

• Increasing the block size in general increased the sparsity level. This conclusion
matches the initial intuition. On the one hand, larger blocks usually led to larger data
correlation levels for hyperspectral images. This fact benefits DCT-based schemes,
which are able to represent more spatial information with a small increase in the
amount of relevant frequency coefficients. On the other hand, larger blocks allow the
utilization of multilevel wavelets with higher levels of decomposition;

• The increase in the sparsity level was especially remarkable for the Daubechies wavelet
with four coefficients (DB4). Although DB4 provided lower levels of sparsity for
small block sizes, its levels improve significantly when the block size increased,
thus achieving a performance better than the multilevel Haar basis for blocks of
size 32 × 32. Note that the basis matrix for DB4 had larger dimensions than for
multilevel Haar because the number of wavelet coefficients was larger. This fact
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determines the maximum number of decomposition levels that can be applied to each
datacube for a given size. As an example, for a block size 8× 8, each datacube can
be transformed using a three-level decomposition with multilevel Haar, whereas a
two-level decomposition should be employed for DB4.

Table 1. Level of sparsity (γ) for different bases.

Basis/Block Size 4×4 8×8 16×16 32×32

DCT 0.8717 0.9030 0.9180 0.9296
Haar (single-level) 0.8052 0.8072 0.8097 0.8105
Haar (multilevel) 0.8564 0.8752 0.8852 0.8905
Daubechies (DB4) 0.8034 0.8582 0.8835 0.9057

5.2. Objective Quality of the Reconstructed Images

In this subsection, we present the results obtained with different configurations of the
CASSI setup in terms of the quality of the reconstructed images

5.2.1. Impact of the Reconstruction Algorithm

In the first experiment, we measured the objective quality of the reconstructions for
the considered sparse estimation algorithms by using the PSNR as a performance metric.
Figure 6 shows the PSNR values achieved for different numbers of shots (Ns from 2–20)
and considering the following configuration for the CASSI setup: block size of 4× 4 and
DCT as the sparsifying basis. From these results, we highlight the following conclusions:

• As expected, the quality of the reconstructed images improved with the number of
shots, i.e., when increasing the number of compressive measurements generated from
the input image. The obtained PSNR ranged from low values (about 20 dB) for Ns = 2
shots to excellent values (almost 40 dB) for a large number of measurement shots.
As observed in Figure 6, the PSNR curves present a logarithmic behavior regardless
of the sparse estimation algorithm. This means that the cost of incorporating more
measurements is not worth it beyond a certain point;

• LASSO provided the highest average PSNR values regardless of the number of mea-
surement shots. This is probably related to the fact that this algorithm is more robust
than other alternatives such as OMP or IST when the columns of the measurement
matrix are not completely orthogonal to each other. In our setup, such columns were
not totally random because of the particular structure of the dictionary matrices H
used for the projection operations (see Figure 5);

• OMP and IST recovered the hyperspectral images with similar quality. This makes
sense as they intrinsically performed in a similar way even though the implementation
of the operations at each iteration significantly differed;

• GPSR-based approaches provided the worst results when using a small number of
shots. However, GPSR (basic implementation) was able to slightly outperform OMP
and IST algorithms for Ns ≥ 6 shots. This is an interesting observation as this class
of algorithms stands out because of their lower computational cost, and hence, it
was postulated as a low-complexity alternative to obtain accurate reconstructions,
especially when a large number of measurements are available;

• The variant of IST based on using the Tw-IST algorithm converged to the performance
obtained with the basic IST as the number of shots increased, but the quality of the
reconstructions was slightly worse for a small number of measurements;

• Finally, we observed that GPSR-BB was clearly the worst algorithm in our setup.
In this case, the alternative step initialization proposed by this method and the fact of
allowing the cost function to increase along the iterative procedure did not apparently
improve the performance for the CASSI reconstruction problem.

It is worth remarking that increasing the number of shots beyond 20 could be beneficial
for most algorithms, as small gains still seem achievable. However, the fact of using more
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measurement shots led to storing/transmitting a larger number of samples (thus reducing
the compression efficiency) and to a higher execution time required for the reconstruction
of the images, as we see in Section 5.3. For this reason, it it essential to establish a trade-off
between the benefits of image quality and the resource requirements.

Figure 6. PSNR obtained for different sparse reconstruction algorithms.

As discussed, the improvement in the PSNR values followed a logarithmic tendency,
and it apparently saturated for a large number of shots. This behavior agrees with the
CS theory and with the sampling one, in general. According to previous works [17,18],
the number of required measurements to obtain accurate approximations of the input data
depends on the sparsity level and the properties of the measurement matrix (dictionary
incoherence, mutual coherence between basis and projection matrices, etc.). From that
point, the impact of increasing the number of measurements on the estimate accuracy is
negligible and the images are reconstructed with a similar PSNR. In Figure 6, the curves
show this saturation effect from the values of Ns around 18 or 20 shots. These values
approximately fit the well-known formula in the CS field to determine the number of
required measurements assuming random projections [16], i.e.,

M ≈ C k log2(N), (19)

where M is the number of measurements, whereas k and N are the number of nonzero
elements and the total number of elements in the input vector, respectively. The letter C
represents a small constant term.

5.2.2. Impact of the Sparsifying Basis

We now consider a numerical experiment that focused on analyzing the impact of
the basis used to perform the domain transformation. Figure 7 shows the average quality
of the reconstructed images in terms of the observed PSNR values for the different bases
considered throughout this work. The results were obtained for a CASSI setup with a
block size of 4× 4, LASSO as the estimation algorithm, and different numbers of shots.
The decision of using LASSO was because it generally provided the best results, as we
showed in the previous section.
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Figure 7. PSNR vs. the number of shots for different sparsifying bases.

When analyzing the results in Figure 7, we arrived at the following interesting conclusions:

• The DCT basis provided the highest PSNR values for all the range of Ns values. Next,
the multilevel Haar curve closely approached the DCT one, although the performance
was slightly worse. Finally, the other two transforms (single-level Haar and DB4)
achieved lower PSNR values, especially for a small number of shots. Notice that this
behavior is coherent with the sparsity levels achieved by the set of bases for blocks
of size 4× 4 (see Table 1). In this setup, the DCT achieved the highest sparsity levels
followed closely by the multilevel Haar, and further away, the other two transforms.
A higher sparsity level directly implies a smaller number of nonzero coefficients of
the input images in the sparse domain, and consequently, a better reconstruction with
the available measurements;

• The PSNR curves for the four considered bases converged to the same point for a
large number of measurement shots. This is also reasonable because the impact of
the sparsity level vanished when the number of available measurement was enough
to ensure reconstruction with minimum error, i.e., when that number was larger
than the threshold provided by (19). As discussed, this situation only holds for Ns
values around 18 or 20. In such a scenario, the number of available measurements
allowed accurate reconstructions for the four transform bases, even for those that
produced vectors with a larger number of nonzero elements. Indeed, the improvement
of obtaining sparser vectors in this situation was negligible in terms of the objective
quality of the reconstructed images since the extra measurements hardly improved
the accuracy in the estimation procedure.

According to these results and considering the sparsity levels in Table 1, the DCT basis
seems to be a reasonable choice regardless of the rest of the parameters in the CASSI setup.

5.2.3. Impact of the Block Size

In the next experiment, we were interested in evaluating the impact of the block size
on the quality of the images reconstructed with the block CASSI model. We considered a
CASSI setup configuration where the LASSO algorithm was employed at the estimation
phase and the DCT was chosen as the sparsifying basis, since both elements were shown to
provide the highest PSNR values in the previous experiments. We additionally considered
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the DB4 basis because it was expected to provide remarkable gains with the increase of the
block sizes, as discussed in Section 5.1. Furthermore, we focused on a practical number
of shots because of the prohibitive computational complexity and resource requirements
when we combined large block sizes and a large number of shots.

Figure 8 shows the PSNR values obtained with the aforementioned configuration for
different block sizes and for two different numbers of measurements shots, Ns = 2 and
Ns = 6. In this case, we concluded the following:

Figure 8. PSNR values by considering 2 and 6 shots, with different block sizes and using the DCT
and DB4 basis.

• As expected, the PSNR values grew with the block size. Note that increasing the
block size led to sparser vectors in the transformed domain, which could be estimated
accurately. For each block, we can define the following quantities:

ρ = (1− γ)B2L,

ξ = B2Ns,

where γ is the sparsity level, ρ is the average number of nonzero elements in the
transformed domain at each block, and ξ is the number of measurements for each
B× B block with Ns shots. As observed, the relationship between these two variables
did not depend on the block size B since both quadratically grew with the value
of B. Thus, for fixed Ns and L values in our CASSI setup, this relation was only
determined by the sparsity level γ. In this sense, larger values of γ imply a smaller
number of nonzero elements, and hence, we would be able to obtain more accurate
reconstructions for each block with the same number of measurements. As observed
in Table 1, the sparsity level generally grew with the block size, which justified the
obtained results;

• The PSNR curves followed again a logarithmic tendency. Indeed, the gain in terms of
PSNR was almost negligible from B = 16 to B = 32 for Ns = 2 shots, and especially
for the DCT. In the same way, the gain was imperceptible from B = 8 to B = 16 for
Ns = 6 shots. These results can be explained directly by the statement developed
in the previous point and considering the increase of the sparsity levels with the
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block size presented in Table 1. As observed in the table, the sparsity level grew
with the block size, but this increase slowed down as B became larger. This effect
was even more pronounced when having more shots as we had a larger amount of
measurements available for the reconstruction phase;

• The gains with the DB4 basis were slightly higher than with the DCT. Indeed,
the curves tended to approach each other as B grew. This is reasonable as the
Daubechies wavelet was shown to work better with larger data blocks, and it also
agreed with the sparsity levels observed for this basis in Table 1.

A clear conclusion is that the benefits of using large block sizes were negligible when
compared to the increase of the computational resources required to work with such sizes.
A more practical approach consists of using small blocks with a large number of shots.
This provides image reconstructions with higher quality and requires a lower consumption
of resources.

5.3. Execution Time

In this subsection, we present and discuss the different results observed in the ex-
periments concerning the execution time required to obtain the image reconstructions.
Therefore, we exclusively measured the execution time employed to reconstruct each im-
age from the considered data base and determined the average reconstruction time for
each configuration of the block CASSI model.

5.3.1. Impact of the Reconstruction Algorithm

In this experiment, we analyzed the execution time of the different considered algo-
rithmic solutions: OMP, LASSO, IST, Tw-IST, and the two variants of GPSR. It is worth
mentioning that the tuning of the parameters in the different reconstruction methods
was performed with the aim of achieving the best possible objective quality. Therefore,
the computational speed could be reduced in some scenarios at the expense of a lower
reconstruction quality.

Figure 9 shows the results obtained for all the sparse estimation algorithms considering
4× 4 and 8× 8 blocks and Ns = 2 measurement shots. In this case, the DCT was used
because the impact of the transform basis on the execution time was negligible. We next
summarize the conclusions drawn from this experiment:

• The slowest method was, with a significant gap, LASSO. This is because of the number
of iterations required for this method when the final goal is to achieve good quality
results for the reconstructions. As already discussed in Section 3.1, this result was
expected as LASSO usually requires a number of iterations larger than OMP or IST
to converge to the final solution due to its strategy of handling the active set of
candidates;

• OMP and IST had comparable times for both block sizes. This was due to the fact that,
in both cases, the number of required iterations was closely related to the sparsity
level of the solutions;

• The use of Tw-IST reduced the time required to reconstruct the hyperspectral images
with respect to the basic version of IST, especially for 8× 8 blocks. As observed,
the obtained reconstruction times were of the same order as those of the GPSR-based
methods;

• Both GPSR approaches were fast algorithms, with GPSR-Basic being the quickest
one in both cases. They were clearly the fastest approaches for 8× 8 blocks. Re-
call that the computational complexity of gradient-based algorithms is considerable
lower than other iterative approaches based on pursuit methods or homotopy-based
techniques [23];

• The execution time increased with the block size for OMP, IST, and LASSO. These
three algorithms are iterative procedures where the number of iterations grows with
the number of nonzero elements in the input vector to be estimated. It is clear that
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such a number would be larger for bigger input blocks as the total number of input
elements quadratically grew with B;

• Conversely, the execution time for GPSR-based approaches was shorter for 8× 8
than for 4× 4. These results may seem counterintuitive, but the explanation of this
behavior is closely related to the values of the regularization parameter τ obtained
for each block size. In the case of 8× 8, these values were in general lower than
for 4× 4, which provided less sparse solutions in the estimation procedure. In this
case, the convergence of the gradient-based approaches was faster and the number of
required iterations to produce the sparse solutions was smaller.

Figure 9. Execution time for the image reconstruction with different algorithms and block sizes.

In summary, the LASSO algorithm provided the image reconstructions with the
highest quality, but at the expense of larger execution times. These times also increased
significantly with the block size and could become prohibitive for big blocks. An appealing
alternative is the use of GPSR-Basic as it balances the reconstruction quality and the
execution time.

5.3.2. Impact of the Block Size

We now analyze the impact of the block size on the execution times required in the
reconstruction step. In particular, we focus on a scenario where the DCT and Ns = 2 shots
were employed. Figure 10 graphically shows the obtained results for the OMP and GPSR-
Basic algorithms considering different block sizes. These algorithms were chosen because
they represent two seemingly fast and very different approaches, as shown previously.
Therefore, it was of interest to verify how they behaved for different block sizes. In addition,
Table 2 presents the execution times (in seconds) obtained for all the sparse estimation
algorithms and the considered block sizes in this scenario.
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Figure 10. Execution time with different block sizes.

Table 2. Execution time (in seconds) required for the image reconstruction with Ns = 2 shots, the
DCT basis, and considering different algorithms and block sizes.

Algorithm/Size 4×4 8×8 16×16 32×32

OMP 2.8510 7.7574 165.3975 1784.93
LASSO 13.1868 36.5139 524.9444 5940.48
GPSR 3.4153 2.0287 24.3466 188.75
GPSR-BB 5.6395 2.5284 29.8273 229.26
IST 3.4501 6.7514 70.8613 512.07
Tw-IST 3.2421 2.3771 31.0239 243.58

Based on the results obtained, it is worth mentioning a few points:

• The execution time exponentially grew with the block size. Indeed, this time becomes
prohibitive for most algorithms with 32 × 32 blocks. The only exception to this
behavior is for GPSR-based approaches and the Tw-IST algorithm with 4× 4 and 8× 8
blocks, which was mentioned in the previous section;

• Execution times increased for the GPSR-Basic, GPSR-BB, and Tw-IST algorithms for
sizes larger than 8× 8. In this case, the dimension of the variables involved in the
reconstruction problem significantly increased with B ≥ 8, while the observed τ
values were of the same order, which led to similar convergence properties. In any
case, these approaches were still the fastest algorithms to reconstruct the hyperspectral
images regardless of the block size;

• LASSO was clearly the slowest algorithm, and its execution time increase with the
block size was more noticeable compared to the rest of algorithms. Indeed, the time
for 16× 16 blocks was already extremely high considering that it was even superior
to the time of most algorithms for 32× 32 blocks;

• OMP and IST required intermediate times to reconstruct the hyperspectral images.
Nevertheless, the time growth was more pronounced in the case of the OMP algo-
rithm. This indicates that IST could be more appropriate for large dimensions of the
input vectors;
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• Finally, these results confirmed that the use of Tw-IST significantly reduced the re-
construction times (by approximately half) with respect to the basic version of IST,
especially as the block size was larger. As in the previous experiments, the execution
times obtained with Tw-IST were slightly higher than for GPSR-based methods, but in
the same order. These results suggest that the estimation problem with CASSI was not
well-conditioned, probably due to the fact that the structure of the measurements ma-
trix specifically depends on the considered aperture patterns, and hence, the resulting
dictionary was not utterly incoherent.

Taking into account these points, we concluded that the slight quality gains obtained
by increasing the block size did not actually compensate because of the huge increase in
the involved resources, especially from the point of view of the execution times. This issue
was less dramatic when using gradient-based approaches, so they represent an attractive
alternatives under certain situations, as we discuss in Section 6.

5.4. Impact of the Number of Shots

In this last experiment, we evaluated the impact of the number of shots used in the
reconstruction on the average execution time. For that, we considered a setup with the
DCT as the sparsifying basis since it provided the best performance and the impact of
using different bases on reconstruction times should be residual. We also focused on 4× 4
and 8× 8 blocks as in these cases, we can obtain reconstructions for a wider range of the
number of shots with an affordable computational cost.

Figure 11 graphically shows the obtained results for the LASSO algorithm, whereas
Table 3 provides the execution times for the rest of the estimation algorithms and a block
size of 4× 4. From these results, we highlight the following:

• All algorithms increased the time taken to reconstruct the images as more shots
were considered. This fact meets our expectations since adding more shots implies
increasing the variable dimensions and, therefore, increasing the execution time. This
growth was more perceptible for a small number of shots, and it apparently lessened
as Ns became larger;

• LASSO was the slowest algorithm by far regardless of the number of shots. This
agrees with the results obtained in the rest of the experiments;

• Focusing on the LASSO algorithm, the impact of increasing the number of shots
was significantly larger for 8× 8 blocks (see Figure 11). This was expected since the
dimension of the involved variables also depended on the block size B;

• The GPSR-based algorithms generally provided the fastest times and showed a slight
increase in time with the number of shots. This is an interesting result from the point
of view of saving computational resources since GPSR-Basic was the best alternative
for scenarios where a large number of shots was available.

Table 3. Execution time (in seconds) required for the image reconstruction with B = 4, DCT basis,
and different algorithms and the number of shots.

Algorithm/#Shots 2 8 14 20

OMP 2.8510 25.0447 55.8019 70.2041
LASSO 13.1868 87.1824 143.0577 169.5150
GPSR 3.4153 5.9478 7.3869 7.9944
GPSR-BB 5.6395 6.9739 8.1231 8.6928
IST 3.4421 17.1846 30.2728 38.8165
Tw-IST 3.2421 6.1562 8.1849 9.3319
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Figure 11. Execution time with different number of measurement shots and block sizes.

5.5. Perceptual Quality

In this section, we show some illustrative examples of the reconstructed images with
different configurations of the CASSI system. The objective was to complete the previous
analysis by also considering the perceptual quality metric.

In particular, we used a 256× 256× 24 hyperspectral image as the reference, which
is shown in Figure 12a, by considering only the spectral bands corresponding to its RGB
components. Figure 12 shows the original hyperspectral image and the obtained recon-
structions with the LASSO, OMP, and GPSR-Basic algorithms for a configuration with
Ns = 20 shots, 4× 4 blocks, and the DCT basis. As observed, the perceptual quality of the
three reconstructed images was similar, and the differences with respect to the original
one were negligible. The details and colors of the original image were also accurately
represented in the three reconstructed images. Despite the fact that LASSO achieved over
1 dB more than GPSR and over 1.5 dB more than OMP, this gain is hardly perceptible if we
compare the three reconstructed images.

Figure 13 shows the original hyperspectral image and the obtained reconstructions for
LASSO, 4× 4 blocks, the DCT basis, and Ns = 2, 10, and 20 shots. As observed, the number
of shots in the reconstruction procedure decisively impacted the perceptual quality of the
obtained reconstructions. With two shots, the ninja figures in the image are blurred and the
edges of the different elements are not clearly defined. With 10 shots, the quality of the
image significantly improved as the image details are sharp and the edges clearly defined.
However, some artifacts are still visible at the bottom of the images in the Lego bricks, and
some of the colors are a bit dull. With 20 shots, the reconstructed image is almost identical
to the original one, and the high PSNR value obtained reflects this fact. These graphical
results confirmed the weight of the number of shots in the image quality, higher than other
variables, such as the sparse estimation algorithm.
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(a) (b)

(c) (d)
Figure 12. (a) Original 256 × 256 × 24 datacube for the “Ninja” image. Reconstructions for
Ns = 20 shots, DCT basis, and 4× 4 blocks using: (b) the LASSO algorithm (PSNR = 37.41 dB),
(c) the OMP algorithm (PSNR = 35.89 dB), and (d) the GPSR-Basic algorithm (PSNR = 36.24 dB).

(a) (b)

Figure 13. Cont.
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(c) (d)
Figure 13. (a) Original 256× 256× 24 datacube for the “Ninja” image. Reconstructions using the
LASSO algorithm, the DCT basis, and 4× 4 blocks with: (b) 2 shots (PSNR = 19.42 dB), (c) 10 shots
(PSNR = 30.47 dB), and (d) 20 shots (PSNR = 37.41 dB).

Figure 14 shows the original hyperspectral image and the obtained reconstructions
for LASSO, the DCT basis, Ns = 6 shots, and B = 4, 8, and 16. As observed, the perceptual
quality of the images improved as the blocks became bigger. This improvement was more
noticeable when we increased the block size from 4× 4 to 8× 8, although it was also
perceptible when increasing the size from 8× 8 to 16× 16. Indeed, the visual differences
between the images in Figure 14c,d are higher than indicated by their PSNR values.

(a) (b)

(c) (d)
Figure 14. (a) Original 256× 256× 24 datacube for the “Ninja” image. Reconstructions using 6 shots,
the DCT basis, and the LASSO algorithm and considering a block size of: (b) 4× 4 (PSNR = 26.44 dB),
(c) 8× 8 (PSNR = 29.11 dB), and (d) 16× 16 (PSNR = 30.57 dB).
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6. Discussion

The use of CASSI-based hardware prototypes for the sampling of hyperspectral images
represents a promising strategy because it is able to exploit the optical properties of the
light waves to reduce the amount of information that we need to capture from a given
scene. In addition, the underlying CASSI principles can be modeled from the perspective
of the CS theory, thus exploiting the vast mathematical fundamentals developed for it. It is
obvious that this point should be seen as a positive point, although it also implies that there
exists a wide variety of potential techniques that could be applied for the reconstruction of
hyperspectral images from their compressive measurements in this setup. For this reason,
it is interesting to analyze those reconstruction strategies and the involved parameters for
the design of practical CASSI systems. In addition, the best configuration for the whole
system, especially regarding the reconstruction phase, depends on multiple factors such as
the application requirements or the computational resources of the devices.

The lack of specific works that analyze in detail such aspects for CASSI has motivated
the study conducted in this paper. Considering the results of all the computer experi-
ments presented along the previous section, we would like to highlight the following
general conclusions:

• LASSO was the algorithm that provided the image reconstructions with the highest
objective quality. It was able to provide excellent performance in spite of the particular
structure of the columns in the CASSI measurement matrix. However, these better
results were achieved at the expense of increasing the execution time required for the
reconstruction step, especially when employing a larger number of shots or larger
block sizes. Hence, LASSO is the best alternative for applications where it is essential
to work with high-quality reconstructions, for applications without delay constraints,
and for devices with enough computational capabilities;

• GPSR-Basic is an appealing alternative as it properly balanced image quality and time
consumption. It was especially interesting for the case of many shots since, in this
situation, it was able to reconstruct the hyperspectral images with excellent quality
and negligible impact on the time consumption;

• The best option to improve the quality of the image reconstructions is to increase the
number of shots generated from the input scene. If possible, this alternative is prefer-
able to increasing the block size in the block CASSI model, both in terms of quality
improvement and required reconstruction time. From the reconstruction perspective,
the increase of the generated shots allows producing hyperspectral images with ex-
cellent quality at an affordable computational cost and delay. The use of larger block
sizes for a given number of shots led to a slight improvement of the reconstruction
quality at the expense of increasing the computational cost and reconstruction delay.
However, generating more shots implies more hardware complexity, more measure-
ments to be stored/transmitted, and lower compression efficiency. Again, the final
decision about the system configuration will depend on the application requirements,
the hardware features of the CASSI prototype, and the computational resources of the
devices where the hyperspectral images will be reconstructed;

• In those scenarios where it is not possible to generate a large number of shots, we can
opt to increase the block size. In any case, the decision of using LASSO or GPSR will
depend on the available computational resources;

• The benefits of generating more shots for the hyperspectral image vanished beyond a
certain point, which can be determined from the CS theory. This threshold value will
mainly depend on the sparsity level of the input image;

• The impact of the sparsifying bases on the system performance is less relevant than
that of other configuration parameters. In any way, the DCT basis is apparently the
best choice for the considered block sizes as it is able to produce sparser vectors in the
transformed domain.
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This work presented a comprehensive study of the reconstruction of hyperspectral
images sampled with CASSI techniques. However, there exist some points that can be
addressed in the future:

• The use of more sophisticated and modern reconstruction algorithms, including those
based on deep learning networks;

• The impact of the transmission of the measurements over a certain communication
channel on the reconstruction procedure and, correspondingly, the impact of noisy
measurements on the reconstruction of hyperspectral images;

• The optimization of the coded aperture patterns for the generation of the measure-
ment shots;

• A comparison of the considered block model with respect to using overlapped blocks
in the reconstruction problem.

7. Conclusions

In this work, we addressed the sensing and reconstruction of hyperspectral images.
The spectral information from the scenes was assumed to be acquired and sampled with a
CASSI-based device, which allowed modeling the sensing and subsequent reconstruction
with the support of CS fundamentals. Considering a practical implementation of this
model based on nonoverlapping blocks, we analyzed the impact of several parameters
on the reconstruction procedure in terms of the quality of the recovered images and the
time required for their reconstruction. This study provides an interesting insight for an
appropriate design of the overall CASSI system depending on the application requirements
and the available computational resources.

Several interesting conclusions can be extracted after completing this study. The prefer-
able strategy to improve the quality of the reconstructions is the increase of the number of
shots generated from the hyperspectral scene. This alternative can also be combined with
the use of a low-complexity reconstruction algorithm such as GPSR to construct an overall
practical CASSI-based system with an affordable consumption of hardware resources.
If possible, this strategy allows producing hyperspectral images with excellent quality at an
affordable computational cost and delay. However, there could be certain situations where
this strategy cannot be applied due to hardware limitations in the CASSI camera, limited
storage resources, or restrictions on the available bandwidth for transmission scenarios.
In these situations, the imposition of using a small number of measurement shots tips the
scale for the use of the LASSO algorithm in order to leverage the suitable performance of
this approach even with a small amount of measurements from the input images.

This paper focused on analyzing some classical model-driven algorithms that are
usually employed for the reconstruction of sparse data in the context of CS. It represents a
preliminary approach to assess different alternatives to reconstruct hyperspectral images
sampled with CASSI-based techniques. However, in the future, it would be interesting to
incorporate more sophisticated algorithms in this comparison, especially those based on
the use of deep learning techniques.

In a similar way, the reconstruction procedure considered in the paper was based on
splitting the measurements shots into nonoverlapping blocks, applying the corresponding
estimation algorithm separately to each block, and reassembling the datacube by con-
sidering the dispersive effect. In the literature, other strategies have been proposed to
decompose the reconstruction procedure into small-scale subproblems for CASSI scenarios
such as, for example, the use of overlapping blocks to improve the quality of the reconstruc-
tions. However, this idea implies changing the construction procedure for the measurement
matrix and the way of reassembling the partial reconstructions into the three-dimensional
datacube. In this sense, an interesting continuation of this work would be to follow a
similar approach for the overlapped block model and compare the results to those achieved
with the nonoverlapping model considered in this work.
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IHT Iterative Hard Thresholding
IoT Internet of Things
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