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Abstract: In this paper, we have numerically investigated a metasurface based perfect absorber
design, established on the impedance matching phenomena. The paper comprises of two parts.
In the first part, the device performance of the perfect absorber—which is composed of silicon nano-
cylindrical meta-atoms, periodically arranged on a thin gold layer—is studied. The device design is
unique and works for both x-oriented and y-oriented polarized light, in addition to being independent
of the angle of incidence. In the second part of the paper, a CO2 gas sensing application is explored
by depositing a thin layer of functional host material—a polyhexamethylene biguanide polymer—on
the metasurface. The refractive index of the host material decreases due to the absorption of the CO2

gas. As a result, the resonance wavelength of the perfect absorber performs a prominent blueshift.
With the help of the proposed sensor design, based on metasurface, the CO2 gas concentration
range of 0–524 ppm was detected. A maximum sensitivity of 17.3 pm/ppm was acquired for a gas
concentration of 434 ppm. The study presented in this work explores the opportunity of utilizing the
metasurface perfect absorber for gas sensing applications by employing functional host materials.

Keywords: metasurface; carbon dioxide gas; sensor; functional host material; polyhexamethylene
biguanide; perfect absorber

1. Introduction

Metamaterials are artificial structures with permittivity and permeability levels that
are unachievable in nature. They have gathered a great deal of attention due to their
incredible electromagnetic (EM) response. For this reason, metamaterials are considered
to have valuable prospective uses in photonics. The EM properties of materials can be
modified to acquire preferred optical properties by engineering the metamaterials. In
recent years, metamaterial based EM absorbers have been widely researched [1–3], which
has demonstrated their potential usage in solar photovoltaic and thermophotovoltaic
devices [4], spatial light modulation [5] and sensing applications [6]. Based on the range
of light spectrum absorbed by the EM absorber, it can be categorized into two types: a
narrowband EM absorber [7] and a broadband EM absorber [8]. Typically, the dimensions
of the metasurfaces are far beyond the wavelength, which substitutes the need for bulk
optics and they are therefore capable of nanoscale light manipulation [9,10].

Several recent studies on perfect absorbers (PAs), such as the metacavity model with
multilayer metasurfaces [11], electromagnetically induced absorption [12], subwavelength
hole arrays [13,14] and structured metal surfaces [15] have demonstrated perfect absorption
phenomena. For practical purposes, PAs that are insensitive to polarization and the
incident angle of light are typically desirable [16]. These PAs can be employed in sensing
applications based on the wavelength interrogation method.
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For studying global warming and other environmental-related problems triggered
by anthropogenic greenhouse gas discharge, the accurate measurement of carbon dioxide
(CO2) gas concentrations in the atmosphere is essential. Considering that the existing level
of ambient CO2 gas concentration is swiftly reaching the 400 ppm threshold, which is far
above the 350 ppm threshold to prevent inevitable climate change [17], there is a growing
need for miniaturized and precise CO2 gas sensors that can be proficiently used in large-
area sensor networks to track greenhouse gas concentration patterns. In health sciences,
there is also a strong interest in CO2 gas monitoring, as it reveals an essential role in several
biological activities. Non-dispersive infrared spectroscopy (NDIR) is established on the
recognition of the signature absorption band of CO2 at the 4.26 µm wavelength and is
currently the prevailing CO2 sensing technology. There are two main sensor configurations
which can be used to detect the toxic gases such as evanescent field gas absorption [18–20]
and the resonance wavelength interrogation method [21,22].

A photonic CO2 gas sensor based on infrared evanescent field absorption is presented
here, which is capable of detecting CO2 concentrations down to 5000 ppm [23]. This level
is associated with headaches, sleepiness, loss of attention, increased heart rate and slight
nausea. Other notable studies on integrated photonic gas sensors based on evanescent field
absorption can be found here [24–27]. The refractive index gas sensor is another widely
used method, where a shift in resonance wavelength is observed for the increasing gas
concentration. Recently, an attractive design for a CO2 gas sensor based on subwavelength
grating (SWG) slot waveguide has been numerically proposed, which offers the best
sensitivity of 12.9 pm/ppm [28]. However, practically, it requires a great deal of effort to
directly couple the light into the slot waveguide. It requires an additional ridge to slot
waveguide, converted to transform the fundamental dielectric mode to the slot waveguide
mode [29]. For readers’ interest, we have mentioned some notable gas sensors based on the
resonance wavelength interrogation method [30–33]. In our previous studies [29,34–37], we
have presented distinctive designs for gas sensors based on optical waveguides working
on an evanescent field absorption mechanism. Here, we propose an attractive arrangement
for a metasurface formed by a periodic array of silicon nano-cylindrical meta-atoms (MAs)
deposited on a metal layer. This configuration offers the possibility to be employed as a
narrowband PA. Moreover, when the metasurface is coated with a specific thin layer of a
functional host material, it can function as a gas sensor. The sensor design proposed in this
work is numerically investigated; we are unable to provide the experimental results to show
the repeatability of the device due to the limited research activities during the COVID-19
pandemic. However, in [38], the repeatability of the sensor system employing the same
functional layer was confirmed by performing 10 repeated cycles of measurements, with
each cycle consisting of applying 50 ppm CO2 gas flow, measuring the resonance shift
and purging the chamber with N2 gas. Their analysis showed that the repeatability of the
sensor is ±20 ppm.

2. Device Design and Theory

Metamaterials can be described by a complex electric permittivity and magnetic
permeability ∼ ∼

ε (ω) = ε1 + iε2 and ∼ ∼
µ(ω) = µ1 + iµ2, respectively. The main concern,

however, was on the real part of permittivity (ε1) and permeability (µ1) for fabricating
negative refractive index materials [39]. However, the loss of components of the optical
constants (ε2 and µ2) are anticipated in order to create a variety of practical uses such as
Pas, which can be employed as filters and sensors. By regulating the resonances in ε and
µ independently, it is conceivable to absorb both the incident electric and magnetic field.
This kind of absorber exhibits tremendous merits over its conventional predecessors due to
its compact size and extraordinary features. The key perception is to reduce the reflectance
by impedance matching and concurrently discarding the transmittance by magnifying the
metamaterial losses. In this work, we explored two potential applications of metasurface
such as narrowband PA and CO2 gas detection by utilizing a host functional polymer layer
polyhexamethylene biguanide (PHMB) deposited on top of the metasurface.
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2.1. Narrowband PA Design

The schematic of the proposed metasurface based narrowband PA design is presented
in Figure 1. It is composed of a periodic array of silicon nano-cylindrical MAs placed on
a gold (Au) layer deposited on a quartz substrate. The inset shows the zoomed image
of silicon cylindrical MAs of radius R placed on the Au layer. Moreover, the general
transmission, reflection and absorption spectrum is also shown. The height of the silicon
cylindrical MAs and the Au is denoted as HSi and HAu, respectively. The HAu was fixed
at 100 nm throughout the paper, which is bigger than the skin depth, therefore, it was
modelled as a perfect electric conductor (PEC). Thus, the EM wave does not penetrate in
the near-IR range and the transmission is nearly null. The gap between the two MAs is
represented as 2d where d is the gap between MA and the boundary.
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Figure 1. Schematic of a narrowband perfect absorber (PA) based on a silicon nano-cylinder metasurface. Inset shows the
silicon MAs periodically arranged on the gold layer (left-bottom). The transmission, reflection and absorption spectrum is
also shown (right-top).

The transmission, reflection, absorption and electric-field distribution of the proposed
device are calculated by utilizing the finite element method (FEM), based on a commercially
available COMSOL Multiphysics software. By considering a single unit cell, the additional
simulation volume is avoided which leads to a reduced simulation time [40]. On four
sides of the unit cell, Floquet-periodic boundary conditions are applied to mimic the
unbounded 2D array. Due to the periodic boundary condition (PBC) applied on the lateral
sides of the design, the distance between two MAs is automatically doubled, i.e., 2d. The
refractive index (n = 1.0) is filled in the domains above and below the absorber design,
which represents the air medium. The proposed absorber configuration is positioned
between the source port and the output port. The source port emits the EM waves which
are analyzed at the output port. Port boundary conditions are positioned on the inner
boundaries of the perfect matched layers (PMLs), adjoining to the air domains which
establish the transmission and reflection features in terms of S-parameters. Where S11 and
S21 are the reflection and transmission coefficient that can be written as:

Reflection : S11 =
(1 − Γ2)Z
1 − Z2Γ2 , Transmission : S21 =

(1 − Z2)Γ
1 − Z2Γ2 (1)
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where
Z = exp(−jknne f f L) = exp(±ωj

√
εe f f µe f f L) (2)

L is the effective length, ne f f is the effective refractive index, εe f f and µe f f are the effec-
tive permittivity and permeability. Γ is the reflection coefficient which can be calculated as:

Γ =
(Zo − 1)
(Zo + 1)

(3)

where Zo is the relative impedance.
The inner port boundaries with the PML backing require the slit condition. For the

calculation of S-parameter, the port direction is set to classify the inward direction. Since we
are not interested in the higher-order diffraction modes, the combination of domain-backed
type slit ports and PMLs are utilized in place of a diffraction order port for each diffraction
order and polarization. The PMLs are employed to absorb the excited mode from the
source port and any higher-order modes produced by the periodic structures. The PMLs
diminish the EM wave propagating in the direction perpendicular to the PML boundary.

2.2. Silicon Nano-Cylinder Metasurface Coated with PHMB Polymer Layer for CO2 Gas Detection

CO2 is a colorless, odorless and non-flammable greenhouse gas typically generated by
the combustion of carbonaceous materials or by the metabolism of animals [41]. The current
CO2 gas concentration and its growth rate is leading to global warming and unsustainable
environmental challenges [42]. For that reason, high sensitivity CO2 gas sensors have
been widely researched to track patterns in the concentrations of greenhouse gases. As
the concentration of the CO2 gas in the ambient medium increases, the refractive index
of functionalization layers changes. PHMB has basic amide-bearing functional groups
and is a member of the guanidine polymer family [43]. It is an ideal contender for a
functionalization polymer layer that is equally sensitive and selective to low concentrations
of CO2 at room temperature and atmospheric pressure. Additionally, the absorption and
release of CO2 gas from the material does not require water vapor to be applied, as is the
case with the previously reported functional materials [44]. The resonance wavelength
blueshift of gas sensors based on the functional material of PHMB, is linearly interrelated
to the CO2 concentration [28,38,45]. To the best of our knowledge, we have not witnessed
any reports claiming that gases other than CO2 can interfere with the sensitivity of the
PHMB polymer layer. For this reason, it is possible to utilize such a polymer layer for the
realization of the CO2 gas sensor. In [38], the author analyzed the selectivity of PHMB
as a functional layer for CO2 gas against hydrogen gas. Being the smallest gas molecule,
hydrogen voluntarily penetrates and diffuses into many polymeric materials, so it is
imperative to confirm that the H2 gas does not induce an undesirable refractive index
change in the PHMB layer and cause the false detection of CO2. It was demonstrated that
the sensor showed no response to H2 or N2 gas and only reacted to the presence of CO2 gas.
The schematic of the gas sensor is shown in Figure 2a and the inset shows the reflection
spectrum in the absence and presence of CO2 gas. Moreover, the chemical formula for CO2
gas adsorption and release is shown in Figure 2b [43]. The modification of the refractive
index of the PHMB layer can be expounded in terms of the redistribution of the electron
density of the polymer repeating units due to the binding of the CO2 molecules, which
results in variation in its polarizability.
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Figure 2. (a) A thin layer of PHMB functional layer is deposited on the metasurface. This scheme is
used to detect the CO2 gas via wavelength interrogation method, (b) Reaction between CO2 gas and
amide-bearing functional groups.

The sensing mechanism is based on the wavelength interrogation method of the
reflected light. The absorption offered by the proposed metasurface is tolerant to the angle
of incidence of light (AOI) which will be demonstrated later in the paper. The broadband
light is used to excite the sample at 45 ◦C which absorbs a certain wavelength when the
impedance matching condition is fulfilled. The reflected light is collected with the help
of a photodetector which is used to convert the photons into current and is examined via
a spectrum analyzer. When the CO2 gas is injected in the chamber, it is absorbed by the
PHMB layer. As a result, the refractive index of the layer decreases which translates the
λres to a lower wavelength. The change in the refractive index of the PHMB layer, as well
as the wavelength shift, is dependent on the concentration of the gas.

3. Optimization of Narrowband PA Design

In this section, we optimized the performance of the PA structure by varying the geo-
metric parameters of the device, such as R, HSi and d. The maximum absorption is attained
when ε and µ satisfy the impedance-matched condition, i.e., ε(ω) = µ(ω), at the operational
wavelength [46]. The absorption is calculated by using the following expression:

Absorption (A) = 1 − Transmission (T) − Reflection (R) (4)

where transmission ≈ 0, due to the thick gold layer deposited on the substrate. Therefore,
the absorption is directly dependent on the reflection.

3.1. Variation in R at Constant Remaining Parameters

The resonance wavelength (λres) and absorption of the device are calculated for
different values of R while maintaining other geometric parameters at a constant value
such as HSi = 50 nm, d = 300 nm and HAu = 100 nm. R is varied between 100 nm and
250 nm with a step size of 25 nm. The spectral characteristic of the device is plotted for
the near-infrared region with the help of built-in “parametric sweep” function where the
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wavelength is incremented with a step size of 0.5 nm. From Figure 3a, it can be seen that
λres can be tuned between 821 nm to 1024 nm as R is increased from 100 nm to 250 nm.
The maximum absorption of 0.92 is obtained at R = 200 nm at λres = 982 nm. However,
we are adopting R = 150 nm for further investigation which also provides an absorption
(A = 0.905) close to the absorption obtained when R = 200 nm. The selection is based on
the smooth line shape of the spectrum and the small footprint of the device. However, the
absorption can be further enhanced by depositing the PHMB layer on the metasurface as
explained afterwards in the paper.
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Figure 3. Spectral characteristics of the metasurface absorber, (a) Radius of meta-atoms (MA) versus absorption and
resonance wavelength, (b) Height of MA versus absorption and resonance wavelength, (c) Gap between MA versus
absorption and resonance wavelength.

3.2. Variation in HSi at Constant Remaining Parameters

After optimizing the R of the MAs, the next thing is to improve the height of the MAs
placed on the gold layer. For that reason, we have varied HSi between 30 nm to 80 nm
with a step size of 10 nm by keeping R, d and HAu fixed at 150 nm, 300 nm and 100 nm,
respectively. Figure 3b presents λres and the absorption plotted versus HSi. It is worth
noting that λres shows the same trend as HSi increases. So, we can tune the wavelength of
the absorbing light either by manipulating R or HSi. The absorption capability of the MAs
increases as HSi is varied from 30 nm to 50 nm. However, when HSi is further increased,
the absorption potential of the device decreases. This is due to the mismatch in the ε and µ
at the operational wavelength.

3.3. Variation in d at Constant Remaining Parameters

In Sections 3.1 and 3.2, the optimized values of R and HSi are achieved at 150 nm and
50 nm, where the absorption is 0.905. Here, we have optimized the gap between two MAs,
i.e., 2d. Figure 3c presents the absorption and λres plot versus d which is varied between
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240 nm to 340 nm with a step size of 20 nm. The maximum absorption of 0.9188 is obtained
at λres = 914 nm where d = 260 nm and it deteriorates as d increases. Hence, from Figure 3c,
it can be predicted that the gap between two MAs should be maintained at 520 nm to
preserve the absorption of 0.92.

3.4. R/T/A Plot and AOI of X-Oriented and Y-Oriented Field

The reflection, transmission and absorption spectrum is plotted for both x-oriented and
y-oriented EM waves at the optimized device parameters where R = 150 nm, his = 50 nm,
HAu = 100 nm and d = 260 nm as shown in Figure 4a. The λres for the x-oriented field is
914 nm where absorption is 0.9188 whereas the λres for the y-oriented field is 913.5 nm
where absorption is 0.9488. This specifies that the PA is polarization-insensitive and can
be employed as a narrowband filter. Furthermore, the absorption potential of the device
concerning the AOI of x-oriented and y-oriented field is investigated. The absorption is
retained at 0.9188 and 0.9488 for x-oriented and y-oriented polarized light for the AOI
ranging between −75 degrees and +75 degrees, respectively, as shown in Figure 4b.
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Figure 4. (a) Transmission, reflection and absorption spectrum, (b) angle of incidence of light (AOI) of X-oriented and
Y-oriented field versus absorption.

Additionally, the E-field and H-field distributions at λres for the x-oriented and y-
oriented EM fields are shown in Figure 5. The 2D electric field distribution plot is taken
on the surface of the MA. There is a slight difference between the λres of x-oriented and
y-oriented light as can be seen in Figure 5a,b. The cross-sectional view of the E-field
distribution and H-field distribution at λres = 914 nm for x-oriented light is shown in
Figure 5c,d, respectively. It is worth noting that the E-field is stronger on top and inside
the MA at λres, while the H-field is stronger between the MA and metal interface. The
perfect matching of the E-field dipole and H-field dipole results in the eradication of the
reflectance and delivers maximum absorption.
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4. CO2 Gas Sensing Based on Wavelength Interrogation Method

The PA can be employed in the detection of CO2 gas by depositing a thin layer of
PHMB on the surface of the metasurface. In Figure 6, we investigated the dependence of
absorption and λres on HPHMB which is varied between 75 nm to 225 nm with a step size
of 25 nm. The remaining geometric parameters of the device are as follows: R = 150 nm,
d = 260 nm, HSi = 50 nm and HAu = 100 nm which are optimized in Section 3 for best
performance. From Figure 6a, it can be seen that λres performs a redshift as HPHMB increases
while a significant enhancement in absorption is also observed. The PHMB layer forms
a cladding layer on the silicon MAs which helps in the confinement of the resonant light.
The maximum absorption of 0.96336 is obtained at λres = 985 nm when HPHMB = 100 nm is
deposited on the surface of the MAs. The R/T/A graph is plotted for the optimized device
parameters in the wavelength range of 960 nm to 1015 nm, as shown in Figure 6b.
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Figure 6. (a) Absorption and λres dependence on HPHMB, (b) R/T/A plot of a polyhexamethylene biguanide (PHMB)
coated PA. Here the PHMB is optimized at 100 nm. The geometric parameters of the design are R = 150 nm, d = 260 nm,
HSi = 50 nm, HAu = 100 nm and HPHMB = 100 nm.

Mi et al. [38] reported a silicon ring resonator CO2 gas sensor with a PHMB func-
tional layer deposited over the waveguide structure. By utilizing such a method, a gas
concentration in the range of 0–500 ppm can be detected. The sensitivity offered by the
sensor is 6 × 10−9 RIU/ppm with a detection limit of 20 ppm. In [47], a silicon dual-
gas sensor realized on a wavelength-multiplexed ring resonator array for the concurrent
detection of H2 and CO2 gases is proposed. In [43], an experimental study based on a
PHMB based Fabry–Perot interferometric optical fiber sensor for the detection of CO2 gas
is conducted. The suggested sensor model offers a sensitivity of 12.2 pm/ppm for a gas
range of 0–700 ppm. Moreover, it is also concluded from the previous literature [38,43,45],
that moisture does not play a role in influencing the sensitivity of the device. In [48], the
authors replicated the ring resonator design proposed in [38] and carried out the numerical
investigation and derived the refractive index of the PHMB layer dependence on the CO2
gas concentration, as tabulated in Table 1. From the table, it is convenient to extract the
refractive index values of the PHMB layer at specific gas concentrations as well as the shift
in the resonance wavelength.
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Table 1. The refractive index of the PHMB layer versus gas concentration [48].

Refractive Index (n) CO2 Gas Concentration (ppm) ∆λres (pm)

1.54 215 0.96
1.53 262 1.15
1.52 328 1.34
1.51 366 1.53
1.50 366 1.53
1.49 434 1.72
1.48 524 1.91

In the absence of CO2 gas, the refractive index of the PHMB layer is ~1.55 @1000 nm
which is obtained by extrapolating the data using a Cauchy model fit [44]. The reflection
spectrum at different CO2 gas concentrations is plotted at 45 degrees AOI for the wave-
length range of 940 nm to 1020 nm. From Figure 7, it can be seen that λres = 985 nm is
obtained in the absence of the CO2 gas. However, when the concentration of gas increases,
λres performs a visible blueshift. In this work, the gas detection range of 0–524 ppm
was investigated.
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Figure 7. Reflection spectrum versus different CO2 gas concentration in ppm.

The cross-sectional view of the E-field distribution in the silicon MA is plotted for
the on-resonance and off-resonance wavelength, as shown in Figure 8a,b, respectively. At
λres = 985 nm, there is a perfect matching of the E-field dipole and H-field dipole which
results in the suppression of the reflectance and provides a maximum absorption while at
λ = 1020 nm which is the off-resonance wavelength, the light is reflected from the surface
resulting in an insignificant absorption.
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From Figure 7, we extracted the spectral characteristics and tabulated them in Table 2,
such as λres and ∆λres versus gas concentration. As in previous work [38,43,47], the λres is
given in pm, which is why we have also converted the wavelength from nm to pm so that
the spectral characteristics can be fairly related. By comparing the λres shift based on ring
resonator sensor (Table 1), the proposed metasurface based PA shows a higher shift which
can assist in a higher sensitivity. Moreover, from the data points obtained from [48], we
can fairly say that the limit of detection (LOD) of the sensor is around 215 ppm.

Table 2. Resonance wavelength shift versus gas concentration of the proposed sensor design.

Refractive Index (n) CO2 Gas Concentration (ppm) λres (pm) ∆λres (pm)

1.55 0 985,000 –
1.54 215 983,600 1400
1.53 262 982,500 2500
1.52 328 981,200 3800
1.51 366 980,000 5000
1.49 434 977,500 7500
1.48 524 976,000 9000

For practical application in the detection of a small concentrations of CO2 gas, op-
tical sensors with high sensitivity are desired. Sensitivity is the measure of the resonant
wavelength shift concerning the gas concentration and is expressed as:

S =
∆λ(pm)

∆conc. (ppm)
(5)

where ∆λ is the change in resonance wavelength (pm) and ∆conc. is the change in gas
concentration (ppm). We have plotted the λres shift versus the CO2 gas concentration and
found out that λres decreases as the gas concentration increases, as shown in Figure 9a.
Moreover, it has a linear correlation to the CO2 gas for the given 0–524 ppm concentration.
This range is of interest for atmospheric CO2 gas monitoring. Figure 9b presents the
sensitivity of the proposed sensor design for the gas concentration of 0 ppm to 524 ppm. A
maximum sensitivity of 17.3 pm/ppm was obtained for gas concentrations higher than
400 ppm. However, for the gas concentration < 400 ppm, the concentration is still higher
than the ones reported in [28,38,42,45].
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5. Anticipated Manufacturing Process

The proposed sensor device can be manufactured by the execution of the following
steps, as shown in Figure 10. A thin chromium layer (5 nm–10 nm) is coated on the glass
substrate, followed by thermal evaporation or electron beam (E-beam) evaporation of
the gold layer. Chromium can be used to increase the gold adhesion on the substrate.
Afterwards, an optimized layer thickness of silicon is deposited on the gold layer by
utilizing chemical vapor deposition. E-beam lithography can be directly used to transfer
the MA patterns on the electron-sensitive film known as a resist. The E-beam modifies
the solubility of the resist, enabling the selective removal of the non-exposed regions of
the resist by immersing it in a developer. The sample is then etched with the help of an
appropriate dry etch method to form patterns of Si layers creating cylindrical MAs. In the
last step, the PHMB polymer can be deposited on the metasurface by spin-coating. The
thickness of the PHMB layer can be regulated by changing the spin speed, in addition to
the solution concentration.
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6. Conclusions

In conclusion, a metasurface based perfect absorber is designed and numerically
investigated via the finite element method. The metasurface is composed of silicon nano-
cylindrical meta-atoms, periodically arranged on a gold layer. Due to the impedance
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matching of the electric-field dipole and the magnetic-field dipole, the maximum absorp-
tion is obtained at the resonance wavelength. The absorption of >0.9 was obtained which
is independent of the polarization and angle of incidence of the light. Moreover, the gas
sensing characteristics of the metasurface based absorber were explored by depositing
a functional host material. For the detection of CO2 gas, polyhexamethylene biguanide
(PHMB) polymer was employed, which is capable of absorbing CO2 gas. The modification
in the refractive index of PHMB layer can be explained in terms of a redistribution of the
electron density of the polymer repeating units due to the binding of the CO2 molecules
resulting in a variation in its polarizability. The proposed gas sensor is capable of detect-
ing CO2 gas within a concentration range of 0–524 ppm with a maximum sensitivity of
17.3 pm/ppm. The proposed sensor configuration can be utilized for the detection of other
toxic gases by utilizing suitable functional host materials.
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