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Abstract: Nowadays, despite a negative impact on the natural environment, coal combustion is
still a significant energy source. One way to minimize the adverse side effects is sophisticated
combustion technologies, such as, e.g., staged combustion, co-combustion with biomass, and oxy-
combustion. Maintaining the combustion process at its optimal state, considering the emission of
harmful substances, safe operation, and costs requires immediate information about the process.
Flame image is a primary source of data which proper processing make keeping the combustion at
desired conditions, possible. The paper presents a method combining flame image processing with a
deep convolutional neural network (DCNN) that ensures high accuracy of identifying undesired
combustion states. The method is based on the adaptive selection of the gamma correction coefficient
(G) in the flame segmentation process. It uses the empirically determined relationship between the
G coefficient and the average intensity of the R image component. The pre-trained VGG16 model
for classification was used. It provided accuracy in detecting particular combustion states on the
ranging from 82 to 98%. High accuracy and fast processing time make the proposed method possible
to apply in the real systems.

Keywords: image processing; flame segmentation; classification; deep learning; VGG16; convolu-
tional neural networks; industrial combustion

1. Introduction

One of the negative side effects of rapid technological development is an increase
in environmental pollution. This is mainly due to emission into the atmosphere of by-
products of the energy production process, where hard coal is still the predominant raw
material. To counteract this situation, alternative sources of energy are sought, including
renewable fuels. One of the worth mentioning options is the co-combustion of pulverized
coal and biomass. Such an approach enables using the existing combustion facilities after
the proper adaptation and is economically advantageous. For both the chemical and
physical properties of the compounds of the fuel mixture are different and unsteady in
time, monitoring of the co-combustion process is highly recommended. Undesired states
of the process, especially unstable combustion can result from improper parameters of the
fuel mixture as well as malfunctions of the combustion facility. Therefore, recognition of
different states of the combustion process plays an important role taking into account its
effectiveness and safety.

It is important to obtain information on the combustion process with a minimum
possible delay that classical approaches such as analysis of the flue gases cannot maintain.
Using a flame image as a source of information practically eliminates the delay problem [1].
This method has other advantages. Firstly, it is non-invasive, and secondly—the informa-
tion has controlled spatial resolution. The power boilers usually have several dozens of
burners, which operation can be monitored independently when using image processing
based methods.
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Recently, the rapid advance of machine learning methods can be observed, especially
deep neural networks. Various architectures of such networks have been developed,
and many of them achieve excellent performance in image recognition tasks, including
flame images. Examples include deep convolutional neural networks [2–6], deep belief
networks [7,8], deep convolutional auto-encoder [9], deep convolutional auto-encoder
connected with the principal component analysis and the hidden Markov model [10],
deep, fully connected neural networks [11], deep convolutional selective autoencoder [12]
and various architectures followed by a symbolic time series analysis [13,14]. Each of the
architectures mentioned above plays a vital role in a specific application area. For example,
deep convolutional neural networks are often used for image and speech recognition and
for natural language processing. Deep belief networks reduce the data dimension. Deep
convolutional auto-encoders reduce the data dimension, denoise the input data, impose
a condition of rarity on the coding layer, randomly generate new data resembling the
learning data. Deep, fully connected neural networks are used in different architectures’
final layers to perform the classification task. Although the use of deep learning methods
is extensive, reports of their usage for diagnosing pulverized coal and biomass co-firing
based on flame images cannot be described as widespread.

The problem we tried to solve in the research presented was that together with
the fuel, a certain uncontrolled amount of air always gets into the combustion chamber,
which changes the standard (effective) value of the excess air coefficient. As a result, the
combustion conditions change, and the fuel ceases to be completely incinerated. Based
on the information about a new undesirable state, it is possible to restore the normal
(proper) conditions of the combustion process. Our research results allow us to obtain
such information by analyzing and classifying the flame image using DCNN. It is a new
approach in research on the diagnosis of pulverized coal and biomass co-firing. We are
not aware of the research in which deep learning algorithms would be used to solve this
problem. The proposed method significantly simplifies the stage of image data processing
compared to traditional machine learning algorithms because stages such as data pre-
processing, feature engineering, feature extraction and feature selection are eliminated. The
DCNN can reveal the internal features of individual combustion states based on raw data
obtained from images while ensuring high classification efficiency [15–17]. Additionally,
the relatively low consumption time of the method used creates a chance for its use in
industrial combustion systems.

Before applying DCNN, we had to segment the flame area and then extract the region
of interest (ROI). It is not a trivial problem because of the high variability of both the shape
and texture of the flame. In addition, segmentation is hindered by the background effect,
the brightness of which varies depending on the current thermal power in the combustion
chamber. To deal with this problem, a non-linear gamma correction has been applied. The
brighter image pixels (belonging to the flame) were only slightly dimmed, whereas the
darker pixels (those belonging to the background) were darkened to a much greater extent.
Thus, the background impact on segmentation quality was weakened. The magnitude of
change in the intensity of individual pixels depended on the value of the gamma correction
coefficient (G). In the work, an adaptive selection of this value was applied, based on the
intensity of the red component of the current image frame. The form of the function used
to calculate the required value of G was found experimentally. It should be emphasized
that the gamma correction was used only to obtain the most faithful contour of the flame,
regardless of the brightness of the background. The obtained contour was then overlapped
on the original image (without correction) and based on this image the ROI was extracted,
the center of which was in the contour’s centroid. Detailed description of this method can
be found in Sections 2.3 and 2.4.
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2. Materials and Methods
2.1. Experimental Setup

Investigations of pulverized coal and shredded biomass co-firing were carried out at a
laboratory stand, built of a cylindrical combustion chamber with a length of approximately
2.5 m and a diameter of approximately 0.7 m. A digital camera (Mikrotron MC1311 by
Mikrotron GmbH, Unterschleissheim, Germany) with a full-frame transfer matrix equipped
with a CamerLink interface was used to record the flame image. Its main parameters are
CMOS image sensor with a resolution of 1280 × 1024 pixels, a dynamic range of 59 dB,
sensitivity of 1600 bit/lux·s at 550 nm, acquisition speed of 500 frames/s at full resolution.
The video camera was attached to a high-temperature borescope installed in the chamber
sight glass at an angle of about 45◦ to the burner’s axis (Figure 1). Image frames of
800 × 800 pixels were recorded, in RGB mode with 24-bit color depth. During recording, a
fixed exposure time and a frame rate of 500 frames per second were maintained. Video
recordings for individual combustion variants were saved in mass storage in lossless AVI
files, with the duration of each recording being 300 s [18].

Sensors 2021, 21, x FOR PEER REVIEW 3 of 15 
 

 

2. Materials and Methods 

2.1. Experimental Setup 

Investigations of pulverized coal and shredded biomass co-firing were carried out at 

a laboratory stand, built of a cylindrical combustion chamber with a length of approxi-

mately 2.5 m and a diameter of approximately 0.7 m. A digital camera (Mikrotron MC1311 

by Mikrotron GmbH, Unterschleissheim, Germany) with a full-frame transfer matrix 

equipped with a CamerLink interface was used to record the flame image. Its main pa-

rameters are CMOS image sensor with a resolution of 1280 × 1024 pixels, a dynamic range 

of 59 dB, sensitivity of 1600 bit/luxs at 550 nm, acquisition speed of 500 frames/s at full 

resolution. The video camera was attached to a high-temperature borescope installed in 

the chamber sight glass at an angle of about 45 to the burner’s axis (Figure 1). Image 

frames of 800 × 800 pixels were recorded, in RGB mode with 24-bit color depth. During 

recording, a fixed exposure time and a frame rate of 500 frames per second were main-

tained. Video recordings for individual combustion variants were saved in mass storage 

in lossless AVI files, with the duration of each recording being 300 s [18]. 

Exhaust
Oil

burner

Dust

burner

High-temperature 

borescope with video 

camera

45°

Inspection opening

Combustion chamber

Video recording  

Figure 1. Overview of the camera mounting in the combustion chamber. 

During the tests, co-firing of mixtures of pulverized coal and biomass in the form of 

crushed straw was carried out, with different air and fuel proportions. The measurements 

were made at a constant fuel flow so that the calculated thermal output of the burner (Pth) 

was kept constant. The amount of incoming air was regulated, which affected the value 

of the excess air coefficient (λ). During the co-firing of the mixture of pulverized coal and 

biomass, the total combustion took place for λ ≈ 0.75; therefore this value of the excess air 

coefficient was considered the value corresponding to the "normal" combustion condi-

tions. On this basis, three values of the λ coefficient were adopted in the studies. The first 

corresponded to normal conditions (λ = 0.75). The second value corresponded to the in-

sufficient air (λ = 0.65), and the third to its excess (λ = 0.85). The tests were carried out for 

seven combustion variants, with different Pth and λ and where coal mixture with 10% of 

biomass (straw) has been examined (Table 1). 

Table 1. Variants of the combustion process. Pth – thermal power,  – excess air coefficient. 

Variant Pth (kW)  Fuel Flow (kg/h) Secondary Air Flow (Nm3/h) 

1 250 0.85 35.2 103.6 

2 250 0.75 36.0 73.2 

3 250 0.65 39.4 62.9 

4 300 0.85 44.2 132.5 

5 300 0.75 43.5 96.4 

6 400 0.75 59.7 181.3 

7 400 0.65 56.8 152.8 

Figure 1. Overview of the camera mounting in the combustion chamber.

During the tests, co-firing of mixtures of pulverized coal and biomass in the form of
crushed straw was carried out, with different air and fuel proportions. The measurements
were made at a constant fuel flow so that the calculated thermal output of the burner
(Pth) was kept constant. The amount of incoming air was regulated, which affected the
value of the excess air coefficient (λ). During the co-firing of the mixture of pulverized
coal and biomass, the total combustion took place for λ ≈ 0.75; therefore this value of the
excess air coefficient was considered the value corresponding to the "normal" combustion
conditions. On this basis, three values of the λ coefficient were adopted in the studies. The
first corresponded to normal conditions (λ = 0.75). The second value corresponded to the
insufficient air (λ = 0.65), and the third to its excess (λ = 0.85). The tests were carried out
for seven combustion variants, with different Pth and λ and where coal mixture with 10%
of biomass (straw) has been examined (Table 1).

Table 1. Variants of the combustion process. Pth—thermal power, λ—excess air coefficient.

Variant Pth (kW) λ Fuel Flow (kg/h) Secondary Air Flow (Nm3/h)

1 250 0.85 35.2 103.6
2 250 0.75 36.0 73.2
3 250 0.65 39.4 62.9
4 300 0.85 44.2 132.5
5 300 0.75 43.5 96.4
6 400 0.75 59.7 181.3
7 400 0.65 56.8 152.8
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2.2. Statistical Analysis

During the measurements, the combustion process took place in stationary conditions
regarding air and fuel flows and fuel mixture composition. On this basis, we considered
that a fragment of the flame image recording with a duration of about 3 s was sufficient
for use in further studies. Frames of video files, corresponding to various variants of the
combustion process, have been saved in the form of images with a size of 800 × 800 pixels.
Each video file has been converted to 1676 PNG image files with 24-bit color depth. Analysis
of the contribution of individual color components in creating a flame image showed that
the component of the red (R) color plays a fundamental role as shown in Figure 2.
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Figure 2. An average value of the color components for individual variants of the combustion process.
The results presented in the graphs were obtained for the entire set of 1676 images for each variant.

These charts were made for each combustion variant and show the average values
of the individual components for the entire data set. Due to the dominant role of the R
component, its intensity (i.e., the average value of all pixels) for each image was calcu-
lated. The probability density function for R component and each combustion variant and
corresponding box plots were presented in Figure 3a,b, respectively.

Sensors 2021, 21, x FOR PEER REVIEW 4 of 15 
 

 

2.2. Statistical Analysis 

During the measurements, the combustion process took place in stationary condi-

tions regarding air and fuel flows and fuel mixture composition. On this basis, we consid-

ered that a fragment of the flame image recording with a duration of about 3 s was suffi-

cient for use in further studies. Frames of video files, corresponding to various variants of 

the combustion process, have been saved in the form of images with a size of 800 × 800 

pixels. Each video file has been converted to 1676 PNG image files with 24-bit color depth. 

Analysis of the contribution of individual color components in creating a flame image 

showed that the component of the red (R) color plays a fundamental role as shown in 

Figure 2. 

 

Figure 2. An average value of the color components for individual variants of the combustion pro-

cess. The results presented in the graphs were obtained for the entire set of 1676 images for each 

variant. 

These charts were made for each combustion variant and show the average values of 

the individual components for the entire data set. Due to the dominant role of the R com-

ponent, its intensity (i.e., the average value of all pixels) for each image was calculated. 

The probability density function for R component and each combustion variant and cor-

responding box plots were presented in Figure 3a,b, respectively. 

  

(a) (b) 

Figure 3. Probability density functions of the frames intensity (a) and box plots showing the dispersion of the frames 

intensity around the median (b). The results presented in the graphs were obtained based on the analysis of the entire set 

of 1676 images for each variant. 

2.3. Gamma Correction 

At the beginning of the algorithm realizing the gamma correction, a lookup table 

(LUT) is built. During this operation, elements of the input array with values in the range 

Figure 3. Probability density functions of the frames intensity (a) and box plots showing the dispersion of the frames
intensity around the median (b). The results presented in the graphs were obtained based on the analysis of the entire set of
1676 images for each variant.

2.3. Gamma Correction

At the beginning of the algorithm realizing the gamma correction, a lookup table
(LUT) is built. During this operation, elements of the input array with values in the range
[0, 255] are scaled to the range [0, 1.0]. The new values are then raised to power with an
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exponent equal to the inverse of the gamma correction coefficient. This operation is carried
out according to the formula: O = I1/G, where: I—the value of the element of the input
array; O—the value of the element of the output array; G—gamma correction coefficient.
Finally, the obtained values are scaled back to the range [0, 255] and stored in the LUT table.
The gamma correction is based on the fact that for each pixel of the input image, a mapping
(new intensity value) is found in the LUT table. The set of all mappings creates the output
image (after correction). Values of coefficient G > 1 brighten the image, no changes are
made for G = 1, while for G < 1 the image is darker.

In the studies, an adaptive selection of the gamma correction coefficient value was
applied, depending on the intensity of the R component of the current image frame. The
statistical analysis allowed to determine mean values of frames intensity (meanR) for
particular variants: Variant 1—18 ± 1.49, Variant 2—19 ± 1.18, Variant 3—20 ± 1.92,
Variant 4—24 ± 3.17, Variant 5—33 ± 1.87, Variant 6—45 ± 6.53, and Variant 7—63 ± 6.44.
On this basis, for each variant, ten images were found for which the intensity of the R
component was equal to the average intensity determined earlier. Due to the similar mean
intensity values, for Variants 1–3 one value was assumed equal to 19. Then, for each of the
ten images selected for the given variant, flame segmentation was performed during which
the optimal value of the gamma correction coefficient was determined arbitrarily. The
averaging of determined experimentally ten results, allowed obtaining the optimal values
of the G coefficient. This way, the coordinates of five points (meanR, G) were found to
which the following exponential function was matched: G = 2.621 ∗ e−0.110 ∗ meanR + 0.371
(Figure 4). This function was further used in the segmentation process to adaptively
select the value of the gamma correction coefficient, depending on the intensity of the R
component of the current image frame.
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Figure 4. Optimal values of the gamma correction coefficient determined experimentally, based
on the segmentation quality, for the mean intensities of the R channel of individual variants (black
points). The blue line shows the course of the exponential function matched to the data points.

Figure 5 presents the results of gamma correction for sample flame images belonging
to different variants. The upper row (Figure 5a) shows the input images that correspond to
the different combustion variants and the different intensity values of the R component.
Observing these images, you can see that there is a stronger and stronger background effect
for the subsequent combustion variants (from left to right). Consequently, the area of the
flame is more and more strongly masked by the hot walls of the combustion chamber. The
bottom row (Figure 5b) shows the input images after correction according to the formula
defined empirically (Figure 4). It can be seen that the adaptive selection of the gamma
correction coefficient effectively eliminates the background of the image, regardless of the
average intensity of the R component. It creates better conditions for segmentation of the
flame area, as shown in Figure 6 where one can notice differences in the segmentation
results of the same flame image (Figure 6a) without and after gamma correction. The result
of the segmentation without correction contains significant background area (Figure 6b).
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While the use of adaptive gamma correction significantly improves the quality of the flame
area segmentation by eliminating the background (Figure 6c).
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Figure 6. Impact of gamma correction on the segmentation quality: (a) exemplary flame image
belonging to Variant 7; (b) segmentation result without gamma correction (the segmented object
includes also the large background area); (c) segmentation result after gamma correction.

2.4. Image Processing

All operations related to image processing were performed using Python 3.7.3 and
libraries OpenCV 3.4.1 and NumPy 1.16.4. The purpose of the processing was to extract
the square ROI, the center of which was the centroid of the flame contour. The square
shape of the ROI resulted from the requirements set by the classifier used. Regarding the
size of the ROI, two opposite necessities had to be taken into account. On the one hand,
this size should be as large as possible, because then the ROI contains a lot of information
that allows to effectively distinguish between different variants. However, on the other
hand, the smaller the ROI, the shorter the processing time and the smaller frame losses.
These losses occur when the extraction condition is not met, i.e., the ROI is not entirely
contained in the flame contour. To determine the percentage of picture frames for which
the extraction condition was not met, the segmentation algorithm for different sized ROIs
was tested. The results obtained are presented in Table 2.
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Table 2. Percentage of image frames discarded due to failure to meet the region of interest (ROI) ex-
traction condition depending on the ROI size. This condition means that the ROI must be completely
contained in the flame contour.

Variant 100 × 100 80 × 80 60 × 60 40 × 40

1 0.12 0.0 0.0 0.0
2 0.06 0.0 0.0 0.0
3 6.03 2.27 0.89 0.36
4 36.58 23.75 14.86 7.88
5 2.45 1.37 0.78 0.12
6 44.81 30.43 21.54 14.14
7 39.74 27.15 18.08 11.75

The problem of frame losses is very important because the flames belonging to various
variants are different. In the case of Variants 1–3, the flame area is relatively large and
regular, and the image shows a low dynamics in texture changes. These changes occur on a
large surface, so to capture differences between variants, the ROI must be large enough. For
the Variants 4–7, the flame area is more irregular with higher dynamics in texture changes.
Therefore, to make frame losses smaller, the ROI size must be smaller than for Variants
1–3. In the case of Variants 4–7, texture changes between consecutive frames occur on a
relatively small area, therefore a smaller ROI size contains enough information to ensure
effective classification. During the tests, it was assumed that frame losses cannot exceed
15%. Taking into account this assumption and previous considerations, in further research
the size of ROI equal to 100 × 100 pixels for Variants 1–3 and 40 × 40 pixels for Variants
4–7 was adopted.

The most important operations performed during image processing are listed below.

1. Reading a source image in PNG format, with 24-bit color depth and size of 800 × 800 pixels
(Figure 7a).

2. Calculating the intensity of the R component of the image as the average value of all
its pixels.

3. Performing gamma correction according to the procedure described in Section 2.3
(Figure 7b).

4. Image conversion to 8-bit greyscale.
5. Image histogram normalization.
6. Median filtration with a mask size of 33 × 33 pixels (Figure 7c).
7. Image thresholding using the Otsu method (Figure 7d). The results of several seg-

mentation methods were compared, including Otsu thresholding [19], Bradley thresh-
olding [20], level set method, adaptive thresholding, and active contour method.

8. Morphological operations (closing, opening) with the size of a structural element
equal to 3 × 3 pixels and detecting all contours in the image.

9. Finding the contour with the largest area (Figure 7e). We took advantage of the obser-
vation that statistically, among all contours present in the image, the one belonging to
the flame has the largest surface area.

10. Calculation of the contour’s centroid coordinates (Figure 7f). The coordinates of the
contour’s centroid were calculated using the formulas: x = m10/m00, y = m01/m00,
where: m00—zero order normal moment, m10, m01—the first order normal moments.

11. Finding a square of a size 100 × 100 or 40 × 40 pixels (depending on the image
variant) the center of which is in the contour’s centroid (Figure 7g).

12. Copying the ROI determined by the found square from the source image (without
gamma correction) provided that it is completely contained in the flame contour
(Figure 7h). If the condition is not met, the ROI extraction is not carried out.
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Figure 7. Results of the most important operations performed during image processing: (a) source
image; (b) the result of the gamma correction according to the function G = f(meanR) (Figure 4);
(c) greyscale image after histogram normalization and median filtering; (d) binary image after
thresholding with the Otsu method; (e) image after morphological operations (closing, opening)
and finding the contour with the largest area; (f) the image with the contour of the flame marked
and its centroid (blue cross); (g) image with the ROI marked (green square of a size of 100 × 100
or 40 × 40 pixels), the center of which is in the contour’s centroid; (h) the ROI copied from the
source image (without gamma correction). For greater readability, the above images show the central
part of the images processed that include the flame. The sizes of all images (except the ROI) were
800 × 800 pixels.

2.5. Deep Convolutional Neural Network

The Keras library includes many models for image classification (Xception, VGG16,
VGG19, ResNet, ResNetV2, ResNeXt, InceptionV3, InceptionResNetV2, MobileNet, Mo-
bileNetV2, DenseNet, NASNet). All these models have been trained on the ImageNet
collection containing approximately 1.4 million images divided into 1000 classes [21]. In
our studies, the number of images belonging to individual variants was 1676. In the context
of deep neural network learning, this is a small data set. In such cases, the practice of using
a network that has been previously trained on a large data set is often used [22]. If the
set was large enough and general enough, the spatial hierarchy of features learned by the
previously trained module could effectively play the role of the general model for image
processing. The features of this network can be helpful when solving various problems of
image processing, despite the fact that new problems require the recognition of completely
different classes than was the case with the original task.

The research was based on the VGG16 architecture developed by Karen Simonyan
and Andrew Zisserman in 2014 [23]. This model was chosen because of its simplicity
(it has the lowest topological depth among the models available in the Keras library). It
consists of two parts—the first one is a convolutional base, built from a series of connecting
layers (MaxPooling2D) and convolutional layers (Conv2D). The second part is a densely
connected classifier located at the end of the network. The study used a convolutional base
of the VGG16 model, because representations it taught present general concepts that are
suitable for solving various problems related to image processing. Instead of the original
classifier, we used our own classifier, built of two "Dense" layers (Figure 8). This is because
of the fact that the representations it learned are specific to the tested set of classes (variants
of the co-firing process) on which the model was trained.
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Figure 8. General scheme for implementing deep neural network consisting of a convolutional
base (blue line) and own classifier (red line) for binary classification. The meaning of the Keras
classes visible on the individual layers is as follows: Flatten—converts a 3-dimensional tensor to
a 1-dimensional vector; Dense—densely connected layer. The feature map has a shape (samples,
height, width, channels). The None parameter corresponds to any number of samples.

The network training was carried out in two phases (Figure 9). The first one was
feature extraction—the convolutional base has been frozen, and the added layers creating
a new classifier, were initiated randomly and trained over a period of 50 epochs using data
augmentation. The second one was fine tuning—the upper layers of the convolutional base
(layers 16–19) have been unfrozen and trained for a period of 100 epochs together with
new layers, also using data augmentation. At the end, the entire convolutional base has
been unfrozen.
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Figure 9. Sample plots of the accuracy (a) and loss (b) of training and validation processes for Variant
1 vs. 2 vs. 3. During the first 50 epochs, new layers of the network are trained, while the whole
convolutional base is frozen (feature extraction). Then the fine tuning starts, during which the upper
layers of the convolutional base are unfrozen and tuned for a period of 100 epochs together with the
new classifier.

Augmentation consisted of performing random, vertical, and horizontal transforma-
tions of the image, rotation, cropping, zooming in and reflecting half of the image in a
horizontal plane. As a loss function, binary cross entropy for binary classification and
categorical cross entropy for multi-class classification were applied. The optimization
algorithm was root mean square propagation (RMSProp) with a low value of the learning
parameter. It was 2 × 10−5 for the feature extraction phase and 1 × 10−5 for the tuning
phase. The low value of this parameter resulted from the fact that modifications of the
representation of the three tuned layers of the convolutional base had to be minimized. Too
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large changes in these values could harm data representations. The classification accuracy
was applied to evaluate learning results. In the last layer of the classifier, "sigmoid" for
binary classification and "softmax" for multi-class classification were used as activation
functions.

The specification of the hardware and software environment used to build the models
was as follows:

CPU Intel Core i5-3470 3.20 GHz 32 GB RAM
GPU NVIDIA GeForce GTX 1060 3 GB RAM
Operating system Windows 10 64-bit
Platform TensorFlow [24] 1.13.1
Platform CUDA 9.0
Library Keras [25] 2.2.4
Library cuDNN 7.0
Programming language Python 3.7.3

The construction time of the multi-class classification model, detecting Variants 1–3
(image size of 100 × 100 pixels), was about 34 min. In the case of the binary classifica-
tion model, for Variants 1 and 2 (image size of 100 × 100 pixels), this time was about
23 min. In turn, for models recognizing Variants 4 and 5 as well as 6 and 7 (image size of
40 × 40 pixels), the model construction time was 7 min. Table 3 shows the number of cases
belonging to individual variants used for models building.

Table 3. Number of cases belonging to particular variants.

Dataset 1 2 3 4 5 6 7

Full 1670 1671 1575 1544 1669 1439 1477
Training 837 837 787 772 836 719 739
Validation 418 419 394 386 419 360 370
Testing 415 415 394 386 414 360 368

3. Results

Four classifier models were built that implemented the following classification options:
Variant 1 vs. 3, Variant 1 vs. 2 vs. 3, Variant 4 vs. 5 and Variant 6 vs. 7. Images of a size
of 100 × 100 pixels were used in the first two models, while the last two models utilized
images of a size of 40 × 40 pixels. In each case, the entire set of images was randomly
divided into training, validation and test subsets (Table 3). As a result of models testing,
classification accuracy (ACC), loss, F1-score, recall and precision were calculated (Table 4).
Additionally, confusion matrices have been determined that provide information on the
errors made by the model when assigning observations to individual combustion variants
(Figure 10).

Table 4. Classification results.

Model Variant Precision Recall F1-Score Accuracy Loss Image size

Binary 1 1.00 0.95 0.98
0.98 0.06

100 × 100
3 0.95 1.00 0.98

Multi-
class

1 0.80 0.78 0.79
0.84 0.402 0.76 0.80 0.78

3 0.98 0.94 0.96

Binary 4 0.95 0.93 0.94
0.94 0.14

40 × 40
5 0.94 0.95 0.95

Binary 6 0.89 0.71 0.79
0.82 0.377 0.77 0.92 0.83
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All constructed classifier models are characterized by relatively high accuracy. In the
case of binary classification, the most accurate was the model that distinguished variants
1 and 3 (ACC = 0.98). The classifier of Variants 4 and 5 took second place (ACC = 0.94).
However, the smallest accuracy was obtained for the model built for Variants 6 and 7
(ACC = 0.82). This regularity is also reflected by the remaining measures of the classifi-
cation quality, i.e., precision, recall, F1-score and loss. More detailed information on the
recognition accuracy of individual variants is given in confusion matrices (Figure 10). We
can see that the worst situation is for Variant 6, in which case 29% of observations were
classified as Variant 7. For the remaining variants, the accuracy of the correct classification
was greater than 92%.

To test our flame segmentation method, we developed an application for identifying
variants of the co-firing process. The application was implemented in Python 3.7.3, using
OpenCV 3.4.1, NumPy 1.16.4, Keras 2.2.4. and TensorFlow 1.13.1. The first goal of the
application construction was to create a prototype that could work on the computer
controlling the flame monitoring camera in the combustion chamber. The second goal
was to determine the average number of frames processed per second for typical PCs that
could work as a workstation. The diagram presenting the general principle of application
operation is shown in Figure 11.
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Figure 11. The general principle of operation of the application for testing the method of identifying variants of the
co-firing process.

During the application testing, different variants of the co-firing process were sim-
ulated by sequential loading of the corresponding video files saved on the hard disk
(Figure 12). Each sequence contained 200 initial frames of the original video recording, so
the total number of frames used in the test was 600 for Variants 1–3 and 400 for Variants
4 and 5. Displaying the predicted label of the co-firing variant was the main objective
of the application, but additional information was also presented, helpful in assessing
the operation of the classifier model as well as the application itself. This information
included: the real label of the co-firing variant, the number of the current image frame and
the processing time.
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Figure 12. Application interface for testing the method of identifying co-firing variants: (a) an
example of incorrect classification; (b) an example of correct classification. At the top, the following
information is displayed: actual label of the currently displayed variant (green color), below—a label
of the variant recognized by the classifier (green color—correct classification, red—incorrect), to the
right—current image frame number, below—the frame processing time, including the time of the
ROI extraction and the co-firing variant prediction time using the constructed model. In the central
part, the contour of a flame and its centroid (blue cross) are marked as well as the ROI (green square),
the center of which is in the contour’s centroid.

Table 5 summarizes the test results in which the average times of: the ROI extraction
(text), co-firing variant prediction (tpred) and overall processing (tproc) were measured for
two computer systems on which only the necessary system processes were running. The
systems used had the following specifications:

• PC1—Intel Core i5-3470 3.20 GHz, 32 GB RAM, NVIDIA GeForce GTX 1060 3 GB,
Windows 10 64-bit;

• PC2—Intel Xeon E5-2660 2.60 GHz, 32 GB RAM, NVIDIA Tesla K20c 5 GB, Ubuntu
18.04.2 LTS 64-bit.

Table 5. Application test results for identifying variants of the co-firing process. The test used the
classifier model that detected Variants 1–3 and the model for Variants 4 and 5.

System Variant Image Size text tpred tproc

PC1 1-2-3 100 × 100 31 10 44
PC2 1-2-3 100 × 100 35 14 52
PC1 4-5 40 × 40 32 9 44
PC2 4-5 40 × 40 36 11 49

The meaning of the symbols used in Table 5 is as follows: text—average ROI extraction time; tpred—average time
of the co-firing variant prediction; tproc—average overall frame processing time. Average values were calculated
as a result of processing a video sequence consisting of 600 frames (100 × 100 pixels) for multiclass model and
400 frames (40 × 40 pixels) for binary model. All the measured times are expressed in milliseconds.

4. Discussion

The test results showed that the ROI extraction time is about three times higher than
the co-firing variant prediction time. Additional frame processing time (not included in the
test) is negligible in relation to the text and is about 3 ms. Thus, in an effort to reduce the
overall frame processing time tproc, one should try to optimize the ROI extraction algorithm.
Another possibility is to run this algorithm on the GPU, then the OpenCV library (used for
image processing) should be able to cooperate with the CUDA platform. On the basis of
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the conducted test, it can be concluded that the used, exemplary computer systems, process
about 20 frames per second, and the size of the processed images is not significant. In
turn, the entire pulverized –coal and biomass co-firing system is characterized by a certain
time constant. It can be understood as the time elapsing from the moment of changing
the system operation parameters, e.g., the excess air coefficient λ, until the moment when
the process in the combustion chamber stabilizes. Based on the observations of the real
industrial systems, we can say that this time ranges from several seconds to several minutes,
so it is larger than the frame processing time from two to three orders of magnitude. Thus,
the frame processing time on the level of 44–52 ms seems sufficient to allow the presented
flame segmentation method to be practically applied. At the same time, it can be concluded
that computer systems with parameters similar to those used in the test can be used at the
workstation to monitor the combustion process.

It should be noted that in the literature we did not find results concerning the solution
of the same classification problem as the presented. Therefore, as part of the comparison,
we refer to the results obtained when solving relatively similar (but not identical) problems
(Table 6). Comparing our own results with those of other authors, we can state that they
are at a similar level to those of other authors.

Table 6. Comparison of the classification results, where the subjects of study were flame images.

Application Architecture ACC Prec., Rec. No. in Ref.

Recognizing variants of pulverized coal and biomass co-firing DCNN 0.82–0.98 0.83–0.98,
0.81–0.98 Own results

Monitoring combustion quality (complete, partial, incomplete)
in a coal-fired boiler FLD+RBN – 0.96, 1.0 [6]

Recognizing the conditions of the pulverized coal combustion PCA+RWN 0.91 – [12]
Identifying burning states of oil, powder and normal one DCNN 1.0 – [26]

Detecting instability in an experimental combustion system
based on flame images and sound pressure DCNN 0.69–1.0 – [3]

Abnormal condition detection in the experimental
combustion system DBN 0.96 – [8]

Determination of combustion regimes using flame images of a
gas burner DCNN 0.98 – [2]

Detection of the stable, semi-stable and unstable combustion
status in a thermal power plant DCAE+PCA+HMM 0.97 – [10]

DCNN—Deep convolutional neural network; DBN—Deep belief network; DCAE+PCA+HMM—Deep convolutional auto-encoder,
principal component analysis and hidden Markov model; PCA+RWN—Principal component analysis and random weight network;
FLD+RBN—Fisher’s linear discriminant analysis and radial basis network; Prec.—precision; Rec.—recall.

5. Conclusions

A flame contour segmentation method was developed, based on the adaptive selection
of the gamma correction coefficient (G), depending on the current thermal power. The
method used the empirically determined relationship between the G coefficient and the
average intensity of the R component. Based on the VGG16 architecture, four classifier
models were built. Their average accuracy, for individual combustion variants, was as
follows: 1 vs. 3—98%, 1 vs. 2 vs. 3—84%, 4 vs. 5—94%, and 6 vs. 7—82%. A prototype
application for recognizing co-firing variants online let us evaluate the time-consuming
nature of the solutions applied. For the two test computer systems, the average frame
processing time ranged from 44 to 52 ms. Processing of approximately 20 frames per second
seems sufficient in a context of the delays occurring in the real combustion systems. Based
on the information about the appearance of a new undesirable state, normal conditions of
the combustion process could be restored.
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