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Abstract: With the rapid development of robotics, wheeled mobile robots are widely used in smart
factories to perform navigation tasks. In this paper, an optimal trajectory planning method based on
an improved dolphin swarm algorithm is proposed to balance localization uncertainty and energy
efficiency, such that a minimum total cost trajectory is obtained for wheeled mobile robots. Since
environmental information has different effects on the robot localization process at different positions,
a novel localizability measure method based on the likelihood function is presented to explicitly
quantify the localization ability of the robot over a prior map. To generate the robot trajectory,
we incorporate localizability and energy efficiency criteria into the parameterized trajectory as the
cost function. In terms of trajectory optimization issues, an improved dolphin swarm algorithm is
then proposed to generate better localization performance and more energy efficiency trajectories.
It utilizes the proposed adaptive step strategy and learning strategy to minimize the cost function
during the robot motions. Simulations are carried out in various autonomous navigation scenarios to
validate the efficiency of the proposed trajectory planning method. Experiments are performed on the
prototype “Forbot” four-wheel independently driven-steered mobile robot; the results demonstrate
that the proposed method effectively improves energy efficiency while reducing localization errors
along the generated trajectory.

Keywords: trajectory planning; localization uncertainty; energy efficiency; dolphin swarm optimiza-
tion; swarm intelligence; wheeled mobile robot

1. Introduction

In the intelligent manufacturing field, wheeled mobile robots are one of the most
widely used groups of robots in factories and warehouses to perform material trans-
portation tasks that benefit from their automation and efficiency [1]. As one of the key
technologies of mobile robots, trajectory planning has recently attracted plenty of research.
A series of trajectory planning schemes have been reported until now, such as the graph
search-based method [2,3], interpolating curve planning method [4,5], sampling-based
planning method [6], and numerical optimization method [7]. Among these methods,
the interpolating curve planning method is a widely examined planning strategy due to its
optimized performance and strong ability to handle external constraints. In [8], the authors
propose a spline-based trajectory planning method to guarantee constraint satisfaction
for autonomous guided vehicles. In [9], a minimum time trajectory planning method
is proposed for a two-wheeled mobile robot by combining a straight line and a Bézier
curve under the torque constraints. Although the interpolating curve planning method
offers potential ways for trajectory generation, the trajectory optimization brings a heavy
calculation burden owing to the nonlinearity, non-differentiability, and multi-objective
requirements of the wheeled mobile robot system [10]. Swarm intelligence algorithms are
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proved to be a solution for this challenge [11]. In [12], the authors propose a novel chaotic
grouping particle swarm optimization algorithm with a dynamic regrouping strategy to
solve complex numerical optimization problems. In [13], a new evolutionary computa-
tion approach based on an artificial bee colony algorithm for solving the multi-objective
orienteering problem is presented. In [14], the authors first propose a dolphin swarm
algorithm (DSA) based on the biological characteristics and living habits of dolphins to
solve the optimization problem with first-slow-then-fast convergence. The DSA simulates
the predatory process of dolphins for multi-dimensional numerical optimization problems
with four phases, i.e., search, call, reception, and predation. Many practical engineering
optimization problems can be solved by DSA due to its high efficiency, low computational
burden and excellent optimization performance [15,16]. In [16], the authors optimize the
localization process by using DSA to process the sensed data in Wireless Sensor Networks.
However, in the process of dolphin updating, the positions of the dolphins are updated
based on a random method. Thus, the efficiency and convergence of the DSA decrease and
the obtained solution may lead to low optimization accuracy or even failure [17]. Moreover,
dolphins are explored completely based on fixed step size during the searching stage; this
results in an inability to perform the searching efficiently.

Reliable localization is a fundamental requirement for mobile robots during au-
tonomous navigation. Large localization errors or localization failure will lead to excessive
tracking errors of mobile robots and even safety accidents. Nevertheless, most existing
localization methods are flawed in terms of applicability to ambiguous environments, such
as long corridors and empty areas [18]. This may result in localization uncertainty for
mobile robots. The localization ability of the mobile robot, i.e., the localizability of the
robot, is used to measure localization uncertainty in the environment. It varies over a given
map since environmental information has different effects on robot localization at different
positions [18,19]. In ambiguous environments, it is of importance to take localizability into
consideration to avoid large localization errors on the planned trajectory. The early effort of
this is presented in [20], where the authors first provide theoretical analysis for localization
accuracy based on Cramér–Rao Bound. An ambiguity model of the indistinguishability is
presented to formalize and quantify the perceptual ambiguity in the static environment [21].
In [22], this paper proposes a novel method for real-time localizability estimation by analyz-
ing the constraints in each direction to predict localization performance. In [23], a minimum
uncertainty planning method is proposed based on a partially observable Markov decision
process (POMDP) with continuous observation spaces. In [24], the authors present an
uncertainty-augmented Markov Decision Process to approximate POMDP to estimate the
localization of the robot. However, POMDPs may not be computationally achievable owing
to the expansion of the state space, although they are theoretically satisfied.

Energy efficiency is a crucial technology for wheeled mobile robots to run automati-
cally for a long period. It is significant to optimize energy consumption due to the limited
capacity of the equipped batteries. To extend the running time of the robot system, re-
searchers have made many contributions to the energy efficiency of wheeled mobile robots.
An energy optimal trajectory generation method is presented for a two-wheel differential
mobile robot by constructing a cost function related to the integral of the Lagrangian [25].
As reported in [26], the authors propose a minimum-energy translational and rotational
velocity trajectory planning for three-wheeled omnidirectional mobile robots by using
Pontryagin’s minimum principle. In [27], a closed-form trajectory planning method based
on Dubins’ path is presented to obtain the minimum energy trajectory for car-like robots.
However, in the research studies mentioned above, very little attention has been devoted
to building a generic energy model of different styles of wheeled mobile robots to provide
a solid foundation for energy efficiency efforts.

Localizability and energy efficiency may be conflicting trajectories for optimization
goals. Energy efficiency is mainly affected by speed, ground friction conditions, etc [28].
However, the localizability of the robot is chiefly influenced by the environmental map
information. As a matter of fact, meeting energy efficiency may reduce the reliability of
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localization along the trajectory and vice versa. Therefore, how to balance energy efficiency
and localizability poses a crucial challenge to trajectory planning, which motivates us to
make a contribution in this paper.

The aim of this paper is to explore an effective trajectory planning method, consider-
ing energy efficiency and localizability simultaneously to bring the wheeled mobile robot
from the start position to the goal position. The main contributions of this paper can be
reflected in: (1) A novel localizability measure method is proposed based on the likelihood
function to explicitly quantify the influence resulting from environmental information on
the localization of mobile robots. (2) By utilizing the localizability measure method, the lo-
calizability aware map (LAM) is achieved such that the localization error at a given position
can be effectively estimated. (3) An optimal trajectory planning method is proposed under
localization uncertainty and energy efficiency constraints by incorporating an improved
dolphin swarm algorithm (DSA) into the trajectory optimization process. The DSA utilizes
the proposed adaptive step strategy and learning strategy to minimize the cost function
during the robot motions. (4) Implemented on a developed prototype “Forbot” mobile
robot, comprehensive experiments demonstrate that the proposed trajectory planning
method guarantees the minimum total cost to balance localization uncertainty and energy
efficiency while the robot navigates along the trajectory.

The rest of this paper is organized as follows. Section 2 explains how to establish the
energy consumption model and describes the localizability measure method. In Section 3,
the path planning with the energy and localizability criteria is developed. The proposed
trajectory optimization based on the improved DSA is explained in detail in Section 4.
Experimental results of the proposed trajectory planning method are shown and perfor-
mances of the proposed method are analyzed in Section 5. Concluding remarks and future
work are given in Section 6.

2. Energy Model and Localizability Measure
2.1. Energy Model

As shown in Figure 1, the common hardware architecture for mobile robots mainly
consists of a perception module, decision module, control module, actuator module, and en-
ergy module. The energy module, equipped with batteries, and the battery management
system provide electrical energy to other modules to drive the robot. The total energy
consumption Et(t) of the wheeled mobile robot is derived as [28]:

Et(t) = Ek(t) + Ea(t) + Ee(t), (1)

where Ek, Ea(t) and Ee(t) are kinematic energy consumption, actuators’ energy consump-
tion and nonmechanical devices’ energy consumption, respectively, which are defined
as follows: 

Ek(t) =
∫
(mmax(v(t)a(t), 0) + Imax(γ(t)δ(t), 0))dt

Ea(t) =
∫ ( N

∑
i=0

µ
mg
N vwi

)
dt

Ee(t) = Pet

, (2)

where v and γ denote the x-direction and yaw velocities, respectively. m and I represent
the mass and the rotational inertia of the mobile robot, separately. a and δ are the x-
direction and yaw accelerations, respectively. µ denotes the coefficient of the rolling friction
influenced by the ground types. vwi denotes the linear velocity of the ith wheel. N is
the number of wheels. g is the gravitational acceleration. Pe defines the total power of
nonmechanical devices.
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Figure 1. Hardware architecture. Figure 1. Hardware architecture.

2.2. Localizability Measure

In the field of robot navigation, mobile robots may inevitably run in ambiguous envi-
ronments that include symmetrical or featureless map regions, resulting in the perceptual
aliasing of external sensors. Therefore, the localization errors may accumulate in such
regions, which brings a high risk of choosing a path without considering localization uncer-
tainty [18]. Given that the perceptual aliasing region causes relatively strong localization
confusion, it is necessary to avoid such regions as much as possible to ensure safety when
the robot runs automatically on the planned path. Then, the probability of localization
confusion (LCP) is proposed to estimate the probability of the specific event A, i.e., a robot’s
true pose is confused with some other poses over a grid map based on a given observation
model. To be more mathematically precise, we provide the following definitions.

Definition 1. Let zxa be the observation data captured by the robot-mounted sensors at the pose xa.
Considering an input pose xm as the independent variable, the likelihood function for sensor-based
localization can be defined as [21]

L(xm) , P(zxa |xm). (3)

According to (3), we can infer that if the arbitrary value of L(xm) for a given xa is
smaller than L(xa), the pose of the robot can be accurately obtained via the commonly
used maximum likelihood estimation method. Unfortunately, L(xm) ≥ L(xa) may occur
as a result of the mentioned ambiguous environments such that the maximum likelihood
estimation method may confuse the pose xm with the actual pose xa.

Definition 2. Assume that ε is a small scalar used to compensate for the unmodeled factors; for the
event A : L(xm) + ε ≥ L(xa), we define the LCP as follows

PA
xm |xa

, P(L(xm) + ε ≥ L(xa)), (4)
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where xa and xm are deterministic values, and the only random variable is zxa because of sensor
measurement uncertainty. If the observation data zxa is known, the likelihood value of L(xm) can
be uniquely calculated. So, we can conclude that the LCP is dependent on the distribution of zxa .

Then, the LCP defined by (4) can be rewritten based on Monte Carlo integration
as follows:

PA
xm |xa

≈ 1
Np

Np

∑
i=1

IA(zi
xa), (5)

where zi
xa represents the ith sample of the observation data. Np is the number of all

sampling.IA(zxa) denotes an indicator function, as depicted below [24]:

IA(zxa) =

{
0 L(xm) + ε < L(xa)|zxa

1 L(xm) + ε ≥ L(xa)|zxa
. (6)

To quantitatively estimate the localization quality of poses over the map, we adopt
LCP as the weight to compute the localizability evaluation value (LEV) as follows:

LEV(x) =
∑

∆xi∈Ω
Γ(x + ∆xi)PA

x+∆xi |x

∑
∆xi∈Ω

PA
x+∆xi |x

, (7)

where ∆xi , (∆xi, ∆yi, ∆θi) is the ith incremental pose relative to x. The difference between

x and x + ∆xi determined by Γ(x + ∆xi) = (∆x2
i + ∆y2

i )
1
2 + δ|∆θi| with a coefficient δ used

to transform the orientation difference into the distance difference. As shown in Figure 2,
the center of the diagram represents the actual pose and we can find that the closer the color
is to red, the smaller the Γ value at that pose. Ω denotes a set including all ∆xi as follows:

Ω =

{
∆xi|((∆x2

i + ∆y2
i )

1
2 ≤ Φd(Ω)&∆θ = 0) ∩ (|∆θi| ≤ Φθ(Ω)&(∆x2

i + ∆y2
i )

1
2 = 0)

}
(8)

where Φd(Ω) and Φθ(Ω) are the distance range and the orientation range of the set
Ω, respectively.
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Figure 2. Schematic diagram of the set Ω.

LEV(x) is a criterion that reflects the expected localization performance based on the
given observation model at the pose x. According to (7), we can conclude that the LEV(x)
represents the weighted average localization error resulting from the ambiguity between
the actual pose x and the other poses from Ω. A larger LEV(x) implies a larger localization
error caused by perceptual aliasing when a robot passes the pose x.
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2.3. The Localizability-Aware Map Construction

The LEV is achieved by the aforementioned localizability evaluation method so that
the localization reliability can be evaluated, and the unambiguous areas over the occupancy
grid map (OGM) can be identified. However, the calculated values of the LEV cannot be
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used directly for path planning, due to the large fluctuations of the LEV. To derive LAM,
the process is explained in detail as listed below:

(1) OGM Building: The generation of the OGM is an increasingly mature technology
in the field of robotics. In this paper, the simultaneous localization and mapping method
presented in [29] is adopted to build the OGM of the environment.

(2) LEV Calculation: To calculate the LEV over the generated OGM by Equation (7),
the specific calculation method of P(zxa) needs to be determined.

As investigated in [30], sampling large amounts of data is time-consuming for a 2-D
LIDAR in a large-scale environment and it is noted that the beam model complies with
the physical measurement model of LIDAR. In this research, the beam model is adopted
as the observation model to perform the calculation of P(zxa). Then, we consider the
parameters ε, Φd(Ω) and Φθ(Ω). The δ specifies as δ = τd/τo where τd and τo are the
maximum tolerable distance and orientation errors, respectively. Since LEV(x) is the
weighted average localization error, it can be inferred that inequality LEV(x) ≤ Φd(Ω) +
δΦθ(Ω). By combining the inequality with (7), we have τd ≤ Φd(Ω) and τo ≤ Φθ(Ω).
To improve computing efficiency, we select Φd(Ω) = τd and Φθ(Ω) = τo. In this paper,
the related parameters are set as Np = 20, ε = 0.5, Φd(Ω) = 0.25 m, Φθ(Ω) = 5◦. It is
noted that we calculate the LEV by integrating over angles, i.e., LEV(x) =

∫
LEV(x, y, θ)dθ ,

since this paper does not use angle information.
(3) Normalization: To adjust values measured on different scales to a notionally common

scale, the LEV is normalized between 0 and 1, representing lower and higher localizabil-
ity, respectively.

(4) LEV Smoothing: If a robot enters the connected regions with fluctuating LEVs,
the robot may fall into local oscillations during motion planning. In this step, the Gaussian
Filter with a mask is used to smooth the values of LEV to suppress oscillations. After this
step, the LAM graph is obtained to provide localizability constraints for path planning.

Figure 3 illustrates the construction process of the LAM graph. Figure 3a is the original
OGM with 308 × 786 pixels used to represent the environment in the form of block grids;
each grid is either occupied or unoccupied. By calculating the LEV, we have Figure 3b that
shows the LEV of each grid (ranging from 0.06 to 0.21). Normalization and LEV smoothing
are then performed. As shown in Figure 3d, the LEV is getting larger as the color changes
from blue to red, that is, the localizability is getting worse.

3. Optimal Path with Localization Uncertainty and Energy Efficiency

In what follows, a heuristic search algorithm is examined with the novel localizabil-
ity and energy related criterion to search for an optimal motion path by employing the
aforementioned localizability and energy model constraint.

3.1. Heuristic Search Algorithm

A search algorithm that exploits a heuristic function at each node is often called a
heuristic search algorithm; it has better computational complexity than brute-force algo-
rithms. The A* algorithm, known to belong to this category of algorithms, has become a
ubiquitous searching technology in path planning in the mobile robots field [31]. By search-
ing all possible solutions, the A∗ algorithm determines a least-cost path based on the
specific cost index from the start node to the goal node in a grid map. Based on this
property, a novel cost function considering important factors, such as energy consumption
and localizability, is designed to obtain an optimal path for mobile robots.

As a heuristic algorithm, the cost function f (·), which is an estimate for the importance
of the candidate node in the path, is one of the key elements of the A∗ algorithm. In this
report, we employ a grid map to describe the distribution of the obstacles, in which
each grid that is either occupied by obstacles or is free is taken into account as a node n.
By offering a search order, the function f (·) represents a cost of the path starting from the
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start node ns to the goal node ng, which includes the actual cost g(n) and the heuristic cost
h(n), i.e.:

f (n) = g(n) + h(n) (9)

worked out as follows:
g(ni) = g(ni − 1) + sni (10)

where sni is the travel distance between the node ni − 1 and the node ni.
However, the shortest path may not mean minimum energy consumption or a low risk

of failure to perform localization in some scenarios. To avoid large localization errors and
large energy consumption, it is essential to consider the factors that have a great influence
on the localization process and energy consumption when planning a path. Therefore,
a novel cost function considering both localizability and energy efficiency will be presented
to plan a path for mobile robots.

3.2. Path Planning

To satisfy the demands of considering localizability and energy efficiency simultane-
ously for the robot path planning, the actual cost model (10) is redesigned as:

g(ni) = g(ni − 1) + α1Cl + α2Ce, (11)

where Cl and Ce denote the localization-related term and energy-related term, respectively.
α1 and α2 are the coefficients to balance the weight between Cl and Ce, which are defined by:

Cl = LEV(ni), (12)

Ce(ni) = 2η(ni)µni−1,ni mg
∫
|vr(t)|dt = 2η(ni)µni−1,ni mgsni−1,ni , (13)

where µni−1,ni denotes the friction parameter, sni−1,ni is the length of the path segment
between the nodes ni − 1 and ni. η(ni) is a penalty factor to maintain a safe distance from
surrounding obstacles and is expressed as:

η(ni) =


1, do > Ds

Ds−Dm
do−Dm

, Dm < do ≤ Ds

1000, do ≤ Dm

, (14)

where do denotes the distance between the current node ni and the nearest obstacle. Ds and
Dm are the maximum and minimum safety distance, respectively. do > Ds indicates that
the current node is far away from obstacles. If Dm < do ≤ Ds, the path cost increases with
the increase in do. The current node is too close to the obstacle when do ≤ Dm.

Next, we focus on the heuristic function h(ni). As investigated in [32], the heuristic
function is admissible if it does not overestimate the cost of reaching the goal node from a
particular node. The ideal situation is the heuristic function evaluating the accurate cost.
However, in most of the robot planning problems, it is impractical to find such heuristic
functions. Thus, the heuristic effectiveness and computational efficiency of heuristic search
algorithms depend on the selection of the heuristics.

A new localizability-energy-related heuristic cost function is proposed as:

h(ni) = β1LEV(ni) + β2µni−1,ni mgsni ,ng , (15)

where β1 and β2 are the weighted coefficients. sni ,ng denotes the distance between node ni
and the goal node ng.

In summary, we present the novel cost function f (ni) by combining (11) and (15)
as follows:

f (ni) = g(ni − 1) + α1Cl + α2Ce + β1LEV(ni) + β2µni−1,ni mgsni ,ng . (16)
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By using the cost function (16), an optimal collision-free path with localizability
awareness and energy efficiency can be achieved.

4. Trajectory Optimization with Improved DSA
4.1. Parameterized Trajectory

The path generated by the heuristic search method is often a piecewise linear path or
even a sharp path. The mobile robot needs to start, stop, and rotate frequently due to the
discontinuity of the path, resulting in time delay, energy consumption, and unnecessary
wear on the robot parts. To handle these problems, we employ a parameterized cubic
Bézier curve to smooth the path, which benefits from the continuity and local controllability
of the Bézier curve. Furthermore, the trajectory is further optimized by explicitly taking
into account localizability and energy efficiency.

A series of Bézier curves are inserted between each segment defined by two consecu-
tive waypoints and connected to obtain a complete smooth trajectory. As shown in Figure
4, the knee points along the generated path are chosen as waypoints. If two near waypoints
are extremely close, they are merged into one waypoint. On the other hand, if a path
segment is too long, new waypoints need to be inserted [33]. Thus, we can achieve a series
of generated waypoints expressed by Pw0, · · · , Pwi, · · · , PwN . Further, we define the angular
bisector of the two near segments as the orientation of the corresponding waypoints.
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The cubic Bézier curve passes through the initial waypoint Pw
i−1 = [xw

i−1, yw
i−1, θw

i−1]
T

and finial waypoint Pw
i = [xw

i , yw
i , θw

i ]
T of a path segment. Its sharpness can be reshaped

by adjusting the two control points Pc
i1 = [xc

i1, yc
i1]

T and Pc
i2 = [xc

i2, yc
i2]

T . [x, y] and θ
denote the position and orientation of the corresponding waypoint, respectively. Then,
the parameterized trajectory of the cubic Bézier curve is designed as follows:{

x(τi) = (1− τi)
3xw

i−1 + 3τi(1− τi)
2xc

i1 + 3τ2
i (1− τi)xc

i2 + τ3
i xw

i
y(τi) = (1− τi)

3yw
i−1 + 3τi(1− τi)

2yc
i1 + 3τ2

i (1− τi)yc
i2 + τ3

i yw
i

. (17)

Subject to:
dx(τi)

dt |t=Ti−1 =
3(xc

i1−xw
i−1)

Ti−Ti−1
= vi−1 cos θw

i−1
dy(τi)

dt |t=Ti−1 =
3(yc

i1−yw
i−1)

Ti−Ti−1
= vi−1 sin θw

i−1
dx(τi)

dt |t=Ti =
3(xw

i −xc
i2)

Ti−Ti−1
= vi cos θw

i
dy(τi)

dt |t=Ti =
3(yw

i −yc
i2)

Ti−Ti−1
= vi sin θw

i

(18)
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where x(τi) and y(τi) are the trajectory with parameter τi =
t−Ti−1
Ti−Ti−1

∈ [0, 1], t ∈ [Ti−1, Ti]

in the x and y direction, respectively. Ti−1 and Ti are the arrival time at each waypoint for
the segment Pw

i−1Pw
i . Then, when t varies from Ti−1 to Ti, the trajectory varies from Pw

i−1 to
Pw

i . vi−1 and vi are the velocities at waypoints Pw
i−1 and Pw

i , respectively.
It is noted that the control points Pc

i1 and Pc
i2 are dependent on the arrival time Ti and

the velocity vi. According to (18), we can obtain the control points as follows:

xc
i1 = xw

i−1 +
1
3 (Ti − Ti−1)vi−1 cos θw

i−1
yc

i1 = yw
i−1 +

1
3 (Ti − Ti−1)vi−1 sin θw

i−1
xc

i2 = xw
i −

1
3 (Ti − Ti−1)vi cos θw

i
yc

i2 = yw
i −

1
3 (Ti − Ti−1)vi sin θw

i

(19)

Consequently, by choosing suitable Ti and vi, we will achieve an optimized trajectory
such that the mobile robot can approach the final goal PwN along all these waypoints.

4.2. Improved DSA

In this section, we present a trajectory smoothing method based on improved DSA
by selecting parameters Ti and vi while minimizing the localization error and minimizing
energy consumption. The energy model (1) is calculated by combining the designed Bézier
curve (17) as follows:

E(Ti, vi) = Ek + Ea + Ee

=
∫ Ti

0 (mmax(vi(τi)a(τi), 0) + Imax(γ(τi)δ(τi), 0))dt+
∫ Ti

0

N
∑

j=0
µ

mg
N vi(τi)dt + PeTi

(20)

Then, we aim to solve the following optimization problem:

minJ(Ti, vi) = min(ρ1

∫
LEV(p(τi))dτi + ρ2E(Ti, vi)) (21)

where J is objective function. p(τi) = (x(τi), y(τi)) denotes the point on the parameterized
trajectory. ρ1 and ρ2 are the coefficients to balance the weight between and localizability
and energy consumption.

To find the most appropriate Ti and vi, we present an improved DSA to enhance
optimization efficiency. The DSA simulates the predatory process of dolphins for multi-
dimensional numerical optimization problems with four phases, i.e., search, call, reception,
and predation. This algorithm has numerous advantages of few parameters and strong
search capability, which makes it have better global search ability and better stability
compared with the conventional evolutionary algorithms 14.

For the DSA, for each dolphin Doli(i = 1, 2 · · · , Ndol), we define Li as the individual
optimal solution that Doli finds in a single time and define Ki as the neighborhood optimal
solution. Then, we have three types of distances, i.e., DDi,j =

∥∥Doli −Dolj
∥∥, DKi =

‖Doli −Ki‖ and DKLi = ‖Li −Ki‖.
In the search stage, a sound wave mechanism is employed between the individual

dolphin Doli and a new child dolphin Xijt. More specifically, the sound is defined as Vdj
(j = 1, · · · , M), where M is the number of sounds. A maximum search time Tsm is set to
prevent the DSA from falling into the search stage. Within the maximum search time Tsm,
the dolphin Doli will search a new child solution Xijt based on the sound wave during the
propagation time t, namely:

Xijt = Doli + Vdjt (22)

After calculating the fitness Fit(Xijt) of the new solution Xijt, we can obtain the optimal
fitness as:

Fitiab = minj=1,2,··· ,M;t=1,2,··· ,Tsm Fit(Xijt) (23)
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Then, the individual optimal solution Li is specified as Li = Xiab. If Fit(Li) < Fit(Ki),
the neighborhood optimal solution Ki is replaced by Li.

In the call stage and reception stage, each dolphin informs other dolphins, through
sound wave, as to whether a better solution is found and where it is located. The detailed
process can be found in the literature [14].

In the predation stage, each dolphin updates its own location to hunt for preys within a
certain surrounding radius R2. Besides, the maximum range R1 is set as R1 = Tsm ×

∥∥Vdj
∥∥.

The update process is divided into three cases based the distance DKi.

(1) If DKi ≤ R1, a new dolphin newDoli is derived as follows:

newDoli = Ki +
Doli −Ki

DKi
R2 (24)

where the surrounding radius R2 =
(

ed−2
ed

)
DKi, ed > 2.

(2) If DKi > R1&DKi ≥ DKLi, Doli moves in a random way to obtain a new dolphin,
as below:

newDoli = Ki +
Random
‖Random‖R2 (25)

where the surrounding radius R2 =
(

1− DKi Fit(Li)+(DKi−DKLi)Fit(Ki)
edDKi Fit(Li)

)
DKi.

(3) If DKi > R1&DKi < DKLi, we obtain a new dolphin newDoli as follows:

newDoli = Ki +
Random
‖Random‖R2 (26)

where the surrounding radius R2 =
(

1− DKi Fit(Li)−(DKLi−DKi)Fit(Ki)
edDKi Fit(Li)

)
DKi.

If the iterative termination condition is fulfilled, the DSA ends. Otherwise, the DSA
gets into the search stage again.

The standard DSA updates the position of each dolphin and expands child dolphins
to search for the optimal solution. However, it should be pointed out that a new child
dolphin is fully expanded with fixed step size during the searching stage, which leads
to a fall in the local optimum for one clan of a dolphin group. Moreover, the positions
of the dolphins are updated based on a random way in the process of dolphin updating.
Therefore, the efficiency and convergence of the DSA decrease, and the obtained solution
may result in low optimization accuracy or even failure.

To address these problems, we propose an adaptive step strategy and a novel learning
strategy in the optimization process to balance the convergence speed and precision of the
algorithm and better exchange information between dolphins.

(1) Adaptive step strategy: we offer the following adaptive step parameter λd.

λd = λ0 +
w1Fitopt

w2 ln Nd + w3Fit0
(27)

where λ0 is the minimum step. Fitopt and Fit0 are the current optimal fitness and the
initial fitness, respectively. Nd denotes the current number of iterations. The factors
wi, i = 1, 2, 3 are the regulation parameters.

Then, the formula for searching the new child dolphin of the improved algorithm is
as follows:

Xijt = Doli + λdVdjt (28)
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(2) Learning strategy: The searching efficiency may be enhanced if the child dolphin
Xijt learns from the information of the dolphin Li since Li is the individual optimal
solution that Doli finds in a single time. Hence, the position of Xijt can be obtained as:

Vd′ j =x1 ×Vdj +x2 ×(Li −Doli)/t (29)

Xijt = Doli + λdVd′ jt (30)

where 1 and 2 are the impact factors.
Next, the dolphin Doli will learn from the individual optimal solution Li. The dolphin

Doli updates itself according to information of the dolphin Li as follows:

newDoli = Ki +d1
Doli −Ki

DKi
R2 +d2

Li −Ki
DKi

R2, if DKi ≤ R1 (31)

newDoli = Ki +d1
Random
‖Random‖R2 +d2

Li −Ki
DKi

R2, if DKi > R1 (32)

The improved DSA related to our optimization problem (21) solution is depicted in
Algorithm 1. In this way, the optimal parameters can be obtained such that the mobile
robot can reach the goal with energy efficiency and localizability simultaneously.

In the end, the optimal trajectory can thus be obtained through the use of this algorithm
by iteration for every segment trajectory.

Algorithm 1: Improved DSA

Input: the objective function J
Output: the parameters Ti and vi

// Initialization
1 : Initialize randomly a popution of Ndol dolphin swarm
Dol= {Dol1, Dol2, · · · , DolNdol

}
2 : Define DDi,j, DKi, DKLi as the distance bewteen two corresponding dolphins

and TSi,j is the rest time for the sound of moving from Doli to Dolj.
3 : Specify the related parameters : ρ1, ρ2, λ0, w1, w2, w3,x1 ,x2 ,d2 ,d2
4 : while the termination condition is not satisfied do

// the search stage
5 : Search new child dolphin Xijt = Doli + λdVdjt
6 : Calculate optimal fitness, Fitiab = minj=1,2,··· ,M;t=1,2,··· ,Tsm Fit(Xijt)

7 : Individual optimal solution Li = Xiab
8 : if Fit(Li) < Fit(Ki) then
9 : Neighborhood optimal solution Ki = Li

10 : end if
// the call stage
11 : Update the rest time TSi,j
// the reception stage
12 : Exchange the information between dolphins
// the predation stage
13 : Calculate DDi,j, DKi and DKLi
14 : Determine search Radius R2
15 : if DKi ≤ R1 then
16 : newDoli = Ki + od1

Dol−Ki
DKi

R2 + od2
Li−Ki
DKi

R2

17 : else if DKi > R1&DKi ≥ DKLi then
18 : newDoli = Ki + od1

Random
‖Random‖R2 + od2

Li−Ki
DKi

R2

19 : else if DKi > R1&DKi < DKLi then
20 : newDoli = Ki +d1

Random
‖Random‖R2 +d2

Li−Ki
DKi

R2

21 : end if
22 : Calculates newDoli fitness
23 : Update optimal solution Ki
24 : end while
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5. Simulation and Experiment Results
5.1. Experimental Setup and Experimental Identification of the Energy Model

To test the effectiveness of the proposed optimal trajectory planning method, a four-
wheel independently driven-steered mobile robot is employed in the experiments. The de-
veloped prototype robot, defined as Forbot, is shown in Figure 5. The Forbot installs two
LIDARs diagonally with a 360-degree viewing angle. The Forbot has some prominent
features, such as automatic charging, anti-crash measures, trackless autonomous navi-
gation, and vision-based operating of the work-piece. The wheels with hub motors of
the Forbot realize continuous wheel-ground contact so that the robot can move on an
uneven floor with impurities. As each wheel of the robot has two degrees of freedom to
roll and turn actively, the Forbot is able to achieve the diagonal move steer mode with a
specific kinematic model [34]. The mass and inertia of the robot are 1000 kg and 60 kg·m2,
respectively, and its battery capacity is 120 Ah. The maximum speed, maximum acceler-
ation and minimum acceleration are 1 m/s, 0.1 m/s2 and −0.1 m/s2, respectively. More
specifications are shown in Table 1.
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Table 1. Parameters of the Forbot.

Description Quantity Description Quantity

Robot Length 0.89 m Incremental Encoder 2500 pulses/turn

Robot Width 0.53 m Main Frequency of
PC 2.2 GHz

Wheel Diameter 0.28 m RAM of PC 8 G

The power parameter Pe in the energy model (1) is determined when the robot is still.
In this situation, the current is stable, and we have Pe = 336 w. By performing friction
coefficient experiments [35], we get µ = 0.048 for the tile surface, and µ = 0.086 for the
carpet surface.

To examine the validity of the energy model (1), the Forbot moves according to the
designed velocity profile presented in Figure 6. We compare the experimental results and
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modeling results that are given by Figure 7. It can be concluded that the experimental
results verify the correctness of the presented energy model.
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5.2. Simulation Results

In this section, we first illustrate the advantages of the improved DSA for trajectory
optimization. After that, the trajectory planning results in the long corridor region and
circle region, with two ground surface types, are demonstrated to verify the trajectory
planning performance.

(Case 1) Improved DSA: In this case, we will validate the advantages of the improved
DSA through two experiments based on different individuals, i.e., 10 individuals and
100 individuals. Regarding the computational efficiency, we compare the classic swarm
intelligence algorithms, such as the standard PSO algorithm [12], standard ABC algo-
rithm [13], and the traditional DSA. The comparison experiments are carried out on the
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computer with 2.2 GHz CPU and 8 GB RAM. The initializations of dolphins are dis-
tributed randomly and evenly. The related parameters are set as λ0 = 1, ρi=1,2 = [0.2, 0.8],
wi=1,2,3 = [0.27, 0.28, 0.45], di=1,2 = [0.75, 0.25], xi=1,2 = [0.75, 0.25], which are decided
through experiments to find optimal values. To ensure fairness and show consistency,
the experimental results are achieved by performing each experiment 20 times indepen-
dently, and the algorithm returns when the convergence condition meets the convergence
accuracy or the maximum iterations.

Figures 8 and 9 show the running iterations based on the compared algorithms for
10 individuals and 100 individuals, respectively. As shown in Figure 8, the iteration
number for trajectory optimization is prominently reduced under the improved DSA
algorithm. The improved algorithm can obtain the optimal results within 29 repeated
trails while the traditional one requires more than 51 iterations searching for the optimal
solutions. The reason is that we present an adaptive step strategy and learning strategy
in the optimization process to drive the current individual to approach the best solution.
In terms of Figure 9, the ABC algorithm obtains the fastest convergence rate in the initial
loops while DSA is the slowest one. Gradually, the improved DSA becomes the fastest one
when the iteration reaches 13. The is because the information exchanges between dolphins
result in time-delay, which is proportional to the number of dolphins and the distance
between dolphins.
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The statistics index of the computational performance is given in Tables 2 and 3.
It can be seen that our improved DSA algorithm performs better in our trajectory planning
problem and has significant advantages in terms of iteration times over the other three
algorithms. Moreover, the Wilcoxon’s rank-sum tests at the 5% significance level are carried
out to verify the significance of the improved dolphin swarm algorithm. The Wilcoxon
test results are shown in Table 4. In Table 4, “–”, “0” and “1” represent the best result,
significantly different and not significantly different from the best one, respectively. The re-
sults show that our improved DSA algorithm outperform other three algorithms for the
trajectory planning problem.

Table 2. Simulation results in case (1): 10 individuals.

Criteria PSO ABC Standard DSA Improved DSA

Iteration times 80 69 51 29
Mean 2.3776 3.998 0.8659 0.5231
SD 0.985 1.709 0.4022 0.1988

Table 3. Simulation results in case (1): 100 individuals.

Criteria PSO ABC Standard DSA Improved DSA

Iteration times 63 52 46 22
Mean 0.9524 1.2462 0.4982 0.3013
SD 0.4309 0.5758 0.2097 0.1258

Table 4. Results of Wilcoxon’s tests of the four algorithms.

Simulation PSO ABC Standard DSA Improved DSA

10 individuals 1 1 1 –

100 individuals 1 1 0 –

(Case 2) Trajectory planning in a long corridor region: This case considers the trajectory
planning performance in a long corridor region with the two different ground surfaces
shown in Figures 10–12. Simulations on a four-wheel independently driven-steered mobile
robot are carried out. For this simulation, the corresponding parameters are chosen as
Ds = 1.2 m, Dm = 0.25 m, β1 = 0.5, β2 = 1.2. To balance the weighting coefficients, α1 α2
β1 and β2 are determined by [0.2, 0.8, 0.2, 0.8]. The start point and the goal point are located
at [48, 104] and [500, 75], respectively.
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Figure 12. Comparison of trajectories of the case (2).

By utilizing our trajectory planning method, the trajectory is generated considering
localizability and energy efficiency. Figure 10 illustrates the generated trajectory only
based on minimum energy consumption. As can be seen from the result, the mobile
robot travels on the smooth tile surface to avoid consuming too much energy to overcome
friction. Although the resulting trajectory is longer, it consumes less energy throughout
the trajectory. Figure 11 shows the generated trajectory in the resulting LAM graph
only based on minimum localization error. In this case, rather than moving the shortest
trajectory that has the regions with high LEV, the generated trajectory is selected to be
closer to featured structure regions with low LEV. As shown in Figure 12, an optimal
trajectory is then generated considering localizability and energy efficiency simultaneously.
Figures 13 and 14 present the power and the LEV of each trajectory, respectively. Compared
with other trajectories, the trajectory generated by the proposed trajectory planning method
chooses the minimum total cost to balance the localization error and energy efficiency.
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Table 5. Simulation results in case (2).

Trajectory Energy (kJ) LEV Travel Distance
(m) Total Cost

Shortest 32.06 114.03 23.58 48.45
Minimum
energy 26.36 101.83 27.37 41.45

Minimum LEV 42.75 43.91 31.33 42.98
Minimum
energy-LEV 29.16 68.34 29.82 36.99

For quantitative analysis, energy consumption, localization error, travel distance,
and total cost achieved by using the presented methods are given in Table 5. As we can see
from the table, it is concluded that the proposed trajectory planning method guarantees
optimal performance in a comprehensive way. To be more specific, the minimal energy-LEV
trajectory has the lowest total cost of 36.99, which is enhanced by 23.65% in comparison
with the shortest trajectory.

(Case 3) Trajectory planning in a circle region: In this case, we consider the trajectory
planning performance in a circle region. As depicted in Figure 15, the experimental
environment and the corresponding parameters are the same as the case (2). The difference
is that the start point (550, 158) and goal point (750, 158) are located in the circle region.
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Figure 16. Optimal trajectory based on minimum localization error in the circle region.

Figure 15 shows the generated trajectory only considering the minimum energy
consumption. This trajectory is the same as the shortest trajectory since both trajectories
are on the tile surface. Figure 16 presents the generated trajectory in the resulting LAM
graph only based on the minimum localization error. As we can see from the result, at
the center of the circle, the LEV is very high relative to other regions nearby due to the
same sensor reading regardless of the orientation. To stay away from the high LEV region,
the generated trajectory is around the circumference to avoid large localization errors. In
Figure 17, we can see all the resulting trajectories of this case, one of which is the optimal
trajectory that is simultaneously based on energy efficiency and localizability. Figures 18
and 19 show the power and the LEV of the resulting trajectories, respectively.
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By examining Table 6, which presents the energy consumption, localization error,
travel distance, and total cost, it can be seen that the proposed trajectory planning method
achieves an optimal trajectory to maintain an acceptable level of energy consumption as
well as to decrease the localization errors throughout the trajectory. Particularly, the mini-
mal energy-LEV trajectory saves 14.93% energy consumption compared to the minimal
LEV trajectory, and is 33.41% lower than the minimum energy trajectory in terms of the
localization error.

Table 6. Simulation results in case (3).

Trajectory Energy (kJ) LEV Travel Distance
(m) Total Cost

Shortest 11.57 34.66 10.00 16.19
Minimum
energy 11.53 34.66 10.00 16.16

Minimum LEV 14.53 19.04 10.84 15.43
Minimum
energy-LEV 12.36 23.08 10.22 14.50

5.3. Experiment Results

In this experiment, we verify the trajectory planning performance in an experimental
environment with 799 × 985 grids, and each grid is a square with 50 mm edges. Boxes
are placed into the environment, forming rich structural features, and ground surface
types in the environment contain tile and carpet. The localization method proposed in [36]
is applied to the Forbot robot. The sampling frequency of the control loop is specified
as 10 Hz.

Figure 20 shows that the Forbot approaches the goal point along the minimum energy
trajectory. The dotted line represents the shortest trajectory that is mostly on the carpet
surface. When the Forbot moves along the shortest trajectory, higher frictional resistance
leads to more energy consumption. In contrast, although the minimum energy trajectory is
longer in this case, it is found to consume less energy.
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As shown in Figure 21, four resulting trajectories, i.e., shortest, minimum energy,
minimum LEV, and minimum energy-LEV, are generated in the LAM graph. The waypoints
(green) are drawn along the trajectory in Figure 21. Figures 22 and 23 present the power
and the LEV profile of the experiment, respectively. As can be seen intuitively, instead
of taking the shortest trajectory, the minimum LEV trajectory is much closer to featured
structure regions where the localization error is relatively low. The minimum energy-LEV
trajectory has a tendency to balance the energy consumption and localization error as the
robot moves toward the goal.
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Table 7. Experimental results of trajectory planning. 

Trajectory Energy (kJ) LEV Travel Distance (m) Total Cost 
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Figure 23. The LEV in the experiments.

To make the comparison more clearly and directly, we provide the energy consump-
tion, localization error, travel distance, and total cost of the experiment in Table 7. As can be
seen from the table, the proposed trajectory planning method obtains a comprehensively-
optimized trajectory with guaranteed minimum total cost. More specifically, the minimal
energy-LEV trajectory consumes 19.58% less energy than the minimal LEV trajectory,
and reduces the localization error by 61.03% compared to the minimal energy trajectory,
and ends up 36.78% more than the shortest trajectory in terms of the total cost.
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Table 7. Experimental results of trajectory planning.

Trajectory Energy (kJ) LEV Travel Distance
(m) Total Cost

Shortest 27.83 109.46 19.57 44.16
Minimum
energy 20.30 100.54 20.15 36.35

Minimum LEV 31.21 30.13 26.83 30.99
Minimum
energy-LEV 25.10 39.18 23.82 27.92

6. Conclusions

This paper proposed an optimal trajectory planning method to obtain a minimum
total cost trajectory for wheeled mobile robots by balancing localization errors and energy
efficiency. A novel localizability measure method based on the likelihood function was
presented to explicitly quantify the localization ability of the robot over a prior map.
Then, the localizability aware map was achieved such that the localization error at a
given position can be effectively estimated. By incorporating an improved DSA into the
trajectory optimization process, the optimal trajectory was generated during the robot
motions. We carried out the comprehensive simulations and experiments. Specifically,
in the real experiment, the minimal energy-LEV trajectory consumes 19.58% less energy
than the minimal LEV trajectory, and reduces the localization error by 61.03% compared
to the minimal energy trajectory. The results demonstrated the efficiency of the proposed
trajectory planning method in localizability and energy efficiency.

The following directions will be considered in our future works: (1) integrate the
neural network optimization to enhance the quality of the generated trajectory; (2) extend
our trajectory planning method to multi-robot applications.
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