
sensors

Article

Smart Artificial Markers for Accurate Visual Mapping and
Localization

Luis E. Ortiz-Fernandez , Elizabeth V. Cabrera-Avila , Bruno M. F. da Silva and Luiz M. G. Gonçalves *

����������
�������

Citation: Ortiz-Fernandez, L.E.;

Cabrera-Avila, E.V.; Silva, B.M.F.d.;

Gonçalves, L.M.G. Smart Artificial

Markers for Accurate Visual Mapping

and Localization. Sensors 2021, 21, 625.

https://doi.org/10.3390/s21020625

Received: 5 December 2020

Accepted: 9 January 2021

Published: 18 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Natalnet Associate Laboratories, Campus Universitário, Federal University of Rio Grande do Norte,
Natal RN 59078-970, Brazil; lortiz@dca.ufrn.br (L.E.O.-F.); vcabrera@dca.ufrn.br (E.V.C.-A.);
bruno.silva@ect.ufrn.br (B.M.F.d.S.)
* Correspondence: lmarcos@dca.ufrn.br; Tel.: +55-84-3215-3771

Abstract: Artificial marker mapping is a useful tool for fast camera localization estimation with
a certain degree of accuracy in large indoor and outdoor environments. Nonetheless, the level of
accuracy can still be enhanced to allow the creation of applications such as the new Visual Odometry
and SLAM datasets, low-cost systems for robot detection and tracking, and pose estimation. In this
work, we propose to improve the accuracy of map construction using artificial markers (mapping
method) and camera localization within this map (localization method) by introducing a new type
of artificial marker that we call the smart marker. A smart marker consists of a square fiducial
planar marker and a pose measurement system (PMS) unit. With a set of smart markers distributed
throughout the environment, the proposed mapping method estimates the markers’ poses from a set
of calibrated images and orientation/distance measurements gathered from the PMS unit. After this,
the proposed localization method can localize a monocular camera with the correct scale, directly
benefiting from the improved accuracy of the mapping method. We conducted several experiments
to evaluate the accuracy of the proposed methods. The results show that our approach decreases the
Relative Positioning Error (RPE) by 85% in the mapping stage and Absolute Trajectory Error (ATE)
by 50% for the camera localization stage in comparison with the state-of-the-art methods present in
the literature.

Keywords: smart markers; visual mapping; visual localization

1. Introduction

A recurring problem in computer science is the estimation of the 3D pose (position
and orientation) of an optical sensor that is capturing images of an environment. Different
solutions for the 3D camera pose estimation problem, as it is known in the literature, are
actively sought by the robotics [1,2], computer vision [3], virtual (augmented) reality [4],
and photogrammetry [5–7] communities, to name a few. The proposed systems and
algorithms have different performance requirements, according to the problem domain.
For example, algorithms proposed for augmented reality aim to estimate camera pose while
minimizing drift (accumulated pose error) and jitter (pose oscillation) at the same rate that
images are acquired (e.g., 30 frames per second). This improves the sense of immersion
for the user of that system [4]. A considerable portion of studies in computer vision and
automated photogrammetry [3,8] have as their main goal improving the accuracy of the 3D
models built from images. In photogrammetry [5–7], accuracy is a mandatory requirement.
However, the methods involved have a high associated cost, and most of the models cannot
be directly applied in real-time applications such as robotics and virtual reality.

In robotics, the main requirement is that the robot should be able to compute its
3D pose relative to a global reference frame in real-time and with enough accuracy to
allow its operation in a fully autonomous manner. This problem is so relevant that it
has a denomination, being known by SLAM (simultaneous localization and mapping) [9]
in the robotics community. To solve SLAM, proposed algorithms build a map of the

Sensors 2021, 21, 625. https://doi.org/10.3390/s21020625 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8578-4515
https://orcid.org/0000-0002-5550-392X
https://orcid.org/0000-0002-7780-7254
https://orcid.org/0000-0002-7735-5630
https://doi.org/10.3390/s21020625
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21020625
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/2/625?type=check_update&version=2


Sensors 2021, 21, 625 2 of 32

environment at the same time that the robot is localized within this map. For this, feature
extraction [10,11] plays an important role, since a large portion of camera pose estimation
methods are based on the use of natural features known as keypoints [1,12].

Nonetheless, in robotics applications that require more accurate pose estimation with-
out abdicating real-time performance, the exclusive use of a pipeline based on natural
feature extraction and matching is not sufficient. Keypoint extraction and matching algo-
rithms may be often confused by repetitive visual patterns or the total absence of visual
features in images. Additionally, the invariability to rotation and scale changes inherent
to keypoint extraction algorithms, such as SIFT (scale invariant feature transform) [13]
and SURF (sped up robust features) [14], is only partial and cannot be guaranteed for
every image.

Research has then been proposed aiming for more accurate camera pose estimation
with the integration of other techniques. Visual inertial SLAM [15] algorithms fuse visual
data from images with data gathered from other sensors, such as inertial measurement
units (IMUs). Another example is the integration of SLAM with the automatic detection of
fiducial markers [16,17] in the form of black and white squares, widely known as artificial
markers in the augmented reality community [18,19]. Notice that these are not marks of
the same kind present in photogrammetric images, which are named fiducial marks [20];
the inspiration came from there. As employed by the latter class of methods, these artificial
markers aid image-based SLAM algorithms by providing easy and unambiguous detection
of reference objects used in optimization routines. This in turn results in a more accurate
camera poses than those computed solely from image data without artificial markers.

Nevertheless, the resulting upper bounds for the errors of camera poses obtained
with artificial markers remain a problem. Some applications, such as the use of artificial
markers as ground truth for a SLAM dataset [21], still lack the required accuracy. In the
PennCOSYVIO application [21] the authors report a ground truth built solely with artificial
markers with a Relative Positioning Error (RPE) of approximately 10 cm in the translation
components.

In light of this discussion, this work proposes a camera pose estimation system based
on a novel type of artificial marker called the smart marker. A smart marker consists of a
square planar fiducial marker and a pose measurement system (PMS), which is built with a
distance sensor and an IMU. These markers can easily be built by extending existing square
fiducial marker systems (e.g., ArUco [18,19]) with the required electronic components.
The system works using visual information gathered from consumer-grade perspective
cameras and PMS data collected from a set of smart markers distributed throughout the
environment of operation. It is thus expected that the 3D poses of cameras capturing
images of smart markers may be computed with improved accuracy in comparison with
the use of visual SLAM solutions or purely visual marker-based pose estimation methods.
We opted to rely on artificial markers instead of natural keypoints (or tie points, as known
in photogrammetry [7]) to avoid three sources of significant error: (1) errors originated
from erroneous tracking of keypoints, (2) errors due to pure rotational camera movements
and (3) errors present in scenes without texture. This latter type of error occurs in some
indoor environments and is known to affect keypoint detection, and consequently, camera
pose estimation.

The operation of the smart markers for 3D camera pose estimation is enabled through
the use of the graph optimization framework [22,23]. This framework allowed us to
design a sensor fusion algorithm to merge the data from all involved sensors and build an
optimized graph of poses consisting of the global 3D poses of all smart markers present
in the environment. More precisely, a pose graph was built having as vertices the 3D
poses of each marker and as edges relative measurements (relative poses, orientations, or
translations) between a given pair of markers. Since there will be redundant information
(i.e., more than one path between two assorted nodes of the graph), the sum of the errors
on all edges can be minimized to yield a graph containing the optimal poses of the smart
markers. Although similar to bundle adjustment [24,25], the optimization algorithm



Sensors 2021, 21, 625 3 of 32

minimizes the sum of 3D alignment error present on all edges instead of the reprojection
error of keypoints on the images.

Accordingly, the proposed method can estimate the camera poses with an algorithm
divided into two stages. Firstly, the pose graph of all smart markers and cameras is
constructed from the data collected from images and PMS units and optimized to minimize
the total error within the graph. We call this first stage the mapping stage, which computes
a map in the form of a network of 3D rigid transformations, each of them attached to a
smart marker (i.e., the graph after optimization). In the second and online stage, images
of the smart markers are captured and another optimization procedure is executed to
compute the 3D pose of the camera in relation to a known set of (previously optimized)
smart markers. The minimization procedure operates in a pose graph similar to the first
stage, except that only the poses of detected smart markers in the image of the camera to be
estimated are considered, forming a subgraph of the complete network of transformations.
Since each detected marker gives a hypothesis for the camera pose, the localization method
computes the camera pose that minimizes the errors relative to all measurements in the
least-squares sense. This second stage is called the camera localization stage. In essence,
the camera localization stage assumes a camera with known intrinsic parameters [26] and
computes the camera pose based on known 3D structure. This has the same goal as the
perspective-n-point problem [27] (as known in the computer vision community) or the
space resection problem [7] (as known in the photogrammetry community), although in
our method the camera pose is obtained considering the 3D pose of the smart markers
instead of considering 3D points.

Therefore, two novel contributions are present in this paper: (a) the smart marker device
and (b) the two-stage algorithm for multimodal sensor fusion and camera pose estimation.

To validate our proposal, the mapping stage is compared to the Marker Mapper [28]
algorithm and to ground truth gathered by hand with more precise sensors. Similarly, the
camera localization stage is compared with the following SLAM methods: LibViso2 [29],
which uses natural keypoints; UcoSLAM [17] configured to use natural keypoints and
artificial markers; and the commercial 6-DoF pose estimation method available for the
Stereolabs ZED camera [30]. The results obtained in the experiments provide enough
evidence of the usefulness of the method. As will be demonstrated in the following sections,
our method decreases the RPE by ≈85% in the mapping stage and the absolute trajectory
error (ATE) in ≈50% in the camera localization stage. Additionally, the results support the
claim that it is possible to develop low-cost applications for robot pose estimation, including
but not limited to ground truth generation to benchmark visual SLAM algorithms.

The rest of the article is structured as follows. Section 2 lists the related work, including
the state of the art, and Section 3 formulates the problem. In Section 4 our approach is
introduced, and Section 5 discusses the experiments performed for validating it. Finally, we
present a discussion of the results in Section 6; the limitations of our method are discussed
in Section 7. Finally, the conclusions are in Section 8.

2. Background and Related Work

Methods based on fiducial markers are very popular for camera pose estimation with
acceptable precision and speed. Additionally, several fiducial marker types have been
proposed in the literature. In this section, we discuss the accuracy and the adopted term
fiducial markers, and then the related work on fiducial markers themselves—the work
using sensors’ and fiducial markers’ data fusion, and the work on mapping and localization
using fiducial markers that are all closely related to our work.

2.1. A Note on the Accuracy of Photogrammetry

In photogrammetry [5,6,8,31] the main goal is to improve the accuracy of the 3D
models built from images. Hence, accuracy is a mandatory requirement. This type of
application relies on highly-controlled images acquired from specific cameras in general
with a high-precision capture process—with a high associated cost, however. Some of the



Sensors 2021, 21, 625 4 of 32

techniques can be of inspiration and even adapted for lower-cost equipment such as cell
phones and cameras, and the community has done it since the appearance and first uses of
digital photography [8,32]. Nonetheless, most of the models cannot be straightforwardly
applied in real-time applications such as robotics and virtual reality. In these real-time
applications, precision is desired, but it can be neglected to a certain degree for running in
real-time, and in general online processing data using lower-cost equipment is permitted.

Cartographic or 3D maps, which are results from photogrammetry, should be as
perfect and accurate as possible, as they will generally be used for high-precision control.
They are in general produced following a series of steps after image acquisition [5,6], in a
very well controlled, currently automated pipeline of production for accounting for the
several issues regarding their precision and images resolution. Oppositely, as said above, in
this work we deal with online, real-time applications, so a different approach than the one
used in photogrammetry (and cartography) should be applied here as we do not have time
to post-process data. That said, one can notice that photogrammetry techniques, besides
being well settled in the literature cannot be straightforwardly applied in the robotic vision
problem, which is the topic here.

Additionally, the concept of fiducial marks and ground control points (GCPs) in
photogrammetry should be introduced to disambiguate from the one commonly used in
augmented reality [16,17], which is called fiducial markers. In photogrammetry, fiducial
marks are small crosses or small V-shaped indents located precisely on each of the four
corners or exactly midway along the four sides of a scanned-film photograph. After one
identifies the fiducial marks in a scanned image, they can be used with the fiducial marks
entered from the camera calibration report to establish an image coordinate system. In
general, the coordinates of the fiducial marks are a compulsory parameter for scanned-
film photographs. Images taken with digital cameras and cell phones do not contain
fiducial marks [20]. GCPs are elements present (or introduced) in the scene, with known
world coordinates, to provide the exterior orientation [5–7]. These elements can be natural
(house corners, triangulated points) or artificial markers that are put into the scene with
coordinates measured. In this work and in augmented reality the term fiducial markers
refer to planar markers that are generally built in the form of black and white squares, also
known as artificial markers [18,19].

It is also important to mention that modern photogrammetry [7,33] and the com-
puter algorithms designed for its automation [8] make extensive use of non-visual data
to meet the accuracy requirements. For example, the integrated sensor orientation [33]
approach proposes the use of IMU and GPS in a single encapsulation for photogrammetry
applications. Although similar to our approach of fusing non-visual data with images, a
substantial difference lies in the fact that we employ IMU and distance sensors on artifi-
cial markers, not on the image acquisition device. We discarded using GPS on the smart
markers because GPS signals are not available in indoor scenarios.

2.2. Camera Pose Estimation from Images

The estimation of camera pose from visual data is a well known and studied problem
in computer science. This study is mainly driven by virtual (augmented) reality [4],
computer vision [34,35], and robotics [1] applications. In fact, the problem has solutions
that are not exclusive to optical sensors [36].

Real-time camera pose estimation methods based on natural features (e.g., salient
keypoints such as SIFT [13] or SURF [14]) with known 3D positions or based on known
3D objects [4,34] have been proposed, and they are commonly referred to as camera
tracking methods. In addition to the use of known 3D/2D point correspondences, these
methods make use of RANSAC [27] to estimate mathematical models from projective
geometry [25,26] by excluding possible outlier data.

The problem has also been investigated without assuming known 3D structure or
camera geometry, in what is known as structure from motion (SfM) [3,35]. These systems
output 3D models in the form of dense textured meshes or dense point clouds as their final



Sensors 2021, 21, 625 5 of 32

results. For this, keypoint extraction and matching, along with RANSAC, are extensively
used to obtain an initial estimate for the imaged 3D structure and also for the relative
transformations between cameras. Similarly to photogrammetry, the main goal of SfM is
obtaining accurate 3D models from images, and therefore, real-time performance is not
achievable. To meet such strict accuracy requirements, the initial estimates for 3D structure
and camera poses are optimized in bundle adjustment (BA) [24,25]. BA optimizes 3D points
and camera poses (and optionally the camera intrinsic parameters [26]) by minimizing
the sum of reprojection errors, obtained by the differences in image coordinates between
the keypoint and its predicted image coordinates. These predictions are computed by
projecting the 3D points into the image from which the keypoints were extracted using the
initial camera pose and camera calibration as the projection parameters. A gradient-based
search for optimal 3D structure and camera poses yield the (non-linear) least-squares
solution for the problem. Since the number of optimized parameters in SfM applications is
in general large, BA computation of the full problem is not feasible in real-time.

In the last two decades, SfM tools have been adapted to work with real-time perfor-
mance. Needless to say, the required changes incur less accuracy than those obtained with
SfM. Methods proceeding in this direction are known as visual odometry [37] and enable
real-time 3D reconstruction by processing temporal sliding windows with 3D points and
camera poses to be incrementally optimized.

The advent of more precise visual sensors made it possible for the design of algorithms
focused on optimizing camera poses only without considering 3D points for the optimiza-
tion [1]. With this, the optimization engines commonly built based on BA were exchanged
by graph optimization engines [22,23], which employ the same numerical routines used by
BA to minimize the accumulated error on a pose graph. In turn, this resulted in systems
obtaining more accurate 3D reconstructions yet with real-time performance. Since the
graph optimization framework is very general by construction, it is possible to formulate
BA solutions within this framework with the appropriate tools (e.g., g2o [23]). Currently,
visual odometry has matured to integrate visual SLAM algorithms, as proposed by the
current state-of-the-art feature-based visual SLAM algorithms [38–40] or visual-inertial
SLAM [15,41–45], which works by fusing visual information with IMU, LIDAR, ToF, GPS
or mechanical odometry data.

2.3. Fiducial Markers

The Fourier tags [46] approach features a radial sinusoidal pattern, in which it stores
PSK-encoded information. It uses the circular shape of the marker to calculate its pose.
Other works use circular planar markers where the identification is encoded in concentric
rings of dots or circular sectors [47,48]. CCTag [49] relies on the number of gradient
magnitudes through an arc of the outermost ellipse and one of the inner-most ellipses
to deal with occlusions due to motion blur and illumination changes. However, circular
markers usually provide just one correspondence point (the center), making the detection
of several of them necessary for camera pose estimation.

An alternative to these previous approaches is a square planar marker that has been
used in the field of virtual (augmented) reality for many years. These markers each consist
of an external black border and an internal binary code for identification. Their main
advantage is that a single marker provides four correspondence points for pose estimation.
ARToolKits [50] is one of the first that uses square fiducial markers. It employs markers
with a custom pattern that is identified by template matching. The identification process
has several limitations, such as high computational time, a high number of false positives,
and considerable sensitivity to varying lighting conditions. BinARyID [51] introduces
the generation of customizable marker codes for identification but does not consider the
possibility of error detection and correction. ARToolkitPlus [52] allows the use of error
detection and correction techniques for occlusions. However, one of its main drawbacks
is that the dictionary of markers is fixed, and thus, optimal results in error detection and
correction capabilities are not achieved.



Sensors 2021, 21, 625 6 of 32

Despite the significant advances achieved so far, fiducial markers have some limita-
tions. If the marker is partially occluded, pose estimation cannot be done and the fixed size
of the marker makes it impossible to be detected under a wide range of distances. Some
authors have proposed alternatives to overcome the above issues. ArTag [53] handles the
partial occlusion using an edge-based method. Edge pixels are thresholded and connected
in segments, which are grouped into sets and used to create a mapping homography. Never-
theless, markers cannot be detected when more than one edge is occluded and the method
is not considered suitable for real-time applications. ChromaTag [54] presents a fiducial
marker that uses concentric inner red and green rings for robust color variation detection.

The most recent work of ArUco [18,19] introduced a method for fast and accurate
detection of fiducial markers. The method uses image segmentation for increased speed
and a multi-scale image to find the positions of the marker corners with sub-pixel accuracy.

2.4. Using Sensors and Fiducial Markers Data Fusion

Data fusions between fiducial markers and other sensors are also proposed in the
literature. For example, there are monocular visual-inertial SLAM approaches that fuse
6-DoF inertial measurements and observations of AprilTags using Extended Kalman Filter
(EKF) [55,56]. For these methods monocular and stereo cameras with embedded IMUs are
used, respectively, with these sensors mounted on the top of mobile robots.

Lopez et al. [57] present a method to fuse inertial information with visual information
of fiducial markers for state estimation in aerial robots. In the same form, a multi-sensor
fusion for indoor localization based on the ArUco marker is presented by Xing and col-
leagues [58]. This method uses a camera and sensors (inertial and ultrasonic) mounted in a
micro aerial vehicle (MAV).

2.5. Mapping and Localization Using Fiducial Markers

Methods based on natural keypoints suffer from some limitations; for example, they
fail in the case of pure rotational movements and require a certain amount of texture that is
not always available in indoor environments.

An alternative to tracking natural keypoints in images is detecting fiducial markers.
Klopschitz and other authors [59–61] introduced methods for solving visual SLAM based
on markers. However, they do not consider optimizing the estimated marker poses for the
ambiguity problem. The ambiguity in planar marker pose estimation arises when more than
one plausible pose solution for the marker pose is possible, which happens due to noisy coor-
dinates of the marker corners. Yoon and Salinas [28,62] proposed offline methods for marker
mapping (create a map of squared planar markers) and dealt with the ambiguity problem.

SPM-SLAM [16] builds a marker map incrementally as video frames are captured.
However, in this method, it is not possible to correct the errors in the poses of the markers
during the process of map creation, so the process must be repeated with new images.

As an improvement over SPM-SLAM, UcoSLAM [17] is introduced. This approach
combines natural keypoints and squared fiducial markers. An advantage of the method is
that camera localization can be done in the correct scale by observing a single marker. The
main drawback of this approach is that the accuracy decreases when no markers are present.

In addition to the methods mentioned above, commercial motion capture systems
(Vicon, Optitrack, PTI Visualeyez, etc.) are available on the market to obtain an accurate
location of a robot. These systems are usually highly accurate but are very costly, and their
use is limited to a certain workspace size. Additionally, these systems require a tedious
calibration procedure that needs to be repeated frequently to maintain accuracy.



Sensors 2021, 21, 625 7 of 32

Our work is an extension of Salinas’ work [28]; however, there are some strategical
differences between that approach and ours. First, we use novel smart markers to obtain an
accurate map of markers. Second, our proposal seeks to obtain an accurate camera localiza-
tion by optimizing and reducing errors in the marker map creation process. Furthermore,
we remark that all contents of this paper represent a contribution to the community that
works with visual odometry and SLAM. Additionally, to date, there are no other similar
works in the vision and robotics literature that employ fiducial markers with other sensors
in the same encapsulation to enable fusion between visual and IMU/distance data. Most
methods focus on equipping a camera and the robot (in any terrestrial, AUV, and UAV)
with other sensors but not the marker itself.

3. Problem Formulation

In this paper, we deal with two problems, offline mapping and online camera local-
ization. The mapping problem consists of computing a map in the form of a network of
3D rigid transformations, each of them attached to a smart marker (i.e., the graph after
optimization). We have opted to model the mapping problem as a pose graph as will be
described in Section 3.1.

In general, the offline mapping process has the steps shown in Figure 1. Each of these
steps is detailed below:

(a) Calibrate a camera;
(b) Place a set of smart markers in a scene and capture a video;
(c) Detect and get the visual information of each marker (red points referenced to

G(0, 0, 0));
(d) Compute the markers’ poses using the points obtained in step (c);
(e) Compute relative transforms between all pairs of markers’ poses;
(f) Measure the markers points (blue points) and poses (referenced to G(0, 0, 0)) using

the PMS unit of each marker;
(g) Compute relative transforms between all pairs of measured markers’ poses;
(h) Using the markers’ poses of step (d), the measured markers’ poses of step (f), and

the relative transformations of steps (e) and (g), create a graph of markers’ poses and
optimize it;

(i) After optimization save the optimal markers points (green points) and poses to use it
in a online camera localization process.

The second problem covered in this section is the camera localization using an optimal
marker map. In the same way as for the mapping problem, we describe the problem
as subgraphs of poses given by the camera and visible markers, as will be detailed in
Section 3.2.

The online camera localization process has the steps shown in Figure 2. Each of these
steps is detailed below:

(a) Set up camera and robot;
(b) Place a set of smart markers in a scene and capture an image;
(c) Load the optimized markers’ poses, from the mapping stage;
(d) Compute the camera pose captured by the fist visible marker;
(e) Compute the camera poses captured by the rest of visible markers (in case of existing)

in the image;
(f) Using the markers’ poses of step (c), the camera pose of step (d), and the additional

poses of step (e), create a graph of camera poses and optimize it.



Sensors 2021, 21, 625 8 of 32

Figure 1. Diagram of steps for the marker map’s construction. (a) The first step is to calibrate a camera. (b) Then, place a set
of smart markers in a scene and capture a video. (c) Detect and get the points of each marker. Compute the markers’ poses
using the points (d), and the relative transforms between all pairs of markers’ poses (e). (f) Measure the markers’ points
and poses using the PMS unit of each marker. (g) Compute the relative transforms between all pairs of measured markers’
poses. (h) Create a graph of markers’ poses and optimize it. (i) Finally, after optimization save the optimal markers points
and poses to use in an online camera localization process.

Figure 2. Diagram of steps for the camera localization. (a) Set up camera and robot. (b) Place a set of smart markers in a
scene and capture an image. (c) Load the optimized markers’ poses, from the mapping stage. (d) Compute the camera pose
captured by the fist visible marker. (e) Compute the camera poses captured by the rest of visible markers (in case of existing)
in the image. (f) Using the markers’ poses of step (c), the camera pose of step (d), and the additional poses of step (e), create
a graph of camera poses and optimize it.



Sensors 2021, 21, 625 9 of 32

3.1. Marker Mapping

In this section, we formulate mathematically and represent in a pose graph the map-
ping problem. Figure 3 shows two markers referenced in the same coordinate system,
the global reference system G. We can also see that each marker has four points (artifi-
cial landmarks) p1(x1, y1, z1), p2(x2, y2, z2), p3(x3, y3, z3) and p4(x4, y4, z4), with respect to
G(0, 0, 0).

Figure 3. Process to compute Pi for a marker set with n markers.

Using these four points we can compute the unit vectors x, y, z that define the local
coordinate system attached to the marker plane and the normalized vectors x̂, ŷ, ẑ with
Equations (1) and (2), respectively.

x = p2 − p1, y = p1 − p4, z = x× y (1)

x̂ =
x
||x|| = (x̂1, x̂2, x̂3),

ŷ =
y
||y|| = (ŷ1, ŷ2, ŷ3),

ẑ =
z
||z|| = (ẑ1, ẑ2, ẑ3).

(2)

The 3D marker position is defined by Equation (3), where tx, ty and tz are the compo-
nents of translation vector t measured from G(0, 0, 0) to the marker center.

tx = x1 +

∣∣∣∣ (x2 − x1)

2

∣∣∣∣, ty = y1 −
∣∣∣∣ (y4 − y1)

2

∣∣∣∣, tz =
∑4

l=1 zl

4
(3)

Then, the estimated pose Pi for the marker i in a set with n markers can be represented
by the homogeneous matrix in Equation (4).

Pi =


x̂1 ŷ1 ẑ1 tx
x̂2 ŷ2 ẑ2 ty
x̂3 ŷ3 ẑ3 tz
0 0 0 1

, where i = 1, . . . , n. (4)

Relying on the fact that with the support of some sensors (for example a PMS unit) we
obtain measurements Qi for the poses of each marker present in the set, each Qi is a matrix
composed of a rotation matrix (3× 3) and a translation vector (3× 1); i.e., it is a complete
observation of the pose Pi.

We can fuse the estimated pose Pi with the measured pose Qi to obtain an optimal
pose for each marker in a map.



Sensors 2021, 21, 625 10 of 32

With this, our mapping problem becomes a pose fusion problem. One of the ways
to represent a fusion problem is using a pose graph [23]. This type of representation is
composed of vertices (or nodes) and edges.

Specifically, for our fusion problem, the vertices are the estimated markers’ poses and
the edges are observations of the state of each vertex (i.e., poses measured from non-visual
sensors) from which the error between the estimated and measured pose is computed.

In Figure 4 the fusion problem is represented in pose graph form. Blue circles represent
the vertices Pi. Additionally, we can see that in the graph there are two types of edges; the
Qi (black arrows) are observations of sensors for the markers’ poses, and Ti,k (black dotted
arrows) is the total number of observations—m = 1, . . . , n(n− 1)/2—between two markers’
poses obtained from the smart markers (Equation (5)).

Ti,k = Q−1
i Qk =

[
Ri,k ti,k
0 1

]
, where k 6= i = 1, . . . , n. (5)

The error in each type of observation is calculated differently. Equation (6) is used to
compute the error in Qi, and Equation (7) is employed for Ti,k observations. Ei,k is the total
number of observations between two markers’ poses obtained from visual information.

uei = P−1
i Qi, where i = 1, . . . , n. (6)

bei,k = (P−1
i Pk)

−1(Q−1
i Qk) = E−1

i,k Ti,k, where k 6= i = 1, . . . , n. (7)

The fusion problem can be expressed as in Equation (8). In this equation, P∗1...n is the
pose Pi after optimization, c is the set of all pairs of markers, and the superscript > is the
transpose. uΩi represents unary information matrices (for the marker i) detailed later in
the Section 4.1.2.

P∗1...n = argmin
P1...n

n

∑
i

ue>i
uΩi

uei +
n

∑
i,k∈c

be>i,k
bΩi,k

bei,k (8)

The information matrix for the binary edges bΩi,k quantifies the information of an
observation (transformation between two marker poses). Therefore, the more accurate the
observation is, the higher the values in the information matrix. This measurement also
gives a reliability factor for each edge; i.e., edges with higher information matrices will
have a stronger influence on the optimization process.

In order to compute the binary edges, the four 3D points from a marker are trans-
formed with Equation (9). Then, we compute the mean of errors µi between the points
ipl and their transformation ip̂l using Equation (10), for N = 4. The variance of errors
σ2

i is obtained with Equation (11). Finally, the matrix information bΩi,k is computed by
Equation (12) where I is a (6× 6) identity matrix.

ip̂l = Ri,k
i+1pl + ti,k, where l = 1, . . . , 4. (9)

µi =
1
N

4

∑
l=1

ip̂l − ipl (10)

σ2
i =

1
N

4

∑
l=1

((ip̂l − ipl)− µi)
2 (11)

bΩi,k =
1
σ2

i
I, where k 6= i = 1, . . . , n. (12)



Sensors 2021, 21, 625 11 of 32

QiQ4 Q5 Q6

PiP4 P5 P6

P1 P2 P3P0

Q0 Q1 Q2 Q3

Ti,kbΩi,k

uΩi

Figure 4. Pose graph for fusion problem. uΩi and bΩi,k are the information matrices for unary and
binary edges respectively. P0 represents the origin of the marker map, G(0, 0, 0).

3.2. Camera Localization

The camera localization problem aims to compute the camera pose relative to the
reference system defined by a set of markers of known poses. For this, it is assumed that at
least one marker is present in an image and that the camera intrinsic parameters [26] are
known. In essence, solving camera localization involves computing a rigid transformation
relating the camera reference frame to the reference frame of a known set of 3D points, as is
the case for the perspective-n-point problem [27] or space resection problem [7]. However,
in our method, the camera pose is obtained considering the (previously optimized) 3D
pose of the smart markers instead of considering 3D points.

We propose that the natural points of the scene are not used to compute the camera
localization to avoid errors (due to tracking and correspondence mainly). Then, if a camera
views at least one marker of the smart marker map (whose optimal global poses are results
of the Equation (8)), we can compute a camera pose.

In our case, the camera may visualize more than one marker in a single image. In this
situation, it is necessary to calculate the camera localization by minimizing the squared
error of the poses obtained by each visible marker.

We formulate the camera localization problem as shown in the pose graph in Figure 5.
The black arrows represent the observations Ci,j of the camera pose given by each visible
marker Mi (if there are n markers visible in the image, there are n edges or hypotheses
for the camera pose). The red circles represent the vertices for the camera poses Cj (to be
optimized). The surrounding blue circles represent the vertices for the markers’ poses P∗i
(measured relative to G(0, 0, 0)).

Then, the edge error ei,j can be computed with Equation (13). In this equation, Cj is
the vertex that is being updated in the optimization loop and P∗i vertex is the pose of the
marker Mi, which is fixed (not optimizable).

ei,j = C−1
i,j (P

∗−1
i Cj), where i = 1, . . . , n; j = 1, . . . , s; (13)

Once we define the edges and vertices of our pose graph, we can define the camera
localization problem like Equation (14).

C∗1...j = argmin
C1...j

∑
i,j

e>i,jΩi,jei,j (14)



Sensors 2021, 21, 625 12 of 32

Finally, it is necessary to mention that each Cj is being optimized online and indepen-
dently of the other camera poses. In other words, the camera trajectory is optimized for
each instant of time j.

C0

P∗i

P∗1

Ci,0

C1,0

C1

P∗i

P∗5 P∗3

P∗6

Ci,1
C5,1 C3,1

C6,1

C2

P∗i

P∗8

P∗9

Ci,2

C8,2

C9,2

Cj

P∗i

P∗11

P∗13

Ci,j

C11,j

C13,j

Figure 5. Poses graph for the camera localization problem.

4. Proposed Solution

Solving Equation (8) means estimating the optimal position of the markers in a map.
To solve this problem, we need to define how to obtain the markers’ poses (estimated Pi)
and their measurements Qi, which is described next.

4.1. Solving Mapping

The Pi poses can be obtained from the visual information of simple fiducial markers
and the Qi poses can be measured using sensors. To implement this, we decide to attach a
square fiducial marker to a PMS unit, creating a new type of artificial marker as described
in Section 4.1.1.

4.1.1. Smart Markers

This section describes the first of our contributions, which is a new concept of marker
that we named a smart marker. Each marker of this type, in addition to a binary visual
pattern, has an inertial measurement unit (IMU) and two ToF distance meters encapsulated
in a device that we call PMS unit, as shown in Figure 6.

(a) (b)
Figure 6. Smart marker: a square planar fiducial marker in front (a); and an embedded pose
measurement system (PMS) unit with their coordinates systems at the back (b).



Sensors 2021, 21, 625 13 of 32

More specifically, each PMS unit has one IMU LSM9DS1 and two ToF ranging sensors
VL53L1X. The typical zero level offset for each sensor in the IMU (when it is static) is
±90 mg for the accelerometer measurement range of±8 g. For the magnetometer, the offset
is ±1 gauss for a range of ±4 gauss. In the gyroscope, the offset is ±30 dps for a range
of ±2000 dps [63]. On the other hand, the ToF sensors have a maximum ranging error of
±20 mm in ambient light conditions and when they are configured in a short-distance
mode (maximum distance 130 cm) [64]. In addition to the reported values, we performed an
accuracy analysis of all sensors used in our approach, with results presented in Section 5.1.

In Figure 7 we can see some important aspects regarding our smart markers. As the
inertial navigation reference system is in the IMU chip center, we align and fix it to the
IMU, with the marker center S. The positive rotation of the marker is defined as clockwise
in the direction of the axis of rotation (right-hand rule).

Figure 7. Possible configurations of markers within a scene; coordinate systems and measurements
obtained with the PMS units.

We employ a quaternion representation to describe the marker orientation in a three-
dimensional space. The quaternion (obtained from the IMU) that describes the orientation
of frame S relative to frame G is defined by Equation (15), where qw, qx, qy and qz are
scalars known as quaternion components [65].

G
S q =

[
qw, qx, qy, qz

]
(15)

The 9-DoF IMU data of a PMS unit are fused using the Madgwick algorithm [66] that
runs in an Esp32-Wrover module. In addition to being open-source, this algorithm has the
best performance (low computational load and operates at small sampling rates) for em-
bedded systems. The PMS algorithm is implemented with the Arduino IDE. Additionally,
the Esp32 module allows the marker to sends its position and orientation in a wireless and
synchronized way. It is important to indicate that smart markers can be implemented with
similar ICs and sensors to those mentioned before, not necessarily the same.

The marker localization referenced to G can be represented using directly the relative
distance or the translation components. The relative distance between two markers is the
square root of the sum of the squares of the x and y translation components. Then, if the
measurements of the components have errors (no matter how small these are), the relative
distance will have even bigger errors. For this reason, we use the individual translation
components to represent the marker localization.

In Figure 7 we can see a map with four markers placed using a previous alignment i.e.,
placed in a parallel (same plane xy) or co-planar form to the marker M1. The marker M1 is



Sensors 2021, 21, 625 14 of 32

considered the principal marker of the map because in their center is the global coordinate
system G(0, 0, 0).

Then, the relative translation components of the M2 referenced to G can be measured
using only two ToF sensors. One sensor measures the translation t̆z(2,1) along its z axis and
the other sensor measures the relative translation t̆x(2,3) along its x axis. In the case of the
Mn the localization referenced to G is the sum of the t̆z(n,2) and t̆z(2,1).

Is necessary to take into consideration that the markers must be placed in the same
plane xz, that is, at a similar height on the y axis. This restriction occurs because ToF
sensors need at least 50% of a Region of Interest (ROI) to be seen to accurately measure a
distance [67].

Finally, each PMS unit measures the pose Qi for the marker i in a set with n markers,
using the homogeneous matrix in Equation (16).

Q00 = 2q2
w + 2q2

x − 1
Q01 = 2(qxqy − qwqz)
Q02 = 2(qxqz + qwqy)
Q10 = 2(qxqy + qwqz)
Q11 = 2q2

w + 2q2
y − 1

Q12 = 2(qyqz − qwqx)
Q20 = 2(qxqz − qwqy)
Q21 = 2(qyqz + qwqx)
Q22 = 2q2

w + 2q2
z − 1

Qi =


Q00 Q01 Q02 t̆x
Q10 Q11 Q12 t̆y
Q20 Q21 Q22 t̆z

0 0 0 1

, where i = 1, . . . , n.

(16)

4.1.2. PMS Accuracy Representation

Our proposed PMS unit is made up of low-cost sensors (LSM9DS1 and VL53L1X), and
hence, the pose measurements can have a certain level of error. This error can be represented
using an asymmetric and positive semi-definite matrix known as the information matrix.
More specifically the matrix uΩi for marker i = 1, . . . , n (Equation (17)) represents the
information of the measurement error and can be computed from a inverse of the covariance
matrix Covi.

We assume, to simplify the problem that pose variables (x, y, z, qx, qy, qz) are indepen-
dent (or uncorrelated), then uΩi can be represented like a diagonal matrix.

uΩi = Cov−1
i =



1/σ2
x 0 0 0 0 0

0 1/σ2
y 0 0 0 0

0 0 1/σ2
z 0 0 0

0 0 0 1/σ2
qx 0 0

0 0 0 0 1/σ2
qy 0

0 0 0 0 0 1/σ2
qz


(17)

4.1.3. Mapping Optimization

Solving the mapping problem involves finding a solution to the Equation (8). One of
the ways existing in the literature to solve this equation is by using graph optimization.

The basic idea of graph optimization is to represent nonlinear least-squares problems
as embedded graphs and optimize them. This type of problem representation generally
is formed for nodes (vertices) and constraints (edges). The optimization aims to find
an optimal estimation of the node’s values which minimizes the errors determined by
the constraints.



Sensors 2021, 21, 625 15 of 32

In our implementation, we use the popular graph optimization library g2o [23]. The
g2o optimizer can be considered as the optimization engine managing everything. As the
optimization problems in mapping and localization (SLAM) fields are commonly mostly
sparse, we use the sparse optimizer.

The next step in the g2o optimization process is to define an optimization algorithm.
Defining this algorithm involves knowing the update equation for the mapping problem.

In order to define the update equation we can rewrite the Equation (8) like the
Equation (18), where v and w represents all unknowns in the unary (Equation (6)) and
binary (Equation (7)) error respectively.

F (v, w) =
n

∑
i

uei(v)>uΩi
uei(v) +

n

∑
i,k∈c

bei,k(w)>bΩi,k
bei,k(w) (18)

Then the optimization problem can be stated as in Equation (19).

v∗, w∗ = argmin
v,w

F (v, w) (19)

We solve the Equation (19) using Gauss–Newton method. If we find v0 and w0 as the
initial/rough estimations of v and w, the next step would be looking for a ∆v∗ and ∆w∗ to
achieve the Equation (20).

∆v∗, ∆w∗ = argmin
∆v,∆w

F (v0 + ∆v, w0 + ∆w) (20)

where F (v0 + ∆v, w0 + ∆w) can be expanded to be Equation (21).

F (v0 + ∆v, w0 + ∆w) =
n

∑
i

uei(v0 + ∆v)>uΩi
uei(v0 + ∆v) +

n

∑
i,k∈c

bei,k(w0 + ∆w)>bΩi,k
bei,k(w0 + ∆w) (21)

Applying first order Taylor approximation on uei and bei,k, we obtain the
Equations (22) and (23).

uei(v0 + ∆v) ≈ uei(v0) +
d(uei)

dPi
∆v (22)

bei,k(w0 + ∆w) ≈ bei,k(w0) +
d(bei,k)

dDi,k
∆w (23)

From Equations (22) and (23) we can obtain the Jacobian matrices for the unary
(Equation (24)) and binary (Equation (25)) error respectively. In this last equation, Di,k =

P−1
i Pk for k 6= i = 1, . . . , n.

u Ji =
d(uei)

dPi
(24)

b Ji,k =
d(bei,k)

dDi,k
(25)

With these Jacobian matrices, we can get the Equation (26).

F (v0 + ∆v, w0 + ∆w) ≈ ∑n
i (

uei(v0) +
u Ji∆v)>uΩi(

uei(v0) +
u Ji∆v)+

∑n
i,k (

bei,k(w0) +
b Ji,k∆w)>bΩi(

bei(w0) +
b Ji∆w)

= ∑n
i {uei(v0)

>uΩi
uei(v0) + [2uei(v0)

>uΩi
u Ji(v0)]∆v + ∆v>[u Ji(v0)

>uΩi
u Ji(v0)]∆v}+

∑n
i,k{bei,k(w0)

>bΩi,k
bei,k(w0) + [2bei,k(w0)

>bΩi,k
b Ji,k(w0)]∆w + ∆w>[b Ji,k(w0)

>bΩi,k
b Ji,k(w0)]∆w}

(26)

Simplifying Equation (26) we get:

F (v0 + ∆v, w0 + ∆w) ≈ ∑n
i ai(v0) + 2bi(v0)∆v + ∆v>Hi(v0)∆v+

∑n
i,k ai,k(w0) + 2bi,k(w0)∆w + ∆w>Hi,k(w0)∆w

(27)



Sensors 2021, 21, 625 16 of 32

where ai(v0), bi(v0), Hi(v0), ai,k(w0), bi,k(w0) and Hi,k(w0) are defined from the
Equations (28) to (33), respectively.

ai(v0) =
uei(v0)

>uΩi
uei(v0) (28)

bi(v0) =
uei(v0)

>uΩi
u Ji(v0) (29)

Hi(v0) =
u Ji(v0)

>uΩi
u Ji(v0) (30)

ai,k(w0) =
bei,k(w0)

>bΩi,k
bei,k(w0) (31)

bi,k(w0) =
bei,k(w0)

>bΩi,k
b Ji,k(w0) (32)

Hi,k(w0) =
b Ji,k(w0)

>bΩi,k
b Ji,k(w0) (33)

If F in the Equation (27) is convex, or at least locally convex in the region close to
(v0, w0), F (v0 + ∆v, w0 + ∆w) is the minimum if the gradient ∇F is equals to 0
(Equation (34)).

∇F =

 ∂F
∂∆v

∂F
∂∆w

 = 0 (34)

which leads to: [
∑n

i [2bi(v0) + 2Hi∆v∗]
∑n

i,k[2bi,k(w0) + 2Hi,k∆w∗]

]
= 0 (35)

then we can solve ∆v∗ and ∆w∗:[
∑n

i Hi(v0)∆v∗

∑n
i,k Hi,k(w0)∆w∗]

]
=

[
−∑n

i bi(v0)
−∑n

i,k bi,k(w0)

]
(36)

The above equation can be arranged in a sparse matrix in the form of the
Equation (37). This equation is known as the update optimization equation.[

H(v0)∆v∗

H(w0)∆w∗

]
=

[
−b(v0)
−b(w0)

]
(37)

In order to find ∆v∗ and ∆w∗, its necessary to compute H(v0)
−1 and H(w0)

−1. Just as
mentioned above, we assume that H is a sparse matrix and its inverse can be computed
using a g2o sparse solver.

The g2o solver needs the method for solving the inverse matrix and the sparse matrix
structure to be defined. Since our problem is of type Ax = b, we use a linear solver, and
Cholmod [68] as the back-end library to solve this linear problem.

When solving for a sparse matrix, g2o treats the matrix as blocks to do the Schur
Complement. To treat it correctly it is necessary to specify how the matrix is structured.
For the mapping problem, we optimize the 6-DoF marker pose; therefore, the block size of
the matrix H will be 6× 1.

Once we specific the g2o solver, we can define the optimization algorithm. To our
implementation, we use the Gauss–Newton algorithm.

After that the optimization algorithm is fully defined and created, we can model the
optimization problem by adding vertices and edges into the g2o optimizer. Here we define
the reference marker vertex as fixed and the other as optimizable. Finally, after running the



Sensors 2021, 21, 625 17 of 32

optimizer for some interactions we can get the optimal (in the least-squares sense) result
for the Equation (8) as shown in the experiments in Section 5.3.

4.2. Solving Camera Localization

In Section 3.2 we define the camera localization problem like the Equation (14). The
solution to this problem involves the use of the optimal smart marker map described in
Section 4.1.1.

Then, in the same form that in the previous section we solve the camera localization
problem using a pose graph optimization with g2o.

Optimization of Camera Localization

In order to find the update equation for the camera localization problem we can
rewrite the Equation (14) like the Equation (38), where s represents all unknowns in the
error defined for the Equation (13).

C(s) =
n

∑
i

ei(s)>Ωiei(s) (38)

Solving the Equation (38) using the same process that was shown in Section (4.1.3) we
can find the Equation (39) that is the optimization update equation for the camera problem.

H(s0)∆s∗ = −b(s0) (39)

To estimate ∆s∗ it is necessary to compute the inverse of H. Then, to calculate this
inverse we assume that H is a sparse matrix and use a g2o sparse solver. Specifically, we
use a solver of type linear and a block size for H of 6× 1 because we are optimizing a 6 DoF
camera pose.

We use the Gauss–Newton algorithm to optimize and adding vertexes and edges into
the g2o optimizer. Here the vertices for the markers’ poses are fixed and a camera vertex is
optimizable.

After running the optimizer for some interactions we can find the optimal camera
localization as shown in the experiments in Section 5.4.

Finally, note that for the mapping implementation in Section 4.1, it is necessary that a
frame has at least two visible markers for the optimization process to be computed. After
that, the camera localization of the Section 4.2 can be estimated even if only one marker is
visible in a frame.

5. Experiments

In this section, we detail the experiments carried out to validate our proposal. First, in
Section 5.1 we evaluate the accuracy of the orientation and position sensors. LSM9DS1 and
PCEVDL16I sensors were used to measure the markers and camera orientation, respectively.
The VL53L1X is used to measure the PMS localization within a map and the GLM80 was
used to measure the camera position.

Since our method is built upon two different processing stages (mapping and camera
localization), we conducted two different experiments, each of them being responsible
for assessing a different stage of the system. The first experiment evaluates the creation
process of the map of smart markers, i.e., the graph with the optimized poses of the smart
markers. For this, two different datasets are used. The second experiment evaluates the
camera localization stage in two distinct datasets. In both experiments, the datasets cover
different configurations of markers placed throughout the environment.

Our method is evaluated quantitatively by two different error types: Relative Position-
ing Error (RPE) and Absolute Trajectory Error (ATE). With these two measurements, it is
possible to highlight the capabilities of the proposed system concerning different properties.

The RPE metric is used to quantify the accuracy of the built map of smart markers
by measuring the relative transformations between the poses of all possible pairs of smart



Sensors 2021, 21, 625 18 of 32

markers in comparison to the ground truth. This is especially useful if only sparse, relative
relations are available as ground truth [69], which is our case. Besides, the translational
or rotational counterparts of this metric can be evaluated separately. A lower RPE error is
evidence that the spatial relations between the smart markers are consistent with the actual
placement of the markers on the environment.

On the other hand, the global consistency of a camera trajectory is evaluated using
the ATE metric. In this error type, the error is computed directly between the estimated
camera poses and a corresponding ground truth camera pose.

5.1. Evaluation of Sensors

Our approach uses two ground truths, one for the markers’ poses and the other
for the camera poses. These two ground truths were made by hand using a modified
(to capture data at a rate of 15 Hz) laser distance meter Bosh GLM80 and a vibration
analyzer PCEVDL16I. Moreover, a smart marker has a square fiducial marker and a PMS
unit. Each PMS unit has one 9-DoF IMU LSM9DS1 and two ToF ranging sensor VL53L1X.

We set up the accelerometers of LSM9DS1 and PCEVDL16I, with a measurement
range of ±2 g and ±16 g, respectively. While that LSM9DS1 gyroscope was set up with a
range of ±245 dps.

The sensor VL53L1X was configured to use a field of view of 27◦ and a short-distance
mode (min. dist. 4 cm, max. dist. 130 cm).

In this section, we analyze all sensors in the same conditions, in a laboratory with a
temperature of 22 ◦C, ambient light of ≈350 lux, and a capture rate of 15 Hz.

We use the Equations (40)–(42), to compute the accuracy, repeatability and total error,
respectively.

The accuracy ai is the difference between the mean of mj=1,...,k measures and the actual
measure mi=1,...,l .

ai = µ(mj)−mi =
1
k

k

∑
j=1

mj −mi (40)

The repeatability ri is the standard deviation of the mean of mj=1,...,k measurements.

ri =
σi√

k
=

1
k

(
k

∑
j=1
|mj − µ(mj)|2

)1/2

(41)

The total error ti of the actual measure mi=1,...,l is the sum of accuracy ai and repeata-
bility ri.

ti = ai + ri (42)

5.1.1. Evaluation of Orientation Sensors

The analysis was made to verify the accuracy, repeatability, and total error in terms
of degrees (roll, pitch, yaw) from each axis when the sensor was static with no physical
acceleration or magnetic fields introduced.

The data for the orientation sensors analysis was obtained using an automatic mobile
platform and an LSM9DS1 sensor (with Madgwick fusion algorithm [66]), as shown in
Figure 8. For each axis of rotation (x, y, z) we take mi=0,...,90◦ angles measures. The interval
or step in between each set of measures mi is one degree.

We capture data for five minutes, i.e., we get k = 4500 measurements for each angle
between 0 to 90◦. The results of accuracy, repeatability and total error for x–roll, y–pitch
and z–yaw axes of the LSM9DS1 sensor, are show in the Figure 9a–c, respectively.

In the same form, using the device PCEVDL16I we take mj=1,...,4500 measurements for
mi=0,...,90◦ angles with a step of 1◦. In the Figure 10a–c we can see the results for this device.



Sensors 2021, 21, 625 19 of 32

(a) (b)

(c)
Figure 8. Schematic for evaluating the accuracy, repeatability, and total error, in (a) x–roll, (b) y–pitch, and (c) z–yaw axes of
the orientation sensors.

−0.50

−0.25

0.00

0.25

0.50

a i
[d
eg

]

ai[deg]

0.00

0.05

0.10

0.15

0.20

r i[
de

g]

ri[deg]

0 20 40 60 80
mi[deg]

−0.25

0.00

0.25

0.50

0.75

t i[
de

g]

ti[deg]

(a)

−0.50

−0.25

0.00

0.25

a i
[d
eg

]

ai[deg]

0.00

0.05

0.10

0.15

r i[
de

g]

ri[deg]

0 20 40 60 80
mi[deg]

−0.25

0.00

0.25

0.50

t i[
de

g]

ti[deg]

(b)
Figure 9. Cont.



Sensors 2021, 21, 625 20 of 32

−1.0

−0.5

0.0

0.5

a i
[d
eg

]
ai[deg]

0.0

0.1

0.2

0.3

r i[
de

g]

ri[deg]

0 20 40 60 80
mi[deg]

−0.5

0.0

0.5

1.0

t i[
de

g]

ti[deg]

(c)
Figure 9. Results of accuracy, repeatability, and total error, for (a) x–roll, (b) y–pitch, and (c) z–yaw, axes of the LSM9DS1.

−0.4

−0.2

0.0

0.2

a i
[d
eg

]

ai[deg]

0.000

0.025

0.050

0.075

0.100

r i[
de

g]

ri[deg]

0 20 40 60 80
mi[deg]

−0.4

−0.2

0.0

0.2

t i[
de

g]

ti[deg]

(a)

−0.2

−0.1

0.0

0.1

0.2

a i
[d
eg

]

ai[deg]

0.00

0.02

0.04

0.06

0.08

r i[
de

g]

ri[deg]

0 20 40 60 80
mi[deg]

−0.1

0.0

0.1

0.2

0.3

t i[
de

g]

ti[deg]

(b)
Figure 10. Cont.



Sensors 2021, 21, 625 21 of 32

−0.50

−0.25

0.00

0.25

0.50

a i
[d
eg

]

ai[deg]

0.00

0.05

0.10

0.15

r i[
de

g]

ri[deg]

0 20 40 60 80
mi[deg]

−0.25

0.00

0.25

0.50

0.75

t i[
de

g]

ti[deg]

(c)
Figure 10. Results of accuracy, repeatability, and total error, for (a) x–roll, (b) y–pitch, and (c) z–yaw, axes of the PCEVDL16I.

5.1.2. Evaluation of Position Sensors

The data for the distance sensors evaluation was obtained using a VL53L1X sensor
and a grey 17% reflectance chart target, as shown in Figure 11. We maintain the sensor
static and move the target from 4 to 130 cm, then a set of mj=1,...,k distance measurements is
taken each centimeter.

Figure 11. Schematic for evaluating accuracy, repeatability, and total error, in range of the axis of the
position sensors.

After five minutes of samples for each distance mi, we get a total of k = 4500 measures,
then we compute the accuracy ai, repeatability ri, and total error ti for the sensor configured
in short mode.

In Figure 12a,c,e, we can see the results of the analysis for the VL53L1X.
In the same form, using the laser meter GLM80 we take mj=1,...,4500 measurements for

mi=10,...,1500 cm distances with a step of 10 cm. In the Figures 12b,d,f we can see the results
for the laser meter used to create the ground truths of the markers and camera position.

Finally, for better understanding, the graphics results, the limits of accuracy, repeata-
bility, and total error for each sensor analyzed are presented in Table 1.



Sensors 2021, 21, 625 22 of 32

0 200 400 600 800 1000 1200
mi[mm]

−2

0

2

4

a i
[m

m
]

ai[mm]

(a) (b)

0 200 400 600 800 1000 1200
mi[mm]

0.0

0.5

1.0

1.5

r i[
m
m
]

ri[mm]

(c) (d)

0 200 400 600 800 1000 1200
mi[mm]

−2

0

2

4

t i[
m
m
]

ti[mm]

(e) (f)
Figure 12. Results of (a) accuracy, (c) repeatability, and (e) total error for the sensor VL53L1X and (b,d,f) for the distance
meter GLM80.

Table 1. Results of the accuracy, repeatability, and total error for the sensors: LSM9DS1, PCEVDL16I,
VL53L1X, and GLM80.

Sensor Axis Accuracy Repeatability Total Error

LSM9DS1
x–roll [0–90◦] ±0.53 ±0.20 ±0.73

y–pitch [0–90◦] ±0.52 ±0.17 ±0.69
z–yaw [0–90◦] ±0.72 ±0.37 ±1.09

PCEVDL16I
x–roll [0–90◦] ±0.2 ±0.10 ±0.3

y–pitch [0–90◦] ±0.21 ±0.08 ±0.27
z–yaw [0–90◦] ±0.50 ±0.19 ±0.69

VL53L1X range [40–1300 mm] ±3.35 ±1.48 ±4.83

GLM80 range [100–15,000 mm] ±1.81 ±0.65 ±2.46



Sensors 2021, 21, 625 23 of 32

5.2. Hardware Setup and Dataset Description for Mapping and Camera Localization Experiments

All experiments were run on an nVidia Jetson Xavier. The ArUco library [19] was
employed for marker detection in the video sequences recorded with a calibrated Stereolabs
ZED camera [70,71] mounted on top of a Pioneer 3AT robot, which is shown in Figure 13.
All sensors and devices were calibrated and shared the same coordinate system. The
measures taken by any device in the platform are referenced to the left camera coordinate
system, as shown in Figure 13.

Figure 13. Hardware used for the experiments consisted of a Pioneer AT robot with the ZED stereo
camera mounted on its top, and with the coordinate system origin referenced to the left camera center.
The x axis is to the right of the robot (red arrow), y is pointing down (green arrow), and z is to the
front (forward) of the robot (a right-hand coordinate system is used).

Using the ZED camera we record four datasets for the experiments. Table 2 provides
details about the recorded datasets. The sequences M-Seq1/hall and T-Seq3/hall have
fourteen (30 × 30 cm) smart markers placed in an indoor hall of size 2 × 20 m (Figure 14a).
The sequences M-Seq2/room and T-Seq4/room consists of images capturing nine smart
markers distributed within a rectangular room of size 7 × 5 m (Figure 15a).

Table 2. Descriptions of video sequences for mapping and localization experiments.

Dataset Name Duration [s] f.p.s Resolution [px]

M-Seq1/hall 135 15 2208 × 1242

M-Seq2/room 51 60 1280 × 720

T-Seq3/hall 50 15 2208 × 1242

T-Seq4/room 9 60 1280 × 720

5.3. Evaluation of Smart Marker Mapping

In this section, we discuss the results of the experiments assessing the accuracy of the
maps built by our method. The mapping stage is evaluated using the datasets M-Seq1/hall
and M-Seq2/room. To do this, we compare the Marker Mapper [28] method from the
ArUco library to our method using the poses of all markers as ground truth. The mapping
results are shown in Figures 14 and 15.

For the experiment with the dataset M-Seq1/hall (Figure 14c), specifically in the x
translation component, we can see that the two approaches are close to ground truth until
marker #5. A slight difference between the results of our method and Marker Mapper
can be seen starting from marker #6. In the y component is where the greatest difference
between the two proposals occurs. Our last marker #13 is at y = −5 cm approximately,
while the estimate from Marker Mapper has y = 29 cm. These differences can be seen
more clearly in the 3D reconstruction shown in Figure 15b. In the z translation component,



Sensors 2021, 21, 625 24 of 32

both our method and Marker Mapper are very close to ground truth and do not exhibit
large errors.

The results for the experiment with the dataset M-Seq2/room are shown in Figure 15c.
In the x component, the two approaches are close to the ground truth. However, for the y
component, the estimates of the Marker Mapper method have markers #1 to #8 with large
errors (2 to 6 centimeters) for the height of the markers compared to the ground truth. In z
it can be seen that all markers pose on our map have a small error regarding the ground
truth while the Marker Mapper poses #5 to #7 have the largest errors. This fact can be better
visualized in Figure 14b.

(a) (b)

(c)
Figure 14. Evaluation of the mapping stage with smart markers with dataset M-Seq1/hall. Snapshots of smart markers
distributed on the environments (a). Marker maps comparison (b). Three-dimensional reconstruction (c) in which red plus
markers represent the Marker Mapper position estimates, green markers represent smart marker (our method) position
estimates, and black are ground truth position estimates.



Sensors 2021, 21, 625 25 of 32

(a) (b)

(c)
Figure 15. Evaluation of the mapping stage with smart markers with dataset M-Seq1/hall. Snapshots of smart markers
distributed in the environments (a). Marker maps comparison (b). Three-dimensional reconstruction (c) in which red plus
markers represent the Marker Mapper position estimates, green markers represent smart marker (our method) position
estimates, and black are ground truth position estimates.

Table 3 shows the translational and rotational RMSE of RPE quantifying the accuracy
of our method and Marker Mapper method. As can be observed from the results, our
method is more accurate in both datasets compared to Marker Mapper. More importantly,
the accuracy improvement is substantial, since our method can reduce the errors by one
order of magnitude for the translational RPE in the two datasets. Specifically, for the dataset
M-Seq1/hall, our map has a translational RPE 86% less than the Marker Mapper map. For
the dataset M-Seq2/room, our approach reduces the error in 88% in comparison to the
Marker Mapper map.



Sensors 2021, 21, 625 26 of 32

Table 3 also shows the processing times for the mapping stage of our method and
Marker Map method. The values presented in the table are similar for both approaches.
Nevertheless, this stage is performed offline by both methods and hence, the processing
times are shown to provide an evidence for the fact that the use of smart markers does not
incur larger computation times.

Table 3. Accuracy of the generated map of markers. RPE (RMSE) computed from translational and
rotational pose parts, and processing times for datasets M-Seq1/hall and M-Seq2/room.

Method Dataset RPEtrans [m] RPErot [rad] Comp. Time [ms]

Marker Mapper M-Seq1/hall 0.045 0.031 7420
M-Seq2/room 0.107 0.021 890

smart markers (proposed) M-Seq1/hall 0.006 0.03 7440
M-Seq2/room 0.013 0.019 930

5.4. Evaluation of Camera Localization Using Smart Markers

In this second experiment, we discuss the accuracy of the online stage (camera local-
ization) of the proposed method. For this, we capture images of smart markers with known
poses (computed from the mapping stage). The camera poses computed by the camera lo-
calization stage of our method are compared to camera poses computed by UcoSLAM [17],
LibViso2 [29] and the proprietary ZED tracking API [30]. The first approach is a keypoint
(artificial and/or natural) based SLAM method able to detect squared fiducial markers,
and thus allowing scale estimation for the monocular SLAM case. The second approach
uses an 8-point algorithm for fundamental matrix estimation and estimates scale assuming
that the camera is moving at a known and fixed height above the ground. Finally, the third
method uses stereo vision to estimate the camera 6-DoF pose with a proprietary algorithm.
These last two approaches use natural keypoints to estimate camera pose.

Of the methods mentioned above, the only one that uses artificial keypoints is
UcoSLAM; therefore, it is the only one that is in the same category as our proposal. As will
be shown later, our method is more accurate. Comparisons with the other two approaches
(using natural keypoints) are to demonstrate the accuracy benefits of using smart markers
over natural keypoints.

For the evaluation of camera localization, we use datasets T-Seq3/hall and T-Seq4/room.
In these data sequences, the camera odometry trajectories are analyzed in two different
locations: on a straight hall and a rectangular room. In both cases, the ground truth
trajectories were measured using industrial distance meter laser and IMU.

The accuracy of the computed poses are assessed by the RPE and ATE error metrics.
While the ATE provides an absolute comparison to the ground truth pose, the RPE error
provides a measurement of local trajectory consistency [72]. We compute the RPE with
∆ = 1, i.e., we compute the error between consecutive image pairs. For example in the
dataset T-Seq3/hall we have 750 frames, using ∆ = 1, we have 749 pairs of frames to
compute the RPE.

Figure 16 shows the results for the camera localization evaluation. For dataset T-
Seq3/hall, Figure 16a shows the comparison of translation components of the trajectories
of all evaluated methods and the ground truth.

In the x component LibViso2 results is close to ground truth from t = 0 to t = 35.
From t = 35 to the end of the trajectory, the trajectory computed by the ZED API is the
best of all evaluated methods. Nevertheless, our method is more accurate than UcoSLAM,
which also uses artificial markers for localization, throughout all time steps. As far as the
y component is concerned, we can see that our trajectory is closer to the ground truth
than the other three methods evaluated. The same behavior can be observed for the z
component for our method and UcoSLAM for the whole data sequence.

Camera trajectories for dataset T-Seq4/room are shown in Figure 16b. In the x coor-
dinate, the trajectory computed by ZED API follows closely the ground truth trajectory,



Sensors 2021, 21, 625 27 of 32

while the trajectory computed by our method and by UcoSLAM are very similar. In the y
component it is clear that our method is capable of estimating a better approximation of
the camera localization than the other three methods. Regarding the z coordinate, the ZED
API method computes the most accurate trajectory from the beginning of the trajectory
until t = 32. After this time, the result of our method is more accurate.

In Figure 16a,b, we can visualize the trajectory computed by the camera localization
stage of our method along with the artificial markers computed by the mapping stage of
our method and by the ArUco marker map method. These figures highlight the fact that a
better marker-based trajectory is directly related to the accuracy of the mapping stage i.e.,
an accurate marker map produces an accurate camera localization.

−1.00

−0.75

−0.50

x 
[m

]

ground truth
smart markers (proposed)
ucoslam
lib iso2
zed

0.0

0.5

1.0

y 
[m

]

0 10 20 30 40 50 60 70
t [s]

5

10

15

z [
m
]

(a)

0

1

2

3

x 
[m

]

ground truth
smart markers (proposed)
ucoslam
libviso2
zed

−0.2

0.0

0.2

0.4

0.6
y 
[m

]

0 10 20 30 40
t [s]

0.5

1.0

1.5

2.0

2.5

z [
m
]

(b)

(c) (d)
Figure 16. Camera localization evaluation, T-Seq3/hall dataset (a,c) and T-Seq4/room dataset (b,d). Comparison of camera
trajectories (a,b) computed with UcoSLAM, LibViso2, ZED tracking API, and our method; and ground truth. In three
dimensional views (c,d) we show our camera path, in which red squares represent the Marker Mapper markers and green
ones are the poses of smart markers as computed by the first stage of our method.

Table 4 shows more details of a quantitative evaluation of the proposed method. From
the results in this table, we can observe that our method gives a trajectory with an ATE
of 13.7 cm for dataset T-Seq3/hall and 12.4 cm for dataset T-Seq4/room. In both cases,
this metric is the lowest compared to the results obtained with the other methods under



Sensors 2021, 21, 625 28 of 32

analysis (UcoSLAM, LibViso2, and ZED tracking API). Error reductions are of ≈55% and
≈40% for both datasets compared to the second-best method (UcoSLAM). Similarly, for the
translational RPE metric, we can see that the lowest metric is that computed by our method,
more specifically 0.4 cm for dataset T-Seq3/hall and 1.3 cm for dataset T-Seq4/room. In
comparison to ZED API, which has the second-best result in T-Seq3/hall, our method
resulted in error reductions of ≈50% and ≈44% in comparison to LibViso2 for dataset
T-Seq4/room.

The last column of the Table 4 shows the results of the processing times of all evaluated
methods. As can be observed, our method is only marginally slower than LibViso2, the
fastest method of all evaluated. We note that camera localization is a task mostly performed
in an online processing pipeline, for which the processing times of our method (less than
3 ms per frame) are more than sufficient.

Table 4. Accuracy of the camera localization. ATE (RMSE) metric and RPE (RMSE) computed from translational and
rotational pose parts, and processing times for datasets T-Seq3/hall and T-Seq4/room.

Dataset Method ATE [m] RPEtrans [m] RPErot [rad] Comp. Time [ms]

T-Seq3/hall

UcoSLAM 0.299 0.014 0.005 4.12
LibViso2 0.685 0.010 0.0007 2.33

ZED Camera API 0.791 0.008 0.0004 11.27
Smart Markers

(proposed)
0.137 0.004 0.0001 3.76

T-Seq4/room

UcoSLAM 0.206 0.035 0.018 3.72
LibViso2 0.258 0.023 0.014 2.68

ZED Camera API 0.393 0.027 0.010 10.23
Smart Markers

(proposed)
0.124 0.013 0.015 2.85

6. Discussion

In general, from the experiments carried out, it can be concluded that the accuracy of
the marker maps directly influences the camera localization. For example, in the case of
UcoSLAM, its marker map (UcoSLAM uses Marker Mapper to create the map) has a large
error in the y axis; therefore, this error is also reflected in the y component of the camera
pose translation.

Additionally, we can notice that the large errors in the y component are also present in
the other two compared approaches. In the case of monocular LibViso2, this occurs because
in the form in which the camera poses are computed, this approach uses the camera height
above ground and the pitch angle. We notice that the camera pose results are very sensitive
to the setup of these two parameters, as minimal errors cause variations in the results.
For the Stereolabs API results we notice that the camera poses are very influenced by the
resolution and the frame rate. With a large resolution (2208× 1242 px) the frame rate
decreases (to 15 f.p.s.), which ultimately leads to blurred images and errors in keypoint
detection and matching, and consequently, errors in pose computation.

The use of a set of smart markers with optimized inter-marker relative poses makes
it possible to obtain accurate camera localization in a second stage performed online.
As demonstrated in Section 5, our method estimates the camera height parallel to the floor
plane, unlike all other methods, which show noticeable drift in the vertical direction.

7. Limitations

In Sections 3.1 and 3.2 we established that our camera mapping and localization meth-
ods depend on the restriction that the smart markers have to be grid aligned (i.e., collinear
or coplanar), which can be certainly considered a limitation.

Undoubtedly the use of smart markers may require more implementation time and
more money in relation to printing normal fiducial markers. This is especially more costly



Sensors 2021, 21, 625 29 of 32

according to workspace limitations. For example, if an application seeks to track a drone in
a space of 100 m2, it is necessary to have a large number of smart markers to cover the area.

In general, if an application seeks accuracy, it can benefit from the use of smart markers.

8. Conclusions and Future Work

This paper proposes a method for accurate marker mapping and camera localization
using novel smart fiducial markers called smart markers. The method creates an initial
map composed of relative poses of the observed markers. Then, these initial poses are
fused with PMS measures through the pose graph optimization framework. Finally, with
the optimal smart marker map, camera localization tasks can be performed.

We evaluated the marker mapping process and compared our method with the Marker
Mapper [28] method. Results demonstrate that our approach decreases the marker map
RPE between ≈85% and ≈90%. In the same way, we compared our approach with SLAM
methods (LibViso2, UcoSLAM, ZED Tracking API) to evaluate the camera localization
process. For this task, results show that our work decreases the ATE by ≈50%.

In this work we have focused on improving accuracy in marker mapping and camera
localization by correcting marker pose errors online with the use of PMS units. As future
work we propose to create an incremental method—that is, the marker map can be ex-
panded online. Finally, another aspect that we plan to improve is the ability to place the
markers in any position. Currently, our method is limited to using smart markers parallel
or co-planar to the reference marker.

Author Contributions: L.E.O.-F. and E.V.C.-A. have contributed mainly to the definition of the
method, implementation, experimentation necessary for the process, and also the paper construc-
tion’s, primarily reporting and analyzing the results. L.M.G.G. is the supervisor of both and has
contributed with ideas, physical and intellectual resources necessary, and writing and revising—
mainly the background on computer vision. B.M.F.d.S. has contributed with technical and operational
guidance for the implementation of the method and with writing and revising the text. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by Coordination for the Improvement of Higher Education
Personnel (CAPES) grants number 001 and 88887.123914/2015-00.

Acknowledgments: We thank the Coordination for the Improvement of Higher Education Personnel
(CAPES) for the Ph.D. grant of Luis E. Ortiz-Fernandez and the National Research Council (CNPq)
for the Ph.D. grant of Elizabeth V. Cabrera-Avila.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role
in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript, and in the decision to publish the results.

References
1. Taketomi, T.; Uchiyama, H.; Ikeda, S. Visual SLAM algorithms: A survey from 2010 to 2016. IPSJ Trans. Comput. Vis. Appl. 2017,

9, 16. [CrossRef]
2. Souto, L.; Castro, A.; Gonçalves, L.; Nascimento, T. Stairs and Doors Recognition as Natural Landmarks Based on Clouds of 3D

Edge-Points from RGB-D Sensors for Mobile Robot Localization. Sensors 2017, 17, 1824. [CrossRef]
3. Pollefeys, M.; Van Gool, L.; Vergauwen, M.; Verbiest, F.; Cornelis, K.; Tops, J.; Koch, R. Visual Modeling with a Hand-Held

Camera. Int. J. Comput. Vision 2004, 59, 207–232. [CrossRef]
4. Marchand, E.; Uchiyama, H. Pose Estimation for Augmented Reality: A Hands-On Survey. IEEE Trans. Vis. Comput. Graph. 2016,

22, 2633–2651. [CrossRef] [PubMed]
5. Wolf, P.R. Elements of Photogrammetry, 2nd ed.; Mcgraw-Hill College: New York, NY, USA, 1983.
6. Greve, C.W. Digital Photogrammetry: An Addendum to the Manual of Photogrammetry, 4th ed.; Asprs Pubns: Bethesda, MD, USA, 1997.
7. Mikhail, E.M.; Bethel, J.S. Introduction to Modern Photogrammetry; John Wiley & Sons, Inc.: New York, NY, USA, 2001.
8. Westoby, M.; Brasington, J. Structure-from-Motion photogrammetry: A low-cost, effective tool for geoscience applications.

Geomorphology 2012, 179, 300–314. [CrossRef]
9. Thrun, S.; Leonard, J.J. Simultaneous Localization and Mapping. In Springer Handbook of Robotics; Springer: Berlin/Heidelberg,

Germany, 2008; pp. 871–889. [CrossRef]

http://doi.org/10.1186/s41074-017-0027-2
http://dx.doi.org/10.3390/s17081824
http://dx.doi.org/10.1023/B:VISI.0000025798.50602.3a
http://dx.doi.org/10.1109/TVCG.2015.2513408
http://www.ncbi.nlm.nih.gov/pubmed/26731768
http://dx.doi.org/10.1016/j.geomorph.2012.08.021
http://dx.doi.org/10.1007/978-3-540-30301-5_38


Sensors 2021, 21, 625 30 of 32

10. Beserra Gomes, R.; de Carvalho, B.M.; Marcos Garcia Gonçalves, L. Visual attention guided features selection with foveated
images. Neurocomputing 2013, 120, 34–44. Image Feature Detection and Description. [CrossRef]

11. Oliveira, F.; Souza, A.; Fernandes, M.; Gomes, R.; Goncalves, L. Efficient 3D Objects Recognition Using Multifoveated Point
Clouds. Sensors 2018, 18, 2302. [CrossRef]

12. Kasar, A. Benchmarking and Comparing Popular Visual SLAM Algorithms. Asian J. Converg. Technol. (AJCT) 2019, 5, 1–7.
Available online: http://www.asianssr.org/index.php/ajct/article/view/757 (accessed on 10 January 2020).

13. Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [CrossRef]
14. Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L. Speeded-Up Robust Features (SURF). Comput. Vis. Image Underst. 2008, 110, 346–359.

[CrossRef]
15. Chen, C.; Zhu, H.; Li, M.; You, S. A Review of Visual-Inertial Simultaneous Localization and Mapping from Filtering-Based and

Optimization-Based Perspectives. Robotics 2018, 7, 45. [CrossRef]
16. Muñoz-Salinas, R.; Marin-Jimenez, M. SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern

Recognit. 2019, 86, 156–171. [CrossRef]
17. Muñoz-Salinas, R.; Medina-Carnicer, R. UcoSLAM: Simultaneous Localization and Mapping by Fusion of Key Points and

Squared Planar Markers. Pattern Recognit. 2020, 101, 107193. [CrossRef]
18. Garrido-Jurado, S.; Muñoz-Salinas, R.; Madrid-Cuevas, F.; Medina-Carnicer, R. Generation of fiducial marker dictionaries using

Mixed Integer Linear Programming. Pattern Recognit. 2016, 51, 481–491. [CrossRef]
19. Romero-Ramirez, F.J.; Muñoz-Salinas, R.; Medina-Carnicer, R. Speeded up detection of squared fiducial markers. Image Vis.

Comput. 2018, 76, 38–47. [CrossRef]
20. Geomatics, P. Understanding Fiducial Marks. 2020. Available online: https://www.pcigeomatics.com/geomatica-help/

COMMON/concepts/FiducialMarks_explainMarks.html (accessed on 31 December 2020).
21. Pfrommer, B.; Sanket, N.; Daniilidis, K.; Cleveland, J. PennCOSYVIO: A challenging Visual Inertial Odometry benchmark.

In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017;
pp. 3847–3854.

22. Grisetti, G.; Kümmerle, R.; Stachniss, C.; Burgard, W. A Tutorial on Graph-Based SLAM. IEEE Intell. Transp. Syst. Mag. 2010,
2, 31–43. [CrossRef]

23. Kümmerle, R.; Grisetti, G.; Strasdat, H.; Konolige, K.; Burgard, W. G2o: A general framework for graph optimization. In Proceed-
ings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 3607–3613.
[CrossRef]

24. Triggs, B.; McLauchlan, P.F.; Hartley, R.I.; Fitzgibbon, A.W. Bundle Adjustment—A Modern Synthesis. In Vision Algorithms:
Theory and Practice; Triggs, B., Zisserman, A., Szeliski, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 298–372.

25. Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision, 2nd ed.; Cambridge University Press: New York,
NY, USA, 2003.

26. Trucco, E.; Verri, A. Introductory Techniques for 3-D Computer Vision; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1998.
27. Fischler, M.A.; Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and

Automated Cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]
28. Muñoz-Salinas, R.; Marin-Jimenez, M. Mapping and localization from planar markers. Pattern Recognit. 2018, 73, 158–171.

[CrossRef]
29. Geiger, A.; Ziegler, J.; Stiller, C. StereoScan: Dense 3D Reconstruction in Real-time. In Proceedings of the Intelligent Vehicles

Symposium (IV), Baden-Baden, Germany, 5–9 June 2011.
30. Stereolabs. Using the Positional Tracking API. 2020. Available online: https://www.stereolabs.com/docs/positional-tracking/

using-tracking (accessed on 31 July 2020).
31. Vermeer, M.; Ayehu, G.T. Digital Aerial Mapping—A Hands-On Course, 1st ed.; Vermeer: Helsinki, Finland, 2019.
32. Monkman, G.G.; Hyder, K.; Kaiser, M.J.; Vidal, F.P. Accurate estimation of fish length in single camera photogrammetry with a

fiducial marker. ICES J. Mar. Sci. 2019, 77, 2245–2254. [CrossRef]
33. Heipke, C.; Jacobsen, K.; Wegmann, H. Analysis of the results of the OEEPE test “Integrated Sensor Orientation. In OEEPE

Integrated Sensor Orientation Test Report and Workshop Proceedings, Editors; Technische Informationsbibliothek (TIB): Welfengarten,
Hannover, Germany, 2002; pp. 31–48.

34. Lepetit, V.; Fua, P. Monocular Model-Based 3D Tracking of Rigid Objects: A Survey. Found. Trends Comput. Graph. Vis. 2005,
1, 1–89. [CrossRef]

35. Remondino, F.; El-Hakim, S. Image-based 3D Modelling: A Review. Photogramm. Rec. 2006, 21, 269–291. [CrossRef]
36. Welch, G.; Foxlin, E. Motion tracking: No silver bullet, but a respectable arsenal. IEEE Comput. Graph. Appl. 2002, 22, 24–38.

[CrossRef]
37. Scaramuzza, D.; Fraundorfer, F. Visual Odometry [Tutorial]. IEEE Robot. Autom. Mag. 2011, 18, 80–92. [CrossRef]
38. Salas-Moreno, R.F.; Newcombe, R.A.; Strasdat, H.; Kelly, P.H.J.; Davison, A.J. SLAM++: Simultaneous Localisation and Mapping

at the Level of Objects. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR,
USA, 23–28 June 2013; pp. 1352–1359. [CrossRef]

39. Mur-Artal, R.; Tardós, J.D. ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras. IEEE Trans.
Robot. 2017, 33, 1255–1262. [CrossRef]

http://dx.doi.org/10.1016/j.neucom.2012.10.033
http://dx.doi.org/10.3390/s18072302
http://www.asianssr.org/index.php/ajct/article/view/757
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1016/j.cviu.2007.09.014
http://dx.doi.org/10.3390/robotics7030045
http://dx.doi.org/10.1016/j.patcog.2018.09.003
http://dx.doi.org/10.1016/j.patcog.2019.107193
http://dx.doi.org/10.1016/j.patcog.2015.09.023
http://dx.doi.org/10.1016/j.imavis.2018.05.004
https://www.pcigeomatics.com/geomatica-help/COMMON/concepts/FiducialMarks_explainMarks.html
https://www.pcigeomatics.com/geomatica-help/COMMON/concepts/FiducialMarks_explainMarks.html
http://dx.doi.org/10.1109/MITS.2010.939925
http://dx.doi.org/10.1109/ICRA.2011.5979949
http://dx.doi.org/10.1145/358669.358692
http://dx.doi.org/10.1016/j.patcog.2017.08.010
https://www.stereolabs.com/docs/positional-tracking/using-tracking
https://www.stereolabs.com/docs/positional-tracking/using-tracking
http://dx.doi.org/10.1093/icesjms/fsz030
http://dx.doi.org/10.1561/0600000001
http://dx.doi.org/10.1111/j.1477-9730.2006.00383.x
http://dx.doi.org/10.1109/MCG.2002.1046626
http://dx.doi.org/10.1109/MRA.2011.943233
http://dx.doi.org/10.1109/CVPR.2013.178
http://dx.doi.org/10.1109/TRO.2017.2705103


Sensors 2021, 21, 625 31 of 32

40. Engel, J.; Koltun, V.; Cremers, D. Direct Sparse Odometry. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 611–625. [CrossRef]
[PubMed]

41. Lynen, S.; Sattler, T.; Bosse, M.; Hesch, J.; Pollefeys, M.; Siegwart, R. Get Out of My Lab: Large-scale, Real-Time Visual-Inertial
Localization. In Proceedings of the Robotics: Science and Systems, Rome, Italy, 13–17 July 2015. [CrossRef]

42. Li, P.; Qin, T.; Hu, B.; Zhu, F.; Shen, S. Monocular Visual-Inertial State Estimation for Mobile Augmented Reality. In Proceedings
of the 2017 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Nantes, France, 9–13 October 2017;
pp. 11–21. [CrossRef]

43. Schneider, T.; Dymczyk, M.; Fehr, M.; Egger, K.; Lynen, S.; Gilitschenski, I.; Siegwart, R. Maplab: An Open Framework for
Research in Visual-Inertial Mapping and Localization. IEEE Robot. Autom. Lett. 2018, 3, 1418–1425. [CrossRef]

44. Lin, Y.; Gao, F.; Qin, T.; Gao, W.; Liu, T.; Wu, W.; Yang, Z.; Shen, S. Autonomous aerial navigation using monocular visual-inertial
fusion. J. Field Robot. 2018, 35, 23–51. [CrossRef]

45. Qin, T.; Li, P.; Shen, S. VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator. IEEE Trans. Robot. 2018,
34, 1004–1020. [CrossRef]

46. Sattar, J.; Bourque, E.; Giguere, P.; Dudek, G. Fourier tags: Smoothly degradable fiducial markers for use in human-robot
interaction. In Proceedings of the Fourth Canadian Conference on Computer and Robot Vision (CRV’07), Montreal, QC, Canada,
28–30 May 2007; pp. 165–174. [CrossRef]

47. Bergamasco, F.; Albarelli, A.; Rodolà, E.; Torsello, A. RUNE-Tag: A high accuracy fiducial marker with strong occlusion resilience.
In Proceedings of the CVPR 2011, Providence, RI, USA, 20–25 June 2011; pp. 113–120. [CrossRef]

48. Edwards, M.J.; Hayes, M.P.; Green, R.D. High-accuracy fiducial markers for ground truth. In Proceedings of the 2016 International
Conference on Image and Vision Computing New Zealand (IVCNZ), Palmerston North, New Zealand, 21–22 November 2016;
pp. 1–6. [CrossRef]

49. Calvet, L.; Gurdjos, P.; Griwodz, C.; Gasparini, S. Detection and Accurate Localization of Circular Fiducials under Highly
Challenging Conditions. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Las Vegas, NV, USA, 27 June–1 July 2016; pp. 562–570. [CrossRef]

50. Kato, H.; Billinghurst, M. Marker tracking and HMD calibration for a video-based augmented reality conferencing system.
In Proceedings of the 2nd IEEE and ACM International Workshop on Augmented Reality (IWAR’99), San Francisco, CA, USA,
20–21 October 1999; pp. 85–94. [CrossRef]

51. Flohr, D.; Fischer, J. A Lightweight ID-Based Extension for Marker Tracking Systems. In Eurographics Symposium on Virtual
Environments, Short Papers and Posters; Froehlich, B., Blach, R., van Liere, R., Eds.; The Eurographics Association: Postfach, Goslar,
Germany, 2007. [CrossRef]

52. Wagner, D.; Schmalstieg, D. ARToolKitPlus for Pose Trackin on Mobile Devices. In Proceedings of the 12th Computer Vision
Winter Workshop’07, St. Lambrecht, Austria, 6–8 February 2007; pp. 139–146.

53. Fiala, M. Designing Highly Reliable Fiducial Markers. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 1317–1324. [CrossRef]
54. DeGol, J.; Bretl, T.; Hoiem, D. ChromaTag: A Colored Marker and Fast Detection Algorithm. In Proceedings of the 2017 IEEE

International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 1481–1490.
55. Neunert, M.; Bloesch, M.; Buchli, J. An open source, fiducial based, visual-inertial motion capture system. In Proceedings of the

2016 19th International Conference on Information Fusion (FUSION), Heidelberg, Germany, 5–8 July 2016; pp. 1523–1530.
56. Alatise, M.; Hancke, G. Pose Estimation of a Mobile Robot Based on Fusion of IMU Data and Vision Data Using an Extended

Kalman Filter. Sensors 2017, 17, 2164. [CrossRef]
57. Sanchez-Lopez, J.L.; Arellano-Quintana, V.; Tognon, M.; Campoy, P.; Franchi, A. Visual Marker based Multi-Sensor Fusion State

Estimation. IFAC-PapersOnLine 2017, 50, 16003–16008. [CrossRef]
58. Xing, B.; Zhu, Q.; Pan, F.; Feng, X. Marker-Based Multi-Sensor Fusion Indoor Localization System for Micro Air Vehicles. Sensors

2018, 18, 1706. [CrossRef] [PubMed]
59. Klopschitz, M.; Schmalstieg, D. Automatic reconstruction of wide-area fiducial marker models. In Proceedings of the 2007 6th

IEEE and ACM International Symposium on Mixed and Augmented Reality, Nara, Japan, 13–16 November 2007; pp. 71–74.
60. Lim, H.; Lee, Y.S. Real-time single camera SLAM using fiducial markers. In Proceedings of the 2009 ICCAS-SICE, Fukuoka,

Japan, 18–21 August 2009; pp. 177–182.
61. Shaya, K.; Mavrinac, A.; Herrera, J.L.A.; Chen, X. A Self-localization System with Global Error Reduction and Online Map-

Building Capabilities. In Intelligent Robotics and Applications; Su, C.Y., Rakheja, S., Liu, H., Eds.; Springer: Berlin/Heidelberg,
Germany, 2012; pp. 13–22.

62. Yoon, J.H.; Park, J.S.; Kim, C. Increasing Camera Pose Estimation Accuracy Using Multiple Markers. In Advances in Artificial
Reality and Tele-Existence; Pan, Z., Cheok, A., Haller, M., Lau, R.W.H., Saito, H., Liang, R., Eds.; Springer: Berlin/Heidelberg,
Germany, 2006; pp. 239–248.

63. Microelectronics, S. iNEMO Inertial Module: 3D Accelerometer, 3D Gyroscope, 3D Magnetometer; ST Microelectronics: Quakertown,
PA, USA, 2015. Available online: https://www.st.com/en/mems-and-sensors/lsm9ds0.html#documentation (accessed on 14
January 2021).

64. Microelectronics, S. A New Generation, Long Distance Ranging Time-of-Flight Sensor Based on ST’s FlightSenseTM Technology; ST
Microelectronics: Quakertown, PA, USA, 2018.

http://dx.doi.org/10.1109/TPAMI.2017.2658577
http://www.ncbi.nlm.nih.gov/pubmed/28422651
http://dx.doi.org/10.15607/RSS.2015.XI.037
http://dx.doi.org/10.1109/ISMAR.2017.18
http://dx.doi.org/10.1109/LRA.2018.2800113
http://dx.doi.org/10.1002/rob.21732
http://dx.doi.org/10.1109/TRO.2018.2853729
http://dx.doi.org/10.1109/CRV.2007.34
http://dx.doi.org/10.1109/CVPR.2011.5995544
http://dx.doi.org/10.1109/IVCNZ.2016.7804461
http://dx.doi.org/10.1109/CVPR.2016.67
http://dx.doi.org/10.1109/IWAR.1999.803809
http://dx.doi.org/10.2312/PE/VE2007Short/059-064
http://dx.doi.org/10.1109/TPAMI.2009.146
http://dx.doi.org/10.3390/s17102164
http://dx.doi.org/10.1016/j.ifacol.2017.08.1911
http://dx.doi.org/10.3390/s18061706
http://www.ncbi.nlm.nih.gov/pubmed/29799441
https://www.st.com/en/mems-and-sensors/lsm9ds0.html#documentation


Sensors 2021, 21, 625 32 of 32

65. Kuipers, J.B. Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace, and Virtual Reality; Princeton Univ.
Press: Princeton, NJ, USA, 1999.

66. Madgwick, S.O.H.; Harrison, A.J.L.; Vaidyanathan, R. Estimation of IMU and MARG orientation using a gradient de-
scent algorithm. In Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland,
29 June–1 July 2011; pp. 1–7. [CrossRef]

67. Doe, J. Using the Programmable Region of Interest (ROI) with the VL53L1X; ST Microelectronics: Quakertown, PA, USA, 2018.
68. Chen, Y.; Davis, T.A.; Hager, W.W.; Rajamanickam, S. Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky Factorization

and Update/Downdate. ACM Trans. Math. Softw. 2008, 35, 1–14. [CrossRef]
69. Sturm, J.; Engelhard, N.; Endres, F.; Burgard, W.; Cremers, D. A Benchmark for the Evaluation of RGB-D SLAM Systems.

In Proceedings of the International Conference on Intelligent Robot Systems (IROS), Vilamoura, Portugal, 7–12 October 2012.
70. Ortiz, L.; Cabrera, V.; Goncalves, L. Depth Data Error Modeling of the ZED 3D Vision Sensor from Stereolabs. ELCVIA Electron.

Lett. Comput. Vis. Image Anal. 2018, 17, 1–15. [CrossRef]
71. Cabrera, E.; Ortiz, L.; Silva, B.; Clua, E.; Gonçalves, L. A Versatile Method for Depth Data Error Estimation in RGB-D Sensors.

Sensors 2018, 18, 3122. [CrossRef] [PubMed]
72. Grupp, M. evo: Python Package for the Evaluation of Odometry and SLAM. 2017. Available online: https://github.com/

MichaelGrupp/evo. (accessed on 31 July 2020).

http://dx.doi.org/10.1109/ICORR.2011.5975346
http://dx.doi.org/10.1145/1391989.1391995
http://dx.doi.org/10.5565/rev/elcvia.1084
http://dx.doi.org/10.3390/s18093122
http://www.ncbi.nlm.nih.gov/pubmed/30223608
https://github.com/MichaelGrupp/evo
https://github.com/MichaelGrupp/evo

	Introduction
	Background and Related Work
	A Note on the Accuracy of Photogrammetry
	Camera Pose Estimation from Images
	Fiducial Markers
	Using Sensors and Fiducial Markers Data Fusion
	Mapping and Localization Using Fiducial Markers

	Problem Formulation
	Marker Mapping
	Camera Localization

	Proposed Solution
	Solving Mapping
	Smart Markers
	PMS Accuracy Representation
	Mapping Optimization

	Solving Camera Localization

	Experiments
	Evaluation of Sensors
	Evaluation of Orientation Sensors
	Evaluation of Position Sensors

	Hardware Setup and Dataset Description for Mapping and Camera Localization Experiments
	Evaluation of Smart Marker Mapping
	Evaluation of Camera Localization Using Smart Markers

	Discussion
	Limitations
	Conclusions and Future Work
	References

