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Abstract: Anomaly detection is one of the crucial tasks in daily infrastructure operations as it can
prevent massive damage to devices or resources, which may then lead to catastrophic outcomes.
To address this challenge, we propose an automated solution to detect anomaly pattern(s) of the
water levels and report the analysis and time/point(s) of abnormality. This research’s motivation is
the level difficulty and time-consuming managing facilities responsible for controlling water levels
due to the rare occurrence of abnormal patterns. Consequently, we employed deep autoencoder,
one of the types of artificial neural network architectures, to learn different patterns from the given
sequences of data points and reconstruct them. Then we use the reconstructed patterns from the deep
autoencoder together with a threshold to report which patterns are abnormal from the normal ones.
We used a stream of time-series data collected from sensors to train the model and then evaluate it,
ready for deployment as the anomaly detection system framework. We run extensive experiments on
sensor data from water tanks. Our analysis shows why we conclude vanilla deep autoencoder as the
most effective solution in this scenario.

Keywords: anomaly detection; deep autoencoder; time-series

1. Introduction

Problems involving anomaly detection such as frauds [1], medical application faults [2],
security systems intrusion [3], system faults [4], and similar issues [5,6] are usually chal-
lenging because of their data imbalance nature. Normally anomalies rarely happen, which
leads to a lack of sufficient anomaly data for eliciting relevant information essential for
analysis and generalization of anomalies behaviors. This is important because, in many
safety-critical applications, failure to predict and capture anomalies at the right moments
is likely to result in catastrophic outcomes [7]. Therefore, efficient automated anomaly
detectors that do not require human supervision are needed to mitigate the issues and
elevate safety.

Extensive studies [8–11] analyzing and classifying outliers have been conducted
targeted for various real-world applications. Specifically, anomaly detection systems
incorporated with machine learning and deep learning algorithms [12–16] have been widely
investigated. For instance, Ding et al. [17] use Bayesian network to capture anomalies
in real-time multivariate time-series. Li et al. [18] and Oza et al. [19] adopted one-class
Support Vector Machine(SVM). Deep-learning-based methods have exhibited superior (or
at least comparable) abilities over classical approaches in various fields, such as dimension
reduction that take over classical approaches such as PCA [20,21].

Basically, dimension reduction tries to find a subspace that can optimally represent
the normal data. Then, the data are projected to this optimal subspace, and data points
with high reconstruction errors exceeding the user-supplied threshold can be assumed
to be anomalies [22]. Autoencoder exhibits excellent dimensionality reduction, making
this method the promising candidate to be the main component of the anomaly detection
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system [23]. Unlike PCA that uses linear transform [20], autoencoder-based approaches can
perform non-linear transformations with their multiple layers and non-linear activation
functions, thus our proposed method manifests its merits when the water-level data
patterns are naturally complex and non-linear.

Detection of anomalous patterns using autoencoder follows the main idea of dimen-
sion reduction-based anomaly detection techniques, which is based on reconstruction error.
Therefore, the training of autoencoder targets on decreasing the reconstruction error (e.g.,
mean squared error or MSE) on the normal data. Then a certain threshold can be applied to
the reconstruction error for capturing anomalies. Please note that reconstruction error will
become high for the abnormal input while it will be low for the normal input, considering
the underlying patterns learned from the normal training data.

In this paper, we present a novel time-series deep autoencoder-based anomaly de-
tection technique for water-level anomalies. First, we designed a time-series data pre-
processing pipeline to handle training and testing data preparation. Then, we trained an
autoencoder neural network-based model on preprocessed normal data only using two
different procedures as discussed in Section 3.7. After that, we evaluated the trained model
on normal and abnormal data to produce a practical and reliable discriminator of regular
and irregular patterns over great extents of time-series data. From the evaluation, it can be
seen that we successfully produced a simple but effective machine learning system that
quickly learns normal time-series data complex patterns and exhibits excellent performance
on unseen data.

2. Related Work

The anomaly detection problem [1–6] has been widely explored in various fields,
but it is under-explored for water monitoring system. However, this problem is essential
to safeguard the facilities responsible for monitoring and controlling water levels. In this
section, we summarize the recent research on the anomaly detection for water monitoring
system. To the best of our knowledge there are no prior work that adopt deep autoencoder
for water-level anomaly detection, and thus we employed this technique to handle both
point and collective anomaly. A few previous studies focused on similar problems will be
described in the next several paragraphs.

Autoencoder approaches are machine learning techniques that are widely used in
anomaly detection. Over the years, there has been a huge number of papers in the machine
learning community exploring different areas of application of autoencoder approaches.
For instance, Al-amri et al. [24] presented an intensive review of machine learning and
deep learning for anomaly detection in IoT data. In the case of autoencoders for anomaly
detection, the authors discussed varieties of autoencoders such as the stacked denoising
autoencoder [25] and Streaming Autoencoder (SA) [26]. Rosso et al. [27] proposed an
autoencoder based on 1D Convolutional Neural Network (CNN) layers and validated
their approach on multivariate time-series data. Tien et al. [28] employed autoencoder
for dimensionality reduction, learning significant features and went even further to use
autoencoder for transfer learning. On the other hand, Shvetsova et al. [29] introduced a
classical autoencoder-based approach with their new training pipeline approach design to
handle complex and high-resolution images. Shvetsova et al. work targeted abnormalities
in images obtained from medical domain. For deeper investigation on autoencoders for
anomaly detection, the work done by Finke et al. [30] intensively discussed both capabilities
of the autoencoder approaches and their limitations.

Buras and Donado [31] focused on the problem of identifying a wastewater pollutant
and localizing its source point in the wastewater network, given a time-series of wastewater
measurements collected by sensors positioned across the sewer network. The authors
divided the problem into two sub-problems. As the related work to our work, we will only
describe the first sub-problem. The first sub-problem deals with detecting and identifying
the flowing pollutants in wastewater, i.e., assessing whether a given time-series corresponds
to a contamination event and determining what polluting substance caused it. The authors
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applied random forest [32] classifiers to solve the problem. The authors considered to
employ the random forest classifiers because of the capability of the algorithm to merge
the predictions from multiple decision trees that leads higher final accuracy of the model.
However, the random forest algorithm is a supervised machine learning algorithm, and
thus it is inappropriate to employ this technique for our problem of water-level anomaly
detection. This is because we need the algorithm to learn from normal data only and
later we apply the generated model on normal and abnormal data points. Compared with
their approach, our proposed method is an unsupervised deep learning algorithm, which
can efficiently learn complex patterns from normal data only and then exhibits excellent
performance on the unseen data that contains both normal and abnormal data points.

Tan et al. [33] designed and used hierarchical models to build a dual-stage cascade one-
class support vector machine (OCSVM) for water-level monitor systems. The work focused
on point and collective anomaly [34] detection. In the first stage, 1-g OCSVM learns directly
on a single observation to detect point anomaly. For the second stage, n-gram OCSVM
learns from the constructed n-gram feature vectors based on the historical data to discover
any collective anomaly where the pattern from the n-gram failed to conform to the expected
normal pattern. Their work successfully optimized hyperparameters of different window
sizes and statistical measurements for the effective solution to deal with huge amount of
data, and demonstrated their technique targeted to point and point collective anomaly.
Despite the achievement demonstrated by the OCSVM, the technique is not suitable for
large datasets compared with our technique (i.e., deep learning-based technique) which can
handle huge data. Additionally, the authors pointed out that the OCSVM is likely to overfit
if the window size is excessively large (i.e., the maximum window size was 300) which is
not the problem to our deep autoencoder model, since it can manage up to window size of
600.

Kulanuwat et al. [35] proposed an approach to detect outliers in the water-level data.
They developed a median-based statistical outlier detection approach using a sliding win-
dow technique. In their work, they used simple but effective interpolation techniques such
as linear interpolation and spline interpolation to fill anomalies and missing values. For
training the n-gram data from the interpolation, they chose advanced techniques including
long short-term memory (LSTM). The authors adopted median absolute deviation (MAD)
technique, which is insensitive to large deviations of the time-series data. However, high
sensitivity to any deviation is crucial for our problem because even a single point deviates
from the norm should be captured and reported as anomaly.

Chachula et al. [36] implemented and evaluated a data fusion system that transforms
the time-series of sensor measurements into a collection of source-localized discharge
events. Based on experiment results, the authors have shown that the proposed framework
is an efficient solution for pollution source localization because it can narrow down the
number of sources of pollution nodes and therefore achieved faster sensor observations
processing (i.e., 100 observations per second). However, their approach does not consider
deep learning for disaster detection which limits its capability to work with complex
data and complicated utility network structures. Moreover, this approach is proposed for
specific water monitoring and systematic sensor data management for the utility network.
Unlike their approach, we employed deep learning, which can be flexibly adopted to the
similar water-level monitoring and controlling systems.

3. Material and Methods
3.1. Method Overview

The deep autoencoder is an excellent artificial neural network used to learn efficient
data encoding in an unsupervised fashion. The main technique of autoencoder intends
to learn a latent representation for a collection of data X = {xt=1, xt=2, xt=3, . . . , xt=T},
assuming xt=1 ∈ RS, using encoding and decoding, where S is segment length. That way,
the neural network learns the most distinctive features from the data. After the decoding,
we can compare the input to the output and examine the difference by computing MSE
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(see Equation (2)). If there is a considerable distinction (the reconstruction loss is higher
than a defined threshold), we can assume that the model struggled to reconstruct the data,
and thus, this data point falls under the doubt of being an anomaly.

Figure 1 shows the steps followed to capture anomaly points in the given data. In the
figure, we can see that the deep autoencoder model is composed of input, encoder, la-
tent space representation (bottleneck), decoder, and output layers. Consequentially, deep
autoencoder can be constructed by extending the encoder and decoder component with
multiple hidden layers. The input layer accepts the input that passed through data normal-
ization to rescale the data to a specific interval, followed by sliding window to produce
the sub-sequence of the continuous input, then down-sampling to preserve significant
information from the big size sub-sequence of the input data. Sections 3.3.2 and 3.3.3 cover
detailed explanations of each component of the data preprocessing pipeline.

Latent
representation

x0
x1

xT

Data Transformation

Decoder
Encoder

Input layer Output layer

x'0
x'1

x'T

MSE( X , X' )

< threshold

> threshold

Normal points

Abnormal or Anomaly points

Reconstructed signal

Original Signal
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,1 20 ,3 5 6 1e474

Figure 1. Anomaly detection pipeline using deep autoencoder-based neural network model.

The encoder, this part of the network compresses the input in a reduced dimension
into a latent space representation. The compressed sequence is the compacted version of
the original sequence.

The latent space representation or the bottleneck layer is part of the network which
represents the compressed input that goes to the decoder. The well-designed bottleneck
layer learns to distinguish and decide the relevant features of the data to keep and discard
other aspects. This learning process is governed by the compactness of representation,
measured as the compressibility, and preserves some behaviorally relevant variables from
the input.

The decoder layer translates the encoded sub-sequence back to the original dimension.
The decoded output is a lossy reconstruction of the original input, which is reconstructed
from the latent space representation.

3.2. Data Description

In this section, we will briefly explain the data collection process and introduce the
datasets we use to perform our experiments. Experiments in this work used several
time-series datasets from the sensor sites named ‘PipelineCorridor’ and ‘UtilityCorridor’.
The site name PipelineCorridor came from pipeline corridor because it refers to pipeline
pathways or corridor within which the pipeline which transmit liquid or gas are located.
And UtilityCorridor came from Utility corridor because it refers to linear alignment location
of a utility such as stormwater, wastewater, water, communication lines or electric. These
two datasets were collected and provided by an IT-based infrastructure company, Infranics,
located in Seoul, South Korea. Infranics gathers data from several sensor devices and
provides solutions such as intelligent safety analysis and prediction services for safety
supervision on underground communication systems.

To collect the data, the sensors were wired on the infrastructure’s surroundings to
attain a real-time reading of the water level. The readings were grouped in several datasets
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to be used in this work. Those datasets are one to four weeks of operative data captured
at an interval of one second. Table 1 summarizes the data information and data splits
for training and performance evaluation of the models for time-series anomaly detection
system (explained in Section 3.1). And Figure 2 shows the portions of the PipelineCorridor
datasets we used to evaluate the anomaly detection model.

Table 1. Sensor site in the first column, dataset name in the second column, the number of data
points in each dataset in the third column and the indicator of presence of labels in the last column
“YES” indicates that the file contains labels and “NO” indicates that the file does not contain labels.

Sensor Site Dataset Name # of Data Points Presence of Labels

PipelineCorridor

Train data 1 604,767 NO
Train data 2 604,775 NO
Test data 1 86,400 YES
Test data 2 86,396 YES

PipelineCorridor 4 weeks 2,419,100 NO

UtilityCorridor

Sensor data 1 81,972 NO
Sensor data 2 86,396 NO
Sensor data 3 86,396 NO
Sensor data 4 86,396 NO

(a) Test dataset 1 of PipelineCorridor (b) Test dataset 2 of PipelineCorridor

Figure 2. Test datasets used for evaluating the performance of the anomaly detection models.

3.3. Preprocessing Pipeline

To efficiently train neural network-based anomaly detectors with time-series data, data
preprocessing for experiments is a crucial process. The preprocessing pipeline combines
a series of steps to transform the time-series data input and compresses them into a
representation suitable for applying deep learning models. Figure 3 shows the two steps
for data replication in the data preprocessing pipeline: sliding window and down-sampling.
The specific configuration of this pipeline includes the exploratory data analysis (EDA) [37]
and preprocessing steps. EDA provides a way of understanding different data aspects
through visualization techniques (histograms, box plots, scatter plots, graphs etc.) and
correlation analysis, bringing out the data parameters’ relationship and other relevant
information. Through EDA, analysts can gain knowledge of the data properties and
attempt to grasp useful information extracted from the data, which will guide appropriate
selection of data preprocessing tools and techniques.

In this work, we started by replacing the timestamps with the increasing integers
of 1 for both datasets (training and test datasets), where each data point represents 1 s
worth of data. Then we preprocessed the data by following the data pipeline preprocessing
procedures described in Sections 3.3.1–3.3.4.
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3.3.1. Data Normalization

Normally, data normalization adds some benefits for the convergence of the model as
discussed by LeCun et al. [38]. There is a varieties data normalization techniques [39] that
can be applied during data preprocess. We used a minmax normalizer to rescale features
to intervals 0 to 1 linearly in our preprocessing pipeline. Specifically, to rescale values to a
required interval, we computed the difference between each data value and the minimum
value in the given dataset divided by the difference of maximum and minimum values.
Equation (1), which is for data transformation, summarizes the minmax normalizer.

xnew =
xi − xmin

xmax − xmin
(1)

The xmin and xmax values obtained from the training data are the same values applied
during test data normalization.

3.3.2. Sliding Window Approach

A sliding window [40] approach is used to transform a continuous time-series into
sub-sequences or discrete sequences as depicted in step 1 in Figure 3. The window size
ws corresponds to the length of the resulting sequence, and the stride size can be adjusted.
For example, a sequence t0, t1, t2, t3, t4, t5, t6, t7 with sliding window size of 6 and stride of
1 outputs a set of sequences {{t0, t1, t2, t3, t4, t5}, {t1, t2, t3, t4, t5, t6}, {t2, t3, t4, t5, t6, t7}}.

Sliding window

window_size = ws

x0            xn

x1               xn
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Window sliding direction
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Figure 3. Data preprocessing pipeline, step 1 reproduces the data by stepping over the data in a specific direction and a
fixed step size, then, step 2 receives a data from step one and down-samples the data to the model input size.

3.3.3. Data Compression

Down-sampling, as depicted in step 2 in Figure 3, further compresses the time-series
data to a sequence of data points that matches our model input requirements. For the
compression of the sequence with the length ws (window size), we use a mean function
as an aggregation function. First, we set an integer value k as a statistical measurement to
further divide the sequence of size ws into S segments. Then the mean function computes
the average of each segment thus results in a vector of S = ws

k features. Please note that if
a statistical measurement is set too large, down-sampling will lead to loss of the relevant
information. On the other hand, if the statistical measurement is set too low, then the
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compressed data may be still inefficient for processing because the difference from the
compression is marginal.

3.3.4. Sequence Labeling

The task of labeling each sequence with metadata is basically encoding additional
relevant information concerning the input data. Please note that we have used normal data
for training our models; however, each observation in the test data already contains the
label (1 for normal and −1 for abnormal). Moreover, the test data also need to undergo the
preprocessing in Figure 3, and then, we need to relabel the resulting test sequences as either
normal or abnormal. Therefore, we assign a value of −1 as the label of the test sequence
if any observations inside the test sequence contain the value other than 1; otherwise, we
simply assigned a value of 1. In our experiment, we perform this relabeling after the data
preprocessing phase.

3.4. Detection Accuracy

We have explained how our approach performs the reconstruction (in Section 3.1) and
the data pipeline preprocessing (in Section 3.3), and we need to explain how anomalies
are detected based on the data reconstruction error. More specifically, when the autoen-
coder model generates a reconstruction of the input data, we compute the error, which
is the difference between the input data and its reconstructed version. In our work, the
error is the value computed by the mean squared error (MSE) (see Equation (2)) for each
input sequence.

eXt ,X̂t
=

1
S

S−1

∑
i=0

(xi − x̂i)
2 (2)

In Equation (2), eXt ,X̂t
is the MSE value of the sequence Xt against X̂t, the Xt is the

input vector of dimension RS (thus, xi ∈ Xt), and X̂t is the sequence generated by the
trained model given the data input vector Xt (thus, x̂i ∈ X̂t).

Consequently, we are relying on the reconstruction error and the threshold that can
discriminate between anomalous and normal data points to capture substantial amount of
anomaly data points, and we computed MSE using Equation (2). For the calculation of the
threshold, we adopted three-sigma rule expressed in Equation (3).

threshold = mean(lossXtrain) + 3× std(lossXtrain) (3)

In Equation (3), the mean function computes the mean of the training prediction
loss (i.e., lossXtrain ) distribution and std is the standard deviation function which returns a
standard deviation of the training loss distribution.

We used Equation (4) to label each data point from model prediction. This equation
compares the reconstruction error of the sequence, eXt against the computed threshold (see
Equation (3)) and returns label for the given sequence of the data points Xt.

lXt = θ(eXt) =

{
+1 if eXt < threshold
−1 otherwise

(4)

where lXt is a predicted label assigned to the sequence Xt which is either of value 1 for
normal or −1 for abnormal data points. A function θ returns a value as a label after
applying the selected threshold to the reconstruction error.

3.5. Evaluation Metric

For the accurate and effective performance evaluation of our anomaly detection sys-
tem, we used a confusion matrix from our experimental results to compute the fundamental
classification metrics including accuracy, recall, precision, and F1-score. The confusion
matrix computed is a 2D matrix as shown in Table 2. With two labeled sets (actual or
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true and predictions), we can create a confusion matrix that will summarize the results of
evaluation or inference phase of the classifier.

Table 2. The representation of the confusion matrix for binary classification problem. True Positive
(TP): both actual and prediction are positive (agree), False Positive (FP): actual class is negative,
but prediction is positive (disagree), False Negative (FN): actual class is positive, but prediction is
negative (disagree) and True Negative (TN): both actual class and prediction are negative (agree).

Predicted–Positive Predicted–Negative

Actual–Positive TP FN
Actual–Negative FP TN

From the computed confusion matrix, we further computed the accuracy (Equation (5)),
precision (Equation (6)) recall (Equation (7)), and F1-Score (Equation (8)) as follows:

Accuracy =
TP + TN

TP + FP + FN + TN
(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1− score = 2× Precision× Recall
Precision + Recall

(8)

Please note that the F1-score (in Equation (8)) is a number between 0 and 1 and is the
harmonic mean of precision and recall.

Receiver Operating Characteristics

We employed ROC as another metric to further evaluate different model performances
on different datasets. A ROC curve is a plot of the false positive rate (1-Specificity) in
the function of the true positive rate (Sensitivity) for different threshold values (cut-off
points) of a parameter. Each point on the ROC curve represents a sensitivity and specificity
pair corresponding to a specific decision threshold. The classifier’s performance on binary
problems can be measured using Area Under the Curve (AUC) in the ROC curve.

3.6. Experimental Setup

In this section, we briefly explain the implementation detail for our neural network
models. We set up our experiment as follows; we implemented our deep autoencoder
models using the Sequential model of Keras API. We used the MSE loss function (in
Equation (2)) with Adam optimizer [41], and we set the learning rate to a fixed value of
0.001. Each of deep autoencoder models consists of an input and an output layer with
n hidden layers with rectified linear units. We trained each model with mini-batches for
50 epochs. The size of mini-batches ranged from 10 to 50 instances, which is chosen based
on the model complexity.

3.7. Training and Evaluation Procedures

To experiment on the data and investigate the model architectures for the specific
configurations, we applied two different training-evaluation procedures, which are epoch-
wise training-validation and walk-forward validation. By epoch-wise training-validation,
we are referring to the standard training and testing procedure in which a model is trained
on a portion of the data and is tested on an unseen portion. First, we fit the model to the
training data for several epochs until our stopping criterion is satisfied. After that, we
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perform the model evaluation to check how accurately the predictive model can perform
on the unseen data, which is necessary to ensure the model is ready for deployment.

On the contrary, in the walk-forward validation procedure, we use window-sliding
technique to repeatedly split the dataset into the train and validation sets. Then from
each set, we fit a model on the train data (that is xi×d to xi×d+ws−1 data points), then we
evaluated its performance on validation data (that is xi×d+ws to xi×d+ws+m data points).
The ws is training data window size, d is the stride, m is the validation data window size,
and i is the index of validation steps. The values of ws, d and m are hyperparameters set to
integer values. By incrementing i (initialized as zero), we move the window with a stride
size d after each iteration of training and validation loop, until (i× d + ws + 1) > D, where
D is the number of time-series data points in the given dataset. For the optimal results, we
chose ws ≥ 2d to allow the model to be exposed to sufficient data points and to acquire
data dynamics with different and desired patterns.

4. Results and Discussion

For the evaluation and the analysis of our methods, we conducted systematic experi-
ments using two procedures discussed in Section 3.7 and evaluation metrics discussed in
Section 3.5. For the detailed discussion of the experiments and their results, we divided this
section into two parts, which are epoch-wise training-validation analysis and walk-forward
validation analysis.

4.1. Part 1: Epoch-Wise Training-Validation Analysis

We applied epoch-wise training-validation procedure to prepare the model and eval-
uate its reconstruction capability on normal data only, after that we worked with data
containing both normal and abnormal data points. We first tried to use Sensor data 1
to Sensor data 4 datasets from the UtilityCorridor site by splitting each dataset into two
parts, six(6) days of the data for training and 7th day of the data for evaluation. In these
experiments, we trained the models on the train data and tracked the reconstruction error
on the evaluation data to see how well the model can reconstruct the unseen data. The
experiment results, shown in Figure 4, indicate that the model can regenerate out-of-sample
data with a minimum and reasonable mean squared error.

Now that the experimental results in Figure 4 demonstrated the potential capability of
our approach, we performed extensive experiments with further anomaly detection tasks.
We started with three(3) h of data equivalent to a window size ws of 10,800 data points and
a statistical measurement k of 60 s. That means 10,800 data points result in 180 features
after down-sampling (i.e., 180 = 10,800/60), which is the input and output size of our deep
autoencoder. The results of the experiment are summarized in Figure 5 and in Table 3,
where the entries are computed based on the evaluation metrics described in Section 3.5.

From the experiment results in Table 3, we can see that neurons play an essential
role in the performance improvement of the neural network model. As shown in Table 3
model2 outperformed model1 while it has only four(4) more neurons than that of model1
for bottleneck layer (latent representation layer). The number of neurons was the only
hyperparameter changed to lead to this big performance margin in all tasks. However,
both the models seem to be too biased on the training data to cope with slight domain
shift. In other words, when the model trained on the Train data 1 performs well on the Test
data 1 but poorly on the Test data 2 and the same goes when trained on the Train data 2
and evaluated on the Test data 1 and the Test data 2. This can obviously seen from model2
performance in Table 3 . However, when we trained models on combined datasets (i.e., the
Train data 1 and Train data 2), the models somehow showed similar performance on both
out-of-sample data.
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(c) Reconstructed evaluation data (d) Mean Squared Error

Figure 4. The data used were collected for 24 h for 7 days, normalized to be in the range of 0 to 1 and then divided into
training and evaluation datasets. Training data in (a) depicts six days of data points, evaluation data in (b) depicts one
day (i.e., 7th day) data points, (c) shows model output represents generated sequence data, and, in (d), the MSE computed
between input and model generated output is plotted.

Table 3. Precision, recall and F1-score for model performances evaluation during data and model architecture investigations.
Please note that model1 has slightly fewer number of neurons than model2 in the latent representation layer.

model1 = 180 × 70 × 50 × 5 × 50 × 70 × 180 model2 = 180 × 70 × 50 × 9 × 50 × 70 × 180

Recall Precision F1-Score Recall Precision F1-Score

Train data 1
Test data 1 0.918 0.982 0.622 0.907 0.988 0.946
Test data 2 0.365 0.892 0.281 0.422 0.401 0.411

Train data 2
Test data 1 0.547 0.603 0.348 0.626 0.700 0.6612
Test data 2 0.650 0.856 0.556 0.915 0.878 0.896

Combined
Test data 1 0.603 0.978 0.464 0.676 0.982 0.801
Test data 2 0.699 0.683 0.401 0.741 0.934 0.826

The experiment results elicited several considerations that required further investiga-
tion, which were related to model performance on different data patterns and sizes. These
considerations were the amount of data for training, input size, various statistical measure-
ments, training and testing procedures such as walk-forward validation (see Section 3.7)
that will be discussed in Section 4.2.
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(a) Reconstruction of the input

, , , ,,1 2 3 4 1e45 6 7

(b) Computed mean squared error

, , , ,,1 2 3 7 1e44 5 6

(c) Actual and prediction labels

Figure 5. Visualization of model reconstruction output along with the red colored anomaly predictions in (a), MSE’s between
the inputs and the predictions to capture anomalies are in (b) and true labels in blue color followed by the predictions in red
color are in (c).

4.2. Part 2: Walk-Forward Validation Analysis

We employed the walk-forward validation procedure to improve the model perfor-
mances over time while preserving the temporal nature of the data. More precisely, we
investigated the model capabilities over time with several considerations such as different
window sizes (including 10,800, 18,000, 25,200, and 36,000), statistical measurements of 60
and 120 s (see Table 4) and the amount of data ranged from 7 days of data to 14 days of
data (see Figure 6).

Table 4. Down-sampling hyperparameters and the input/output sizes for both training and test
datasets, the first column shows the window size in hours per each experiment.

Down-Sampling Variables Size

Window Size Statistical Measurement Input/Output Size

5 h of data
18,000 60 s 300
18,000 120 s 150

7 h of data
25,200 60 s 420
25,200 120 s 210

10 h of data
36,000 60 s 600
36,000 120 s 300

Figure 6. Two weeks preprocessed data of PipelineCorridor ready to train the model. The data
contains some points which are out of range from most of the data. Please note that each value on the
x-axis corresponds to a timestamp in 1 s, and each value on the y-axis is the normalized data point.
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We preprocessed the data following the data preprocessing pipeline (in Section 3.3)
and then we ran several experiments for different configurations as we described in the
beginning of the Part 2. The number of model versions we can obtain from each experiment
is equivalent to the number of iterations (i.e., total sliding window moves). Then we
performed evaluation of each model using the transformed Test data 1 and Test data 2
datasets. Then we computed the accuracy, precision, recall, and F1-score. Please note that
we bold some of the values in the experiment result tables (Tables 5–7) to indicate the
highest performance results achieved by the models.

After performing the model evaluations and obtaining predictions, we analyzed all
the output and drew two useful observations to improve model performance.

1. The first observation was the problem innate in the training data. Some minority data
points found in the training data had caused the model to fail to reconstruct the input
(Test data 1 in Figure 7a and Test data 2 in Figure 7b), and hence failed to correctly
identify anomaly data points. This phenomenon is depicted in the MSE graphs in
Figure 8. Please note that in Figure 8, we can see that the MSE’s in (a) and (b) do not
correspond to (actually, are completely opposite to) the MSE’s in (c) and (d). From
Figure 9, we can see that the unclean training data contains some minority data points
(within the red box). The MSE’s calculated from the 17th to 27th part of the unclean
training data (in Figure 9) are drawn in Figure 8a, and those from the 19th to 29th
part are drawn in Figure 8b.

2. The second observation was the discrepancy (indicated by a violet-colored box in
Figure 10) between the original Test data 1 in Figure 8a and its corresponding recon-
structed data. It was because the majority values in the training data were within the
range of 0.0 to 0.8, which forced the model to try to reconstruct other values, which
are larger than 0.8, to be fit within the range of the majority values.

To mitigate the problematic data effects, we removed the portion of minority (out of
range) data from training data. After removing those minority data points and exploring
the considerations including the amount of training data, input size, different statistical
measurements and training procedures, we found that the performance of the model were
drastically improved as shown in Tables 5–7 and in the ROC curves in Figure 11.

, , , ,,1 2 3 1e44 5 , , , ,,1 2 3 1e44 5

(a) Test data 1 (b) Test data 2

Figure 7. Illustrations of test data transformed using window size of 36,000 and statistical measurement of 120 s through
preprocessing step.
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, , , ,,1 2 3 1e44 5 , , , ,,1 2 3 1e44 5

(a) 17th to 27th uncleaned data (b) 19th to 29th uncleaned data

, , , ,,1 2 3 1e44 5 , , , ,,1 2 3 1e44 5

(c) 17th to 27th clean data (d) 19th to 29th clean data

Figure 8. Please note that (a–d) are MSE graphs computed after evaluating trained models on Test data 1. A value on the
x-axis is a timestamp down-sampled by 2 min. In (a,c), the models were trained on 17th to 27th data, and in (b,d), the
models were trained on 19th to 29th data. The training data for models in (a,b) were uncleaned data (i.e., data contains
minority data points that are out of range), while the training data for (c,d) were clean data (i.e., data without minority (out
of range) data points). The statistical measurement of 120 s was used for down-sampling all data in these experiments.

Figure 9. Uncleaned data containing minority data points within the red box detected during model
output analysis. A value on x-axis is a timestamp of 1 s, and each value on the y-axis is the normalized
data point.
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Table 5. Precision, recall and F1-score for model performances evaluation during data and model architecture investigations
after removing minority (out of range) data. All models were trained on five hours of data with two different statistical
measurements.

model3 = 150 × 90 × 60 × 90 × 150 model4 = 150 × 100 × 60 × 100 × 150

Recall Precision F1-Score Recall Precision F1-Score

statistical measurement—120 s

Test data 1 0.905 0.100 0.950 0.937 1.000 0.967
Test data 2 0.988 0.952 0.970 0.922 0.957 0.940

model5 = 300 × 200 × 60 × 200 × 300 model6 = 300 × 200 × 100 × 200 × 300

Recall Precision F1-score Recall Precision F1-score

statistical measurement—60 s

Test data 1 0.958 0.874 0.914 0.987 0.984 0.991
Test data 2 0.960 0.989 0.974 1.000 0.949 0.974

Table 6. Precision, recall and F1-score for model performances evaluation during data and model architecture investiga-
tions after removing minority (out of range) data. All models were trained on 7 h of data with two different statistical
measurements.

model7 = 210 × 150 × 60 × 150 × 210 model8 = 210 × 160 × 90 × 160 × 210

Recall Precision F1-Score Recall Precision F1-Score

statistical measurement—120 s

Test data 1 0.915 0.950 0.932 0.985 0.965 0.975
Test data 2 0.937 1.000 0.968 1.000 0.996 0.998

model9 = 420 × 210 × 60 × 210 × 420 model10 = 420 × 210 × 90 × 210 × 420

Recall Precision F1-score Recall Precision F1-score

statistical measurement—60 s

Test data 1 0.937 0.827 0.879 0.987 0.984 0.991
Test data 2 0.839 0.986 0.913 0.993 0.991 0.992

Table 7. Precision, recall and F1-score for model performances evaluation during data and model architecture investigations
after removing minority (out of range) data. All models were trained on 10 h of data with two different statistical
measurements.

model11 = 300 × 150 × 60 × 150 × 300 model12 = 300 × 190 × 90 × 190 × 300

Recall Precision F1-Score Recall Precision F1-Score

Statistical Measurement—120 s

Test data 1 0.987 0.956 0.971 0.994 1.000 0.997
Test data 2 0.985 0.965 0.975 0.998 1.000 0.999

model13 = 600 × 190 × 90 × 190 × 600 model14 = 600 × 200 × 100 × 200 × 600

Recall Precision F1-score Recall Precision F1-score

Statistical Measurement—60 s

Test data 1 1.000 0.979 0.989 1.000 0.992 0.996
Test data 2 1.000 0.986 0.993 0.993 1.000 0.996
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Figure 10. Model generated data (on the left) that deviates from the expected distribution due to the effect introduced by
the training data. The pink rectangle shows the discrepancies between the generated data and the original Test data 1 (on
the right). A value on the x-axis represents the timestamp down-sampled by 1 min, and a value on the y-axis is the mean
value of 60 data points.
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(a) ROC curves for Test data 1
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The ROC curves for models performance on Test data 2
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model 14 ROC curve (area = 1.00)

(b) ROC curves for Test data 2
Figure 11. The ROC curves for performance comparison for model11, model12, model13, and model14 when models were
trained on 10 h of data and then tested on Test data 1 in (a) and Test data 2 in (b).

5. Conclusions

In this paper, we have proposed deep autoencoder technique for anomaly detection.
Our implementation for water-level anomaly detection combined state-of-the-art deep
learning and data preparation routines. We adopted those techniques based on their
compatibility, simplicity, and capability to learn complex functions to represent an optimal
subspace for normal data.

We investigated different window sizes, including 10,800, 18,000, 25,200, 36,000,
and statistical measurements of 60 and 120 s. In addition, we tuned combinations of
hyperparameters to find the best fit for each experiment configuration. Our autoencoder
technique achieves the excellent result of 99.9% F1-score and 1.00 AUC when we used a
window size of 36,000 and statistical measurement of 120 s. Our proposed methodology has
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proven its effectiveness in all settings despite the data complexity with a simple threshold
selection procedure for anomaly detection.
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