
sensors

Article

Filter Pruning via Measuring Feature Map Information

Linsong Shao 1,2,3 , Haorui Zuo 2,*, Jianlin Zhang 2 , Zhiyong Xu 2, Jinzhen Yao 2, Zhixing Wang 2 and Hong Li 2

����������
�������

Citation: Shao, L.; Zuo, H.; Zhang, J.;

Xu, Z.; Yao, J.; Wang, Z.; Li, H. Filter

Pruning via Measuring Feature Map

Information. Sensors 2021, 21, 6601.

https://doi.org/10.3390/s21196601

Academic Editor: Alex Alexandridis

Received: 31 July 2021

Accepted: 28 September 2021

Published: 2 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Key Laboratory of Optical Engineering, Chinese Academy of Sciences, Chengdu 610200, China;
shaolinsong19@mails.ucas.ac.cn

2 Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610200, China;
jlin@ioe.ac.cn (J.Z.); xzy158@163.com (Z.X.); yaojinzhen19@mails.ucas.ac.cn (J.Y.);
E190068@e.ntu.edu.sg (Z.W.); lihong19@mails.ucas.ac.cn (H.L.)

3 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: zuohaorui@sina.com; Tel.: +86-189-8178-8875

Abstract: Neural network pruning, an important method to reduce the computational complexity of
deep models, can be well applied to devices with limited resources. However, most current methods
focus on some kind of information about the filter itself to prune the network, rarely exploring the
relationship between the feature maps and the filters. In this paper, two novel pruning methods
are proposed. First, a new pruning method is proposed, which reflects the importance of filters by
exploring the information in the feature maps. Based on the premise that the more information there
is, more important the feature map is, the information entropy of feature maps is used to measure
information, which is used to evaluate the importance of each filter in the current layer. Further,
normalization is used to realize cross layer comparison. As a result, based on the method mentioned
above, the network structure is efficiently pruned while its performance is well reserved. Second,
we proposed a parallel pruning method using the combination of our pruning method above and
slimming pruning method which has better results in terms of computational cost. Our methods
perform better in terms of accuracy, parameters, and FLOPs compared to most advanced methods.
On ImageNet, it is achieved 72.02% top1 accuracy for ResNet50 with merely 11.41M parameters
and 1.12B FLOPs.For DenseNet40, it is obtained 94.04% accuracy with only 0.38M parameters and
110.72M FLOPs on CIFAR10, and our parallel pruning method makes the parameters and FLOPs are
just 0.37M and 100.12M, respectively, with little loss of accuracy.

Keywords: model compression; filter pruning; information entropy; normalization

1. Introduction

With the development of deep neural networks in recent years, great success has been
achieved in computer vision applications [1–4]. However, their apparent effectiveness
is based on increasing storage, memory footprint, computational resources, and energy
consumption, making most advanced Convolutional Neural Networks (CNNs) impossible
to be deployed on edge devices such as cell phones and light devices. Although there are
deep neural network acceleration frameworks such as TensorRT, they cannot reduce the
network model. Therefore, there is still an important demand to reduce the parameters and
floating point operations (FLOPs) of CNNs while keeping the accuracy unchanged. Com-
mon techniques include quantization [5–8], knowledge distillation [9–11], and network
pruning [12–16]. In earlier work, pruning approaches [17,18] mainly used unstructured
methods to obtain filters for irregular sparsity. To facilitate the deployment of models
on general-purpose hardware and/or the use of basic linear algebra subroutine (BLAS)
libraries, recent works have focused more on structured pruning or filter pruning [19–21],
which simultaneously pursues the reduction of model size and improvement of computa-
tional efficiency.

The existing pruning methods are usually classified into two categories based on
their compact CNN learning process: (1) Pretraining-dependency pruning, which is based

Sensors 2021, 21, 6601. https://doi.org/10.3390/s21196601 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1133-5493
https://orcid.org/0000-0002-5284-2942
https://doi.org/10.3390/s21196601
https://doi.org/10.3390/s21196601
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21196601
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21196601?type=check_update&version=2

Sensors 2021, 21, 6601 2 of 18

on pretrained filter weights (e.g., `1-norm [22] and coreset [23]) or data-driven activa-
tion such as output sparsity [24], rank of feature map [14] and the effect on accuracy or
loss [25,26] of the intrinsic criteria measured with the aim of preserving important filters.
(2) Regularization-retraining pruning, which introduces sparsity constraints [27–29] and
masking schemes [30] during the training process. Although this method is very simple and
eliminates the dependence on the pre training model, it usually needs to train from scratch,
so the computational cost is very high. In addition, due to the introduction of sparse
constraints, it brings great difficulties to the universality and flexibility of training loss.

In this paper, two novel pruning methods are proposed. First, we pay attention to
the information of output feature maps, and propose a novel pruning method: directly
calculate the information entropy of feature maps, and the importance of obtaining the
corresponding filters (the richer the information of the feature maps, the more important
the corresponding filters), to reduce the redundancy of the network filters. Moreover, we
normalize the importance of feature maps of various layers to the same scale to avoid
layer-by-layer pruning ratios. Secondly, we propose a new parallel pruning method by
combining two methods including our first pruning method based on the entropy of the
feature maps and Network Slimming [12]. Although above two pruning strategies have
different advantages and effects, our proposed second parallel pruning has better effect by
combining their advantages to make the network more compact.

We then compare the proposed methods with other advanced criteria. Experiments
demonstrate that our methods can compress various CNN models consisting of VGGNet [1],
DenseNet [31] and ResNet [32] on different image classification datasets such as CI-
FAR10/100 [33] and ImageNet [34]. The effectiveness of our methods is verified on several
benchmarks, and our methods have better performance in terms of accuracy, parameters
and the computational cost compared to the existing methods [12,14–16,20–22,35–41].

In the following, we will first discuss the related work in Section 2. Then, we elaborate
our two pruning method in Section 3. In Section 4, the experimental results are provided
and analyzed. Lastly, we conclude this paper in Section 5.

2. Related Work
2.1. Weight Pruning

Weight pruning removes individual neurons in the filter or connections between fully
connected layers. Cun et al. [17] proposed the OBD (optical brain damage) algorithm
which used loss to find the second order derivatives of the parameters to resolve the
importance of parameters. Based on this, without limiting the diagonal assumption of the
OBD algorithm, Hassibi [42] proposed the OBS (optical brain surgeon) algorithm, which
recomputed other weights to compensate for the activation values in addition to setting
the less important weights to 0, resulting in better compression effect. Similar to the OBS
algorithm, Srinivas and Babu [43] proposed to remove the dense connections in the fully
connected layer without relying on the training data, which greatly reduces the compu-
tational complexity. Recently, Dong et al. [44] proposed a layer-by-layer OBS algorithm,
where each layer was independently pruned in terms of the second-order derivatives
of the corresponding parameters of the layer-by-layer loss function, and after pruning,
it was lightly retrained to recover the performance. In [45], 2-D DCT transformation is
applied to sparsify the coefficients for spatial redundancy removal. Group sparsity-based
regularization of network parameters [46] is leveraged to penalize unimportant parameters.
Han et al. [18] introduced an iterative weight pruning method by fine-tuning with a strong
`2 regularization and discarding the small weights with values below a threshold. In [47],
pruning and splicing are proposed to solve the problem that important filters may be
removed in the pruning process, leading to a decrease in accuracy. Lin et al. [48] proposed
a dynamic assignment of sparse patterns and the inclusion of feedback signals to reactivate
the early pruned weights. However, weight pruning leads to irregular sparsity that requires
special hardware/software, and this sparsity is difficult to support practical speedups on
general-purpose devices [49].

Sensors 2021, 21, 6601 3 of 18

2.2. Filter Pruning

In contrast, generic hardware and software can support filter pruning well, as it
removes the entire filter without changing the original convolutional structure. For this
purpose, Li et al. [22] used the importance of the filter based on the L1/L2 paradigm.
Hu et al. [24] believed that channels with more sparse outputs are redundant and thus
removed the corresponding filters and used the Average Percentage of Zeros (APoZ) as a
metric based on the percentage of zeros in the activation layer. Luo and Wu [13] used the
result of GAP of output feature map to obtain information entropy and remove redundant
filters. Molchanov et al. [25] adopted Taylor expansion to approximate the influence to
the loss function induced by removing each filter. Similarly, Yu et al. [38] optimized the
reconstruction error of the final output response and propagates an “importance score” for
each channel. He et al. [50] presented a LASSO-based filter selection strategy to identify
representative filters and a least square reconstruction error to reconstruct the outputs.
Luo et al. [41] established filter pruning as an optimization problem, and removed less
important filters based on the statistics of the next layer. There was also a combination
of various regularizers to make the weights of the network sparse. Lin et al. [36] used
dynamic-coded filter fusion (DCFF) is introduced to train compact CNNs. Wen et al. [51]
used Group Lasso for structured sparse. Huang and Wang [35] performed structured
pruning by introducing learnable masks and using APG algorithm to sparse the masks.
In [12], the scaling factor in the batch normalization(BN) layer is considered to be a filter
selection indicator to decide whether a filter is important. However, the influence of shifting
parameters in the BN layer is totally ignored [20]. Inspired by this, Kang and Han [52]
considered both the channel scaling and shifting parameters for pruning. Lin et al. [14]
observed the invariance of feature map rank and removed filers with low-rank feature
maps. Yan et al. [15] combined `1 Norm, number of parameters and computational effort
as pruning criteria.

Please note that [13,14] investigated feature maps for network pruning. However,
our guidelines for feature map evaluation are fundamentally different from [13,14]. First
of all, Luo and Wu [13] performed global average pooling of feature maps followed by
importance measures, and Lin et al. [14] used the rank of feature maps to determine
importance, whereas we directly study the feature information contained in feature maps.
Then, the methods used by Luo and Wu [13] loosened some information from the feature
map because of global average pooling, which makes the importance measure of the
filter inaccurate, while we study the complete feature map, which is richer in information
obtained, and its importance measure of the filter is more accurate. At last, Lin et al. [14]
required manually setting different pruning rates for each layer when pruning, while we
only need to set a global pruning rate to achieve a good pruning effect.

3. The Proposed Method

The typical pipeline of a conventional pruning algorithm is shown in Figure 1, and
has three steps: (1) the importance of the filter was calculated according to the evaluation
criteria; (2) the importance values are sorted, and the model pruning ratio and the least
important value determined under the condition of obtaining the ratio are specified; (3)
the pruned model uses the original data for finetuning. Figure 2 illustrates the overall
framework of our proposed feature map information pruning method. For the specific
layer we want to prune, we first focus on its output feature map. If there is less feature map
information, we have enough confidence that the corresponding filter is not so important,
which could be pruned. In this paper, a new method based on information entropy is
proposed to evaluate the feature map with less information. As shown in Figure 2, these
feature maps with less information and the corresponding filters are highlighted in a
dotted box.

Sensors 2021, 21, 6601 4 of 18

Figure 1. A typical pipeline of pruning.

(a) Original Model.

(b) Pruned Model.

(c) Fine-tuned Model.

Figure 2. Illustration of Pruning Method. (1) The feature maps after the filters are focused on and
its feature information is measured. (2) Feature information is positively correlated with the overall
performance of its impact, and feature maps (dotted boxes) that contain less feature information
are selected. (3) The associated filters (dashed cube) are discarded. (4) Finally, the pruning model
is obtained.

3.1. Notations

Assume a pretrained CNN model has L layers, and C l (l ∈ [1, 2, . . . , L]) is the l-th
convolution layer. The shape of filters in C l isWl ∈ RNl×Ml×Kl×Kl , the number of input
channels is Ml in the C l layer. Nl is both the number of output channels and the number
of filters in the current convolution layer. Kl × Kl is the l-th convolutional kernel size.
Xl denotes the input of l-th layer and its shape is Il × Il × Ml (the dimension of input
feature maps of the l-th layer is Il × Il). Yl denotes the output of l-th layer and its shape is
Ol ×Ol × Nl (the dimension of output feature maps of the l-th layer is Ol ×Ol).

Yl
k =Wlk ⊗ Xl , k = 1, 2, . . . , Nl (1)

where Yl
k is the k-th channel of Yl , ⊗ denotes the standard convolution operation, andWlk

denotes the k-th filter ofWl .
The goal of filter pruning is to search a L-layers compact CNN model, where the

filter shape of the l-th layer convolution C l is W̃l ∈ RÑl×M̃l×Kl×Kl and ideally it should

Sensors 2021, 21, 6601 5 of 18

be satisfied that Ñl ≤ Nl . Then, the convolution in the l-th layer Equation (1) under the
compact model framework can be reformulated as:

Ỹl
k = W̃lk ⊗ X̃l , k = 1, 2, . . . , Ñl (2)

where X̃l and Ỹl denotes the input and output of l-th layer in the compact network, respectively.

3.2. Pruning Criteria
3.2.1. Feature Maps Probability

To facilitate the calculation of the entropy value of output feature maps obtained by
the filter, the feature maps should be processed, where it uses the softmax function. The
feature maps probability obtained by convolution of the l-th layer use softmax function:

si = softmax(zi) =
ezi

∑J
j=1 ezj

(3)

where zi represents the i-th pixel value of each feature map, and si is the probability of the
i-th position of the feature map. J denotes the total number of pixel values of the current
feature map

When the information of feature map is richer, the pixel value at that location is differ-
ent from the pixel value of the background. To highlight the obvious feature information,
the improved softmax function is used as follows:

si =
evi−vm

∑J
j=1 evj−vm

vm = max
i

vi

vi = (zi − z̄i)
2

z̄ =
1
K ∑

i
zi

(4)

where K is the product of the dimension size of the feature map. Finally, the probability
matrix S is obtained, where si ∈ S.

As can be seen from the content of Section 4.4, the improved softmax (I-Sofmax)
has the effect of suppressing background information and highlighting local information
compared to the conventional softmax (C-Softmax), which is beneficial to the entropy
solution and makes the importance assessment criterion more accurate.

3.2.2. Feature Maps Entropy

To calculate the entropy value corresponding to the filter, we first pass its feature map
through the above improved softmax function Equation (4), and we obtain a probability
matrix S. Finally, the entropy can be calculated as follows:

El
i = −

K

∑
k=1

sk log sk (5)

where El
i denotes the entropy value of the i-th feature map in the l-th convolution layer. sk

is the probability of the k-th position of S. K denotes the product of the dimension size of
current feature map.

Imp
(

Yl
i

)
= ESl

i =
M

∑
j=1

El
ij (6)

Sensors 2021, 21, 6601 6 of 18

where Imp
(

Yl
i

)
and ESl

i are the importance evaluation score of Yl
i of the l-th layer. ESl

i is

summed the entropy value obtained in each batch. El
ij is the entropy value of the j-th batch

and M denotes the batch size.
However, due to the different sizes of the feature map in different layer, the entropy

value in different layers makes a big gap. To make all the layers in whole network compa-
rable, max-min normalization is presented to quantify them in same scale. We normalize
the importance distribution of each layer to align the correction distribution to [0,1], which
can be formulated as:

NEl
i =

ESl
i − ESl

a

ESl
b − ESl

a

ESl
a = min

i
ESl

i

ESl
b = max

i
ESl

i , a, b ∈
[
1, Nl

]
and a 6= b

(7)

among the evaluation values of feature maps of Yl , ESl
a is the smallest an ESl

b is the largest.
Based on the above description, We can define the final importance evaluation criteria

of Yl
i from Equations (6) and (7) specifically as:

Imp
(

Yl
i

)
= NEl

i (8)

3.3. Parallel Pruning Criteria

We know that different metrics have different advantages and different pruning effects,
resulting in different pruning rates for the same layer of the network. As can be seen in
Figure 3, NS [12] pruning works well for pruning some layers of the network, while our
pruning method based on the entropy of the feature maps (Algorithm 1) works well for
other layers of the network. So we propose the parallel pruning method to apply both
pruning algorithms to the same network value at the same time, and keep the best one
of these two pruning results as the final result, as shown in our parallel pruning method
(Algorithm 2) in Figure 3. This results in less parameters and FLOPs with little difference
in accuracy.

To begin with, the network is trained to be sparse. It is trained to impose sparsity
on the scale factor of the BN layer by L1 regularization, and then pruning is performed
according to the size of the scale factor. Specifically, the optimization of the objective
function is performed as follows.

θ̂ = arg min
θ

L(θ) + λ ∑
γ∈Γ
|γ| (9)

where L is loss function and the latter term is a sparsity penalty term. γ is a scaling factor.
A set of scaling factors in the neural network is Γ, while the degree of sparsity is controlled
by λ.

Sensors 2021, 21, 6601 7 of 18

Algorithm 1 A Pruning Algorithm Based on Entropy of Feature Map

1: Input: An L-layer Pre-trained CNN model with filter sets {Wl}L
l=1, and the number of

preserved filter in each layer {Ñl}L
l=1 and prune threhold δ.

2: Output: The pruned network with filter sets {W̃l}L
l=1 and W̃l ∈ RÑl×M̃l×Kl×Kl .

3: while l ∈ {1, 2, . . . , L} do
4: Compute the feature maps Probability by Equation (4).
5: Obtain the importance scores for filtersWl via Equation (7).
6: Get the preserved filer set W̃l by threhold δ and the importance scores.
7: end while
8: Get the pruned model without fine-tune.
9: while t = 1→ T do

10: Fine-tune the pruned model.
11: end while
12: Return the pruned model with filter sets {W̃l}L

l=1.

Algorithm 2 A Parallel Pruning Algorithm

Require: Training set {(x̂i, ŷi)}, and two threholds δ1 and δ2.
Ensure: The compat network.

1: while t = 1→ T do
2: The model is obtained by sparsity training through Equation (9)
3: end while
4: while l ∈ {1, 2, . . . , L} do
5: mask1 = I (δ1 > NEl) by Algorithm 1;
6: mask2 = I (δ2 < γ) and Equation (9);
7: if sum(mask1) <= sum(mask2) then
8: mask = mask1;
9: else

10: mask = mask2;
11: end if
12: Pruning the current layer←mask;
13: end while
14: Obtain the compat model without fine-tuning.
15: while t = 1→ T do
16: Fine-tune the compat model.
17: end while
18: Return the compat model

Then, the preserving filters are obtained by comparing the respective thresholds with
the importance assessment values of filters. As shown in Figure 4, our proposed a parallel
pruning method is used to prune one layer of the network, assuming that the layer contains
n filters. The method mainly includes three steps: (1) According to our method based on
the entropy of feature map (Algorithm 1), the importance values NEl=(NEl

1,NEl
2,. . . ,NEl

n)
of the layer are obtained. Then, it is determined whether to retain the corresponding filter
according to the threshold δ1. We use the indication function I (δ1 > NEl) to represent the
determination process and obtain the result mask1. (2) At the meantime, according to NS
method, we obtain the corresponding importance values γ=(γ1,γ2,. . . ,γn) of the layer, and
the corresponding retention result mask2 are obtained according to the indicator function I
(δ2 < γ), where δ2 is a threshold and δ2 < γk(k ∈ [1, n]) means that the k-th filter of this
layer is reserved. (3) The filter retention result mask of this layer is the smallest result in
mask1 and mask2. As can be seen from Figure 4, m and k are the sizes of mask1 and mask2,
respectively, and the final size p of mask is the smallest of m and k. The specific steps are
described in Algorithm 2.

The experimental results of the parallel pruning method prove the effectiveness of the
method, as described in Section 4.

Sensors 2021, 21, 6601 8 of 18

(a) Result of VGG16.

(b) Result of Resnet56.

Figure 3. Results of VGG16 and Resnet56 on CIFAR10 using NS [12], Our-E (Algorithm 1) and Our-P
(Algorithm 2) pruning methods at the same pruning rate.

Figure 4. Schematic diagram of a parallel pruning algorithm. Prune a certain layer of the network,
which contains n filters; m is the number of filters preserved by pruning according to the scaling
factor; k the number of filters retained by our pruning method; p is the number of final filters reserved,
which is the result of the minimum number of filters between m and k.

Sensors 2021, 21, 6601 9 of 18

3.4. Pruning Strategy

Traditional convolution structure and recent structural variants are two main architec-
tures of the current network structure. The typical former is VGGNet [1], while the latter
mainly contains several recent networks such as DenseNet [31] and ResNet [32].

These networks are pruned by different strategies. For VGGNet, they are all conven-
tional convolutional layers with direct conventional pruning, where the importance of
the feature maps obtained from each convolutional layer are evaluated and then pruned
according to the importance threshold, as shown in Figure 5a.

(a) Regular structure (b) Dense block

(c) Residual block1 (d) Residual block2

Figure 5. An illustration of mainstream network structure to be pruned, including Regular struc-
ture [1], Dense block [31] and Residual block [32].

For ResNet, there are some limitations owing to its special structure. For example, in
order to complete the summation operation, the channel numbers of each block of the same
group need to be consistent. Therefore, it is difficult to directly prune the last convolutional
layer of each residual block. Like ResNet164 with three convolution layers per block, most
parameters are located in the first two layers. Similarly, each block of ResNet56 has two
layers, and most parameters are located in the first layer. Therefore, for each block of
ResNet, it is a good choice to keep only the last layer and prune other layers, as shown in
Figure 5c,d.

DenseNet also has a special structure with certain limitations. Due to the growth rate
setting, each dense block generates the same number of feature maps, which are then fused

Sensors 2021, 21, 6601 10 of 18

with the previous feature maps. Therefore, it is difficult to directly evaluate the importance
of the feature maps generated by the convolutional layers of each dense block. Since each
dense block has a BN layer which is not affected by the growth rate, it is a good choice to
evaluate the feature maps generated by the BN layer, which is illustrated in Figure 5b.

4. Experimental Results

To demonstrate the effectiveness and efficiency of our two proposed pruning meth-
ods (Algorithms 1 and 2), we conducted extensive experiments on image classification.
Representative compact design networks, including VGG16/19 [1], Densenet40 [31], and
ResNet50/56/164 [32], were chosen for compression and pruning. We report the perfor-
mance of our two pruning methods on CIFAR10/100 [33] and ImageNet [34], and compare
with the state-of-the-art (SOTA), our methods have great advantages. Please note that our
method is different from the similar methods of Luo and Wu [13] and hrank [14], because
we directly obtain the information contained in the feature maps through entropy, and we
can set a global pruning rate to obtain a compact network.

4.1. Implementation Details

We carry out CIFAR experiments on NVIDIA RTX 2060 SUPER GPU and ImageNet
experiments on NVIDIA RTX 3090 GPU. All models are implemented and trained using
the deep learning framework Pytoch [53]. The effectiveness is validated on three datasets:
CIFAR10, CIFAR100, and ImageNet. CIFAR10 includes images of 32 × 32 size from
10 classes. The training set includes 5000 images and the test set contains 10 k images.
CIFAR100 includes images from 100 classes. Each class includes 600 pictures, divided
into 500 training pictures and 100 test pictures. The ImageNet dataset composes of 1.28M
training images and 50 k validation images, which are collected from 1 k categories.

All networks are trained using stochastic gradient descent (SGD), and we set weight
decay and momentum to be 10−4 and 0.9, respectively. On CIFAR10 and CIFAR100, we
train the networks for 160 epochs and set the batch size to 128. The initial learning rate is
0.1 and is multiplied by 0.1 at 50% and 75% of the total number of epochs. On ImageNet
dataset, we used batch size of 256 to train the network for 160 epochs. The initial learning
rate was 0.1, and then multiplied by 0.1 every 30 epochs.

4.2. Comparison on CIFAR10/100

As shown in Tables 1 and 2, we analyzed on cifar10/100 through several popular net-
works, including VGG16/19, ResNet56/164, and DenseNet40. The classification accuracies
of compressed models trained with our algorithm and the baseline method were compared.
With similar accuracy, the method can effectively reduce parameters and FLOPs. This
illustrates that our methods outperform existing pruning methods in reducing parameters.

VGG16/19. According to the results of VGG, it can be seen that our algorithm based
on the entropy of the feature maps (Algorithm 1) has good results, for example, the
compressed VGG16 achieves 93.53% accuracy with only 0.99M parameters and 83.96M
FLOPs. using our parallel pruning method (Algorithm 2), the pruned VGG16 has less
parameters and less FLOPs with little loss in accuracy. Therefore, our algorithm has the
ability to compress the network to a more compact structure.

ResNet56/164. On CIFAR10, with similar parameters and FLOPs, our algorithm based
on the entropy of the feature maps enables ResNet56 to obtain an accuracy of 93.56% with
0.39M parameters and 69.52M FLOPs, respectively. ResNet164 achieves an accuracy of
94.66% with 0.67M parameters and 111.33M FLOPs, respectively. In addition, using our
parallel pruning algorithm is effective in reducing the computation with a slight loss of
accuracy. Similarly, we can obtain the same results on CIFAR100. This shows that our
algorithm is particularly suitable for pruning residual blocks.

DenseNet40. Our algorithm based on the entropy of the feature maps demonstrates
that DenseNet40 can obtain 94.04% accuracy on CIFAR10 with only 0.38M parameters and
110.72M FLOPs. Meanwhile, it obtains 74.50% accuracy on CIFAR100 with only 0.40M

Sensors 2021, 21, 6601 11 of 18

parameters and 109.55M FLOPs. In addition, our parallel pruning method is able to obtain
fewer parameters and computation with little difference in accuracy on both datasets.
Overall, our algorithm has better results relative to existing algorithms, so it can work on
networks with dense blocks, too.

Table 1. Pruning reasult on CIFAR10, where Our-E is our proposed pruning method based on the
entropy of the feature map, and Our-P is our proposed parallel pruning method.

Model Alg Acc(%) Param FLOPs

VGG16

Baseline 93.90 14.72M 313.75M
NS [12] 93.69 3.45M 199.66M
L1 [22] 93.40 5.40M 206.00M
SSS [35] 93.02 3.93M 183.13M

GAL-0.05 [21] 92.03 3.36M 189.49M
VCNNP [20] 93.18 3.92M 190.01M
HRank [14] 92.34 2.64M 108.61M
DCFF [36] 93.47 1.06M 72.77M
CPMC [15] 93.40 1.04M 106.68M
SWP [37] 92.85 1.08M 90.60M
Our− E 93.53 0.99M 83.96M
Our− P 93.47 0.93M 89.02M
Our− P 93.16 0.90M 79.85M

VGG19

Baseline 93.68 20.04M 398.74M
NS [12] 93.66 2.43M 208.54M
Our− E 93.63 1.55M 129.21M
Our− P 93.58 1.45M 127.44M

ResNet56

Baseline 93.22 0.85M 126.55M
NS [12] 92.94 0.41M 64.94M
L1 [22] 93.06 0.73M 90.90M

NISP [38] 93.01 0.49M 81.00M
GAL-0.6 [21] 92.98 0.75M 78.30M
HRank [14] 93.17 0.49M 62.72M

KSE (G = 4) [39] 93.23 0.43M 60M
DCFF [36] 93.26 0.38M 55.84M

KSE (G = 5) [39] 92.88 0.36M 50M
FilterSketch [16] 93.19 0.50M 73.36M

Our− E 93.56 0.39M 69.52M
Our− P 93.36 0.39M 63.15M
Our− P 93.09 0.31M 59.66M

ResNet164

Baseline 95.04 1.71M 254.50M
NS [12] 94.73 1.10M 137.50M

CPMC [15] 94.76 0.75M 144.02M
Our− E 94.66 0.67M 111.33M
Our− P 93.65 0.73M 105.86M

DenseNet40

Baseline 94.26 1.06M 290.13M
GAL-0.01 [21] 94.9 0.67M 182.92M

HRank [14] 94.24 0.66M 167.41M
VCNNP [20] 93.16 0.42M 156.00M
CPMC [15] 93.74 0.42M 121.73M

KSE (G = 6) [39] 94.70 0.39M 115M
NS [12] 94.09 0.40M 132.16M
Our− E 94.04 0.38M 110.72M
Our− P 93.75 0.37M 100.12M

Sensors 2021, 21, 6601 12 of 18

Table 2. Pruning result on CIFAR100, where Our-E is our proposed pruning method based on the
entropy of the feature map, and Our-P is our proposed parallel pruning method.

Model Alg Acc(%) Param FLOPs

VGG16

Baseline 73.80 14.77M 313.8M
VCNNP [20] 73.33 9.14M 256.00M

NS [12] 73.72 8.83M 274.00M
CPGMI [54] 73.53 4.99M 198.20M
CPMC [15] 73.01 4.80M 162.00M

Our− E 73.17 4.94M 150.70M
Our− E 73.06 4.05M 129.52M
Our− P 73.17 4.09M 147.99M

VGG19

Baseline 73.81 20.08M 398.79M
NS [12] 73.00 5.84M 274.36M
Our− E 73.29 4.21M 183.69M
Our− P 73.15 4.17M 195.77M
Our− P 73.01 3.94M 180.51M

ResNet56

Baseline 71.77 0.86M 71.77M
NS [12] 70.51 0.60M 62,82M
Our− E 71.28 0.50M 80.48M
Our− P 70.67 0.41M 69.88M

ResNet164

Baseline 76.74 1.73M 253.97M
NS [12] 76.18 1.21M 123.50M

CPMC [15] 77.22 0.96M 151.92M
Our− E 76.28 0.94M 150.57M
Our− P 75.27 0.94M 123.09M

DenseNet40

Baseline 74.37 1.11M 287.75M
VCNNP [20] 72.19 0.65M 218.00M
CPGMI [54] 73.84 0.66M 198.50M
CPMC [15] 73.93 0.58M 155.24M

NS [12] 73.87 0.55M 164.36M
Our− E 74.50 0.40M 109.55M
Our− E 73.74 0.34M 95.79M
Our− P 74.26 0.39M 108.81M
Our− P 73.62 0.34M 94.84M

In Figure 6, we further compare the accuracy of compressed models at different
compression rates using ResNet-56 for GAL [21], L1 [22], Random, FilterSketch [16], and
our two pruning methods (Algorithms 1 and 2). As shown in the figure, our two pruning
methods easily outperform the compared methods. In particular, for larger pruning rates
(>60%), the accuracy of L1, GAL and FilterSketch all show a great degradation, while our
two algorithms maintain relatively stable performance, which emphasizes the importance
of information preserving in network pruning again.

4.3. Comparison on ImageNet

The results of the comparative experiments on ResNet50 on ImageNet dataset are
illustrated in Table 3. Overall, compared to existing methods, our method based on the
entropy of the feature maps is superior to the most advanced method in every aspect,
including top1 and top5 accuracy along with FLOPs and parameters reduction. To be more
precise, ResNet50 achieves 72.02% accuracy with 11.41M parameters and 1.84B FLOPs,
which is significantly better than HRank with 13.77M parameters and 1.55B FLOPs. In
addition, our method based on the entropy of the feature maps goes further to obtain 70.41
top1 accuracy and 89.91 top5 accuracy with 8.51M parameters and 1.41B FLOPs. However,
our parallel pruning method has a slight loss in accuracy compared to other methods.
There is a slight shortfall in computational cost. In terms of the above results, Our approach
has some processing power in complex datasets.

Sensors 2021, 21, 6601 13 of 18

Figure 6. FLOPs and parameter comparison among GAL [21], L1 [22], Random, FilterSketch [16],
and our two pruning methods under different compression rates, where Our-E and Our-P are
Algorithms 1 and 2, respectively. ResNet56 is compressed and accuracy is reported.

Table 3. Pruning results of ResNet50 on ImageNet, where Our-E is our proposed pruning method
based on the entropy of the feature map, and Our-P is our proposed parallel pruning method.

Model Top-1% Top-5% FLOPs Parameters

ResNet50 [41] 76.15 92.87 4.09 B 25.50M
SSS-32 [35] 74.18 91.91 2.82 B 18.60M

[50] 72.30 90.80 2.73 B -
GAL-0.5 [21] 71.95 90.94 2.33 B 21.20M
HRank [14] 74.98 92.33 2.30 B 16.15M

GDP-0.6 [40] 71.19 90.71 1.88 B -
GDP-0.5 [40] 69.58 90.14 1.57 B -
SSS-26 [35] 71.82 90.79 2.33 B 15.60M
GAL-1 [21] 69.88 89.75 1.58 B 14.67M

GAL-0.5-joint [21] 71.80 90.82 1.84 B 19.31M
HRank [14] 71.98 91.01 1.55 B 13.77M

ThiNet-50 [41] 68.42 88.30 1.10 B 8.66M
GAL-1-joint [21] 69.31 89.12 1.11 B 10.21M

HRank [14] 69.10 89.58 0.98 B 8.27M
NS [12] 70.43 89.93 2.54 B 18.33M
Our− E 72.02 90.69 1.84 B 11.41M
Our− E 70.41 89.91 1.41 B 8.51M
Our− P 69.91 89.46 1.70 B 11.06M
Our− P 68.62 88.62 1.34 B 8.23M

4.4. Ablation Study

Normalization. From Figure 7a, we can see that the difference in entropy required
by various layers is huge, so,to realize cross layer comparison, we normalize the values,
as shown in Figure 7b. We tried and compared z-score normalization and max-min
normalization with other settings held constant. In the final entropy evaluation, we
decided to use max-min normalization. Table 4 illustrates the results on CIFAR10. We can
see that reducing FLOPs and pruning more parameters with higher accuracy can be done
using max-min normalization, which is the best choice.

Sensors 2021, 21, 6601 14 of 18

(a) Before normalization. (b) After normalization.

Figure 7. The entropy distribution of different layers calculated by VGG16 on CIFAR10. Different
colors indicate different layers.

Table 4. Pruning results of using different normalization.

Model Algorithm Acc(%) Param FLOPs

VGG16 Ourz−score 93.04 0.97M 69.06M
Ourmax−min 93.53 0.99M 83.96M

ResNet164 Ourz−score 94.55 0.90M 133.06M
Ourmax−min 94.66 0.67M 111.33M

DenseNet40 Ourz−score 93.83 0.37M 149.75M
Ourmax−min 94.04 0.38M 110.72M

Softmax. To analyze the conventional softmax and the improved softmax, we con-
ducted an analytical comparison. From Figure 8 we can see that the improved softmax
facilitates a more decentralized distribution of entropy values compared to the conventional
softmax, which is easier to achieve when evaluating the filter importance. In Figure 9, we
visualize the feature maps after the two softmax methods, and we can see that Figure 9b
can suppress the background and highlight the role of feature information than Figure 9a,
which is beneficial to the subsequent entropy calculation. In Table 5, the implementa-
tion analysis on multiple networks further confirms that the improved softmax is more
conducive to the pruning effect. For example, VGG16 achieves an accuracy of 93.53%
using the improved softmax, while the conventional softmax causes a serious decrease in
model accuracy. The analysis found that the conventional pruning would prune the deep
convolution of the network more strongly, making the FLOPs much less, but the accuracy
would be seriously affected. So we decided to use the improved softmax as the final choice.

Figure 8. Entropy results of the feature map after the fourth layer of convolution of VGG16.
The conventional softmax (C-Softmax) and the improved softmax (I-Softmax) produce different
entropy distributions.

Sensors 2021, 21, 6601 15 of 18

(a) Result of Conventional Softmax (C-Softmax)

(b) Result of Improved Softmax (I-Softmax)

Figure 9. The visualization results of two softmax methods for feature maps. Compared to Conven-
tional softmax Equation (3), Improved softmax Equation (4) has the effect of highlighting feature
information and suppressing information such as background.

Table 5. Pruning results of using two softmax methods. Where C-softmax is the conventional softmax,
I-softmax is the imporved softmax.

Model Algorithm Acc(%) Param FLOPs

VGG16 C-softmax 92.97 0.98M 65.38M
I-softmax 93.53 0.99M 83.96M

VGG19 C-softmax 91.85 1.72M 63.64M
I-softmax 93.63 1.55M 129.21M

ResNet56 C-softmax 93.21 0.45M 63.11M
I-softmax 93.56 0.39M 69.52M

ResNet164 C-softmax 93.91 0.67M 112.73M
I-softmax 94.66 0.67M 111.33M

DenseNet40 C-softmax 94.17 0.39M 118.01M
I-softmax 94.04 0.38M 110.72M

5. Conclusions

In this paper, we proposed two novel pruning methods to train compact CNNs. First,
our proposed pruning method based on the feature map information entropy acts directly
on the feature map, where the accuracy can be well maintained by this information entropy
as the filter importance evaluation criterion. Secondly, we further propose a parallel
pruning method, which can eliminate the limitations of a single pruning method and
significantly reduce the complexity of model. Finally, Our parallel pruning method can
be extended by integrating more pruning methods to achieve parallelization and obtain a

Sensors 2021, 21, 6601 16 of 18

more compact network model. Numerous experiments have proved the superiority of our
filter pruning method over the latest methods.

Author Contributions: Conceptualization, L.S.; methodology, L.S. and J.Z.; software, L.S. and H.Z.;
validation, L.S. and Z.X.; formal analysis, L.S.; writing—original draft preparation, L.S. and Z.W.;
writing—review and editing, H.Z. and J.Z.; visualization, L.S., J.Y. and H.L. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CNN/CNNs Convolutional Neural Networks
FLOPs floating point operations
BN Batch Normalization
GAP global average pooling
DNS Dynamic Network Surgery
SNIP single-hot network pruning
APoZ Average Percentage of Zeros
APG Accelerated Proximal Gradient
OBD Optical brain damage
OBS Optical brain surgeon
KD Knowledge Distillation
DML Deep mutual learning
SGD Stochastic gradient descent
SSS Sparse Structure Selection
VCNNP Variational convolutional neural network pruning
GAL generative adversarial learning
GDP Gobal and Dynamic pruning
DCFF dynamic-coded filter fusion
NS Network Slimming

References
1. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
2. Chen, X.; Weng, J.; Lu, W.; Xu, J.; Weng, J. Deep manifold learning combined with convolutional neural networks for action

recognition. IEEE Trans. Neural Netw. Learn. Syst. 2017, 29, 3938–3952. [CrossRef] [PubMed]
3. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference

on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.
4. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
5. Gupta, S.; Agrawal, A.; Gopalakrishnan, K.; Narayanan, P. Deep learning with limited numerical precision. In Proceedings of the

32nd International Conference on Machine Learning, Lille, France, 7–9 July 2015; pp. 1737–1746.
6. Shin, S.; Hwang, K.; Sung, W. Fixed-point performance analysis of recurrent neural networks. In Proceedings of the 2016 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016; pp. 976–980.
7. Courbariaux, M.; Hubara, I.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Binarized neural networks: Training deep neural networks with

weights and activations constrained to +1 or −1. arXiv 2016, arXiv:1602.02830.
8. Rastegari, M.; Ordonez, V.; Redmon, J.; Farhadi, A. Xnor-net: Imagenet classification using binary convolutional neural networks.

In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2016; pp. 525–542.
9. Buciluǎ, C.; Caruana, R.; Niculescu-Mizil, A. Model compression. In Proceedings of the 12th ACM SIGKDD International

Conference on KNOWLEDGE Discovery and Data Mining, Philadelphia, PA, USA, 20–23 August 2006; pp. 535–541.
10. Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531.

http://doi.org/10.1109/TNNLS.2017.2740318
http://www.ncbi.nlm.nih.gov/pubmed/28922128

Sensors 2021, 21, 6601 17 of 18

11. Zhang, L.; Song, J.; Gao, A.; Chen, J.; Bao, C.; Ma, K. Be your own teacher: Improve the performance of convolutional neural
networks via self distillation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27
October–2 November 2019; pp. 3713–3722.

12. Liu, Z.; Li, J.; Shen, Z.; Huang, G.; Yan, S.; Zhang, C. Learning efficient convolutional networks through network slimming. In
Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2736–2744.

13. Luo, J.H.; Wu, J. An entropy-based pruning method for cnn compression. arXiv 2017, arXiv:1706.05791.
14. Lin, M.; Ji, R.; Wang, Y.; Zhang, Y.; Zhang, B.; Tian, Y.; Shao, L. HRank: Filter Pruning using High-Rank Feature Map. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020;
pp. 1529–1538.

15. Yan, Y.; Li, C.; Guo, R.; Yang, K.; Xu, Y. Channel Pruning via Multi-Criteria based on Weight Dependency. arXiv 2020,
arXiv:2011.03240.

16. Lin, M.; Cao, L.; Li, S.; Ye, Q.; Tian, Y.; Liu, J.; Tian, Q.; Ji, R. Filter sketch for network pruning. IEEE Trans. Neural Netw. Learn.
Syst. 2021, 1–10. [CrossRef]

17. Cun, Y.L.; Denker, J.S.; Solla, S.A. Optimal brain damage. Adv. Neural Inf. Process. Syst. 1989, 2, 598–605.
18. Han, S.; Pool, J.; Tran, J.; Dally, W.J. Learning both weights and connections for efficient neural networks. arXiv 2015,

arXiv:1506.02626.
19. Singh, P.; Verma, V.K.; Rai, P.; Namboodiri, V.P. Play and prune: Adaptive filter pruning for deep model compression. arXiv 2019,

arXiv:1905.04446.
20. Zhao, C.; Ni, B.; Zhang, J.; Zhao, Q.; Zhang, W.; Tian, Q. Variational convolutional neural network pruning. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 2780–2789.
21. Lin, S.; Ji, R.; Yan, C.; Zhang, B.; Cao, L.; Ye, Q.; Huang, F.; Doermann, D. Towards optimal structured cnn pruning via generative

adversarial learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
16–20 June 2019; pp. 2790–2799.

22. Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning filters for efficient convnets. arXiv 2016, arXiv:1608.08710.
23. Dubey, A.; Chatterjee, M.; Ahuja, N. Coreset-based neural network compression. In Proceedings of the European Conference on

Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 454–470.
24. Hu, H.; Peng, R.; Tai, Y.W.; Tang, C.K. Network trimming: A data-driven neuron pruning approach towards efficient deep

architectures. arXiv 2016, arXiv:1607.03250.
25. Molchanov, P.; Tyree, S.; Karras, T.; Aila, T.; Kautz, J. Pruning convolutional neural networks for resource efficient inference.

arXiv 2016, arXiv:1611.06440.
26. Luo, J.H.; Wu, J. Neural network pruning with residual-connections and limited-data. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 1458–1467.
27. Lin, M.; Ji, R.; Xu, Z.; Zhang, B.; Wang, Y.; Wu, Y.; Huang, F.; Lin, C.W. Rotated binary neural network. arXiv 2020,

arXiv:2009.13055.
28. Yang, J.; Shen, X.; Xing, J.; Tian, X.; Li, H.; Deng, B.; Huang, J.; Hua, X.s. Quantization networks. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 7308–7316.
29. Gong, Y.; Liu, L.; Yang, M.; Bourdev, L. Compressing deep convolutional networks using vector quantization. arXiv 2014,

arXiv:1412.6115.
30. Zhu, C.; Han, S.; Mao, H.; Dally, W.J. Trained ternary quantization. arXiv 2016, arXiv:1612.01064.
31. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2017; pp. 4700–4708.
32. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
33. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images. In Handbook of Systemic Autoimmune Diseases;

Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.9220&rep=rep1&type=pdf (accessed on 31
July 2021).

34. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]

35. Huang, Z.; Wang, N. Data-driven sparse structure selection for deep neural networks. In Proceedings of the European Conference
on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 304–320.

36. Lin, M.; Ji, R.; Chen, B.; Chao, F.; Liu, J.; Zeng, W.; Tian, Y.; Tian, Q. Training Compact CNNs for Image Classification using
Dynamic-coded Filter Fusion. arXiv 2021, arXiv:2107.06916.

37. Meng, F.; Cheng, H.; Li, K.; Luo, H.; Guo, X.; Lu, G.; Sun, X. Pruning filter in filter. arXiv 2020, arXiv:2009.14410.
38. Yu, R.; Li, A.; Chen, C.F.; Lai, J.H.; Morariu, V.I.; Han, X.; Gao, M.; Lin, C.Y.; Davis, L.S. Nisp: Pruning networks using neuron

importance score propagation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake,
UT, USA, 18–22 June 2018; pp. 9194–9203.

39. Li, Y.; Lin, S.; Zhang, B.; Liu, J.; Doermann, D.; Wu, Y.; Huang, F.; Ji, R. Exploiting kernel sparsity and entropy for interpretable
CNN compression. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
15–20 June 2019; pp. 2800–2809.

http://dx.doi.org/10.1109/TNNLS.2021.3084206
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.9220&rep=rep1&type=pdf
http://dx.doi.org/10.1007/s11263-015-0816-y

Sensors 2021, 21, 6601 18 of 18

40. Lin, S.; Ji, R.; Li, Y.; Wu, Y.; Huang, F.; Zhang, B. Accelerating Convolutional Networks via Global & Dynamic Filter Pruning.
IJCAI 2018, 2, 2425–2432.

41. Luo, J.H.; Wu, J.; Lin, W. Thinet: A filter level pruning method for deep neural network compression. In Proceedings of the IEEE
International Conference on COMPUTER Vision, Venice, Italy, 22–29 October 2017; pp. 5058–5066.

42. Hassibi, B. Second Order Derivatives for Network Pruning: Optimal Brain Surgeon. Adv. Neural Inf. Process. Syst. 1992,
5, 164–171.

43. Srinivas, S.; Babu, R.V. Data-free parameter pruning for Deep Neural Networks. arXiv 2015, arXiv:1507.06149.
44. Dong, X.; Chen, S.; Pan, S.J. Learning to prune deep neural networks via layer-wise optimal brain surgeon. arXiv 2017,

arXiv:1705.07565.
45. Liu, Z.; Xu, J.; Peng, X.; Xiong, R. Frequency-domain dynamic pruning for convolutional neural networks. In Proceedings

of the 32nd International Conference on Neural Information Processing Systems, Vancouver, Canada, 8–14 December 2019;
pp. 1051–1061.

46. Alvarez, J.M.; Salzmann, M. Learning the number of neurons in deep networks. In Proceedings of the Annual Conference on
Neural Information Processing Systems, 5–10 December 2016; pp. 2270–2278.

47. Guo, Y.; Yao, A.; Chen, Y. Dynamic network surgery for efficient dnns. arXiv 2016, arXiv:1608.04493.
48. Lin, T.; Stich, S.U.; Barba, L.; Dmitriev, D.; Jaggi, M. Dynamic model pruning with feedback. arXiv 2020, arXiv:2006.07253.
49. Han, S.; Liu, X.; Mao, H.; Pu, J.; Pedram, A.; Horowitz, M.A.; Dally, W.J. EIE: Efficient inference engine on compressed deep

neural network. ACM SIGARCH Comput. Archit. News 2016, 44, 243–254. [CrossRef]
50. He, Y.; Zhang, X.; Sun, J. Channel pruning for accelerating very deep neural networks. In Proceedings of the IEEE International

Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1389–1397.
51. Wen, W.; Wu, C.; Wang, Y.; Chen, Y.; Li, H. Learning structured sparsity in deep neural networks. arXiv 2016, arXiv:1608.03665.
52. Kang, M.; Han, B. Operation-aware soft channel pruning using differentiable masks. In Proceedings of the International

Conference on Machine Learning, Virtual event, 13–18 July 2020; pp. 5122–5131.
53. Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic

Differentiation in Pytorch. 2017. Available online: https://openreview.net/forum?id=BJJsrmfCZ (accessed on 31 July 2021).
54. Lee, M.K.; Lee, S.; Lee, S.H.; Song, B.C. Channel Pruning Via Gradient Of Mutual Information For Light-Weight Convolu-

tional Neural Networks. In Proceedings of the 2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi,
United Arab Emirates, 25–28 October 2020; pp. 1751–1755.

http://dx.doi.org/10.1145/3007787.3001163
https://openreview.net/forum?id=BJJsrmfCZ

	Introduction
	Related Work
	Weight Pruning
	Filter Pruning

	The Proposed Method
	Notations
	Pruning Criteria
	Feature Maps Probability
	Feature Maps Entropy

	Parallel Pruning Criteria
	Pruning Strategy

	Experimental Results
	Implementation Details
	Comparison on CIFAR10/100
	Comparison on ImageNet
	Ablation Study

	Conclusions
	References

