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Abstract: For the problem of 3D line reconstruction in binocular or multiple view stereo vision, when
there are no corresponding points on the line, the method called Direction-then-Point (DtP) can be
used, and if there are two pairs of corresponding points on the line, the method called Two Points 3D
coordinates (TPS) can be used. However, when there is only one pair of corresponding points on the
line, can we get the better accuracy than DtP for 3D line reconstruction? In this paper, a linear and
more accurate method called Point-then-Direction (PtD) is proposed. First, we used the intersection
method to obtain the 3D point’s coordinate from its corresponding image points. Then, we used this
point as a position on the line to calculate the direction of the line by minimizing the image angle
residual. PtD is also suitable for multiple camera systems. The simulation results demonstrate that
PtD increases the accuracy of both the direction and the position of the 3D line compared to DtP.
At the same time, PtD achieves a better result in direction of the 3D line than TPS, but has a lower
accuracy in the position of 3D lines than TPS.

Keywords: plane intersection; 3D line reconstruction; Point-then-Direction; corresponding image
points intersection; linear solution

1. Introduction

The 3D line reconstruction is a basic problem in computer vision and optical mea-
surements. It is widely used in computer vision problem, such as 3D scene reconstruction,
non-cooperative target reconstruction and pose estimation for symmetric targets. Line
features in the image are robust, stable, and easy to extract; the corresponding lines and
points are often used in 3D reconstruction. In the position and attitude estimation for the
non-cooperative target, the non-cooperative target is often reconstructed by points, lines,
rectangles, or other shapes composed of lines, then the reconstructed model is used for
tracking and relative pose estimation in subsequent frames. In pose estimation for the
long symmetrical target, such as rockets and missiles, the direction of the target’s central
axis is often used to represent the target’s attitude, which is often reconstructed by the
Direction-then-Point (DtP) method. From the above analysis, we can determine that the
accuracy of the 3D line is of significance for computer vision.

There are many studies on the reconstruction and measurement of non-cooperative
targets [1–11] or attitude measurement of long symmetric targets based on binocular or
multiple stereo vision. There are many kinds of non-cooperative targets to be reconstructed,
especially targets in the space, such as satellites and spacecrafts. Many of them are based
on feature points [2], point clouds [3,4], ellipses, circles [5,6] and line structures [7,8], and
so on. However, the number of the feature points is huge, and the matches between them
are more complicated and less robust than the feature lines. The ellipses and circles are
more difficult to extract than the feature lines. There always are obvious line features on
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the target. After the corresponding line matching, the reconstructed line can be used to
reconstruct the target.

At present, there is not much research on 3D line reconstruction. For binocular
stereo vision, the plane intersection method [12] and Two Points (TPS) are the main two
methods for line reconstruction. The principle of the plane intersection method is that
the 3D line locates on the plane consisting of the optical center and the line segment
in the corresponding image. The intersection line of the planes of the two cameras can
be calculated. We can obtain a point on the line; therefore, we also call this method
Direction-then-Point. TPS is a direct method for 3D line construction. It utilizes two pairs
of corresponding image points on the 2D line (generally, they are the endpoints), then two
3D points on the line can be calculated, and the 3D line is uniquely determined. Obviously,
this method does not utilize the information of the 2D line, and its accuracy depends on
the points’ accuracy. DtP has a lower requirement for not needing corresponding points on
the 2D line. Because the degeneracy of 3D lines is more severe than for 3D points, only 3D
points on the baseline cannot be reconstructed, and the 3D line coplanar with the baseline
cannot be reconstructed [13]; when the 3D line is close to coplanar with the baseline, the
TPS can achieve higher accuracy than the DtP method. For a multiple camera system, the
iterative method [13] based on minimizing the distance between the extracted line segment
in the image and the line projected to the image is used. The reconstructed line is used by
many other algorithms in computer vision. Many scholars analyze the influence of camera
position, intersection angle, and relationship between the line and camera’s imaging plane
on the accuracy of the reconstruction result of the 3D line [11–20]. For 3D line reconstruction
in stereo vision, the optimal condition is that the angle between the optical axes of the two
cameras is 90 degrees, and the 3D line is parallel to both imaging planes of the two cameras
and perpendicular to, not coplanar with, the baseline [18]. However, because the baseline
of the stereo cameras is always short relative to the target distance, the requirement for
two cameras with near-vertical optical axes cannot be satisfied. At the same time, because
the 3D lines on the target always form a certain structure, such as a triangle, a quadrangle,
etc., the requirement that every 3D line be nearly parallel to the imaging plane cannot be
satisfied too.

As can be seen from the above description, DtP only uses line information and does
not need corresponding points’ information, but it has low position accuracy because it
does not use the position information of the cameras. TPS uses two pairs of corresponding
points; therefore, it can achieve better positional accuracy than DtP. However, it is difficult
to obtain two pairs of corresponding image points under certain conditions. Considering
the above situation, we proposed a novel method for line reconstruction based on a pair
of corresponding image points and the 2D line direction. Firstly, we used the intersection
method to obtain the 3D coordinates in the world coordinate system from the corresponding
image points [21–23]. Secondly, we used this point as a point on the line to be solved to
calculate the direction of the line. The point on the line is obtained before the line direction,
thus call this method is named Point-then-Direction (PtD). The differences between the
DtP, PtD and TPS methods are shown in Table 1.

Table 1. The differences between Direction-then-Point (DtP), Point-then-Direction (PtD) and Two Points (TPS) methods.

Difference DTP PtD TPS

Pairs of corresponding image points 0 1 2
Can be reconstructed while the line is coplanar with

the baseline (no point on the baseline) × × X

Can be reconstructed while the line is coplanar with
the baseline (one point on the baseline) × × ×

Use of the camera’s optical center × X X
Use of the information of the 2D line X X ×
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The simulation results demonstrated that PtD can achieve more accurate results, both
on direction and position than DtP, because it combines the information of the correspond-
ing image points. At the same time, it can achieve a more accurate direction but less
accurate position than TPS. If there is only one pair of corresponding image points on the
line, the linear method proposed in this paper can achieve better results.

2. Direction-then-Point Method
2.1. Stereo-Vision Scenario

A pinhole camera model [12] was used in this study. As shown in Figure 1, The
world coordinate system is Ow − XwYwZw, which is a right-handed coordinate system.
The image coordinate system is Oi − XiYi, Oi in the top left corner of the image, Xi faces
right, and Yi faces down. The camera coordinate system is Oc − XcYcZc, where Oc is
the camera’s optical center. The z-axis is pointing in the positive direction of the optical
axis; the x-axis is perpendicular to the z-axis horizontally to the right; and the y-axis
is perpendicular to the x-axis and to the z-axis, whose direction is determined by the
right-handed definition criterion.
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Figure 1. Plane intersection for stereo vision. AB is the 3D line I, C1 and C2 are the optical centers
of the two cameras, A1B1 is the projection of I on camera C1, and A2B2 is the projection of I on
camera C2.

2.2. Plane Representation by a Single Camera

As shown in Figure 1, AB is the 3D line I, C1 and C2 are the optical centers of the
two cameras, A1B1 is the projection of I on camera C1, and A2B2 is the projection of I on
camera C2. When atmospheric refraction is not considered, we can assume that I is on the
plane C1A1B1 and also on the plane C2A2B2. Therefore, if we can attain both of the planes’
equations in the world coordinate system, then we can obtain the direction of the 3D line
and a point on the line.

Next, we derive its expression by taking a camera as an example. The equation of the
line in the image coordinate system is:

ATX = 0 (1)

where A =
[

a b c
]T and X =

[
x y 1

]T . The image plane is the zc = f plane in
the camera coordinate system, where f is the physical focal length of the camera. The z-axis
of the camera coordinate system passes through the principal point of the image plane(
Cx, Cy

)
, so the transformation from the image coordinate system to the camera coordinate

system is determined as: {
xc = (x− Cx)dx
yc =

(
y− Cy

)
dy

(2)

where (xc, yc) is in the camera coordinate system, (x, y) is in the image coordinate system,
and

(
dx, dy

)
is the actual physical size of the camera pixel.
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The line in the image can be expressed in the camera coordinate system as:{
a( xc

dx
+ Cx) + b( yc

dy
+ Cy) + c = 0

zc − f = 0
(3)

The equivalent focal length of the camera is abbreviated as:{
Fx = f /dx
Fy = f /dy

(4)

The plane equation can be summarized as:

Fxxc + bFyyc +
(
aCx + bCy + c

)
zc = 0 (5)

Given the parameter matrix n =
[

aFx bFy aCx + bCy + c
]T , the plane equation is

then rewritten as:
nTPc = 0 (6)

where Pc =
[

xc yc zc
]T is a point from the camera coordinate system, and n is the

normal vector of the plane. R and t are the rotation matrix and the translation vector from
the world coordinate system to the camera coordinate system, respectively. Therefore, the
point in the world coordinate system can be transformed to the camera coordinate system
using Equation (7).

Pc = RPw + t (7)

where Pw =
[

xw yw zw
]T is a point in the world coordinate system. The plane

equation in the world coordinate system can then be derived as:

nTRPw + nTt = 0 (8)

2.3. Plane Intersection

The plane equations of the two cameras, respectively, are:{
nT

1 Pw + d1 = 0
nT

2 Pw + d2 = 0
(9)

The 3D line I = (l, m, n) must be located on these two planes. Therefore, the direction
vector of I can be solved as:

I = nT
1 × nT

2 =

 i j k
n11 n12 n13
n21 n22 n23

. (10)

A 3D line can be uniquely determined by a point and the direction vector. Therefore,
we chose the foot point P0(x0, y0, z0) from the Ow to the I; (l, m, n) ∗ P0

T = 0. P0 can be
solved by (l, m, n) ∗ P0

T = 0 and Equation (9). The point is directly solved by direction,
and as a result the overall accuracy mainly depends on the accuracy of the line direction.

3. Point-then-Direction Method
3.1. Stereo Vision Scenario for PtD

As shown in Figure 1, Camera C1 and Camera C2 observe the line I from different
directions, and the projections on the image are A1B1 and A2B2, respectively. In this paper,
we assume that one of the two endpoints of the line segments are the corresponding
image points, i.e., A1 and A2 are the corresponding image points, or B1 and B2 are the
corresponding image points. If the camera parameters and the line extracted from the
image are error-free, the 3D point will be on the line obtained by the DtP, and then the
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results obtained by the DtP and Ptd are same. However, if either the camera parameters or
the line extracted from the image have an error, the 3D point may not be on the line I.

In a similar manner to the image-space residual method for camera calibration, the
line I was projected to the image plane according to the theoretical model, and the angle
between the projection and the 2D line extracted on the image plane was considered as
the angle residual. We also minimized the square sum of all the angles. In this paper, this
term is called the IAR. As shown in Figure 2, the C2A2B2 plane is the plane composed of
the optical center and the axis of the camera; A’B’ is the 3D line; B2A3 is the projection of
A’B’ on the image plane; and α is the image angle residual.
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composed of the optical center and the axis of the camera; AB is the 3D line; A′B′ is the reconstructed
result of the 3D line; B2A3 is the projection of A′B′ on the image plane; and α is the IAR.

From the above definition and stereo-vision scenario, we can ascertain that the 3D line
passes through the 3D point, and the intersection of the plane composed of the 3D line and
the camera’s optical center and the corresponding imaging plane is parallel to the 2D line
on the image. For a multiple camera system, we can obtain the least square solution.

The mathematical expression is derived below.

3.2. Image-Space Angle Residual
3.2.1. Definition of the Problem

It is assumed that the direction of the 3D line I is (l, m, n), and I passes through a point
P0(x0, y0, z0) in the world coordinate system. It is easy to see that I also passes through the
point P1(x0 + l, y0 + m, z0 + n). In this paper, the P0 is obtained by the intersection method
of minimizing the distance from the spatial point to the back projection ray to obtain the
three-dimensional coordinates from the corresponding image points A1 and A2 [24]. The
plane of each camera passes through the point P0, P1 and the corresponding optical center.
The plane consisting of I and the optical center of the ith camera can be expressed as:∣∣∣∣∣∣∣∣

x y z 1
Oxi Oyi Ozi 1
x0 y0 z0 1

x0 + l y0 + m z0 + n 1

∣∣∣∣∣∣∣∣ = 0 (11)

Or ∣∣∣∣∣∣∣∣
x y z 1

Oxi Oyi Ozi 1
x0 y0 z0 1
l m n 0

∣∣∣∣∣∣∣∣ = 0 (12)
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where (Oxi, Oyi, Ozi) is the optical center of the ith camera. The plane equation after
simplification is:

nwi
TPw + di = 0 (13)

It can be seen from Equation (12) that nwi can be represented linearly by I. Letting the
relationship matrix be M:

nwi
T = ITMi (14)

It is obvious that M is a full rank matrix. Assuming the transformation matrix from

the world coordinate system to the camera coordinate system is
[

Ri ti
0 1

]
, the plane is

expressed in the camera coordinate system as:

nci
T = nwi

T
[

Ri ti
0 1

]
(15)

From the image plane equation z = f , the direction of the intersection line is Ii =
(nci1, nci2, 0). Then, the angle between the 2D line in the image plane and the projection of I
on the corresponding image is:

αi = cos−1(

[
nci1 nci2

][
ai bi

]T

‖nci1 nci2‖ ‖ai bi‖
) (16)

where ai and bi are coefficients of the linear equation aix + biy + ci = 0 in the image plane.
Therefore, the optimized objective function is:

min
N

∑
i=1

α2
i (17)

where N is the number of cameras.

3.2.2. Linear Method

A method of linearly solving for the minimum value is given by the derivation below.
The original expression is very complicated, especially the partial derivative expres-

sion. The numerator and the denominator contain (l, m, n), which cannot be solved linearly.
Therefore, the expression is deformed.

If the two 2D lines I1 = (a1, b1, c1)
T , I2 = (a2, b2, c2)

T are nearly parallel, the angle is:

αi = tan−1a1/b1 − tan−1a2/b2 (18)

This is a small angle, and we have:

|αi| ≈ |tan(αi)| =
∣∣∣∣∣

a1
b1
− a2

b2

1 + a1a2
b1b2

∣∣∣∣∣ =
∣∣∣∣ a1b2 − a2b1

a1a2 + b1b2

∣∣∣∣ (19)

For the sake of discussion, we divided a1, b1 and a2, b2 by the larger one, respectively,
so that the maximum value was 1. Then:

1 ≤ |a1a2 + b1b2| ≈
∣∣∣a1

2 + b1
2
∣∣∣ ≤ 2 (20)

where |αi| is positively correlated with |a1b2 − a2b1|. |α| is the absolute value of α. Then,
Equation (17) can be used instead of Equation (21) as the optimization solution objec-
tive function:

min(
N

∑
i=1

(ainci2 − binci1)
2 (21)
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From the previous derivation, nci1, nci2 is a linear function of I = (l, m, n)T . The
equation can therefore be recorded as ∑N

i=1
(
Gi

TI
)2, where Gi is the coefficient of I in

Equation (18), and it can be representative of a normal vector to a plane.
This can be thought of as a function of (l, m, n)T , which is a function of (l, m, n).

Clearly, this function is a basic elementary function—it is continuous and differentiable
in the domain of the definition, and the minimum value must exist. At the point where
the minimum value is obtained, the partial derivative of (l, m, n) exists and it is 0, and the
partial derivative is obtained separately.

y′l =
N
∑

i=1

(
Gi1Gi

TI
)
= 0

y′m =
N
∑

i=1

(
Gi2Gi

TI
)
= 0

y′n =
N
∑

i=1

(
Gi3Gi

TI
)
= 0

. (22)

We can solve Equation (19) by the SVD [25] decomposition of the coefficient matrix to
obtain (l, m, n).

3.2.3. Efficiency Analysis

The linear method for minimizing the image angle residual is as follows.

1. Solve the 3D coordinate of the corresponding image points with a time complexity
of O(n);

2. Solve the line parameters projected onto the image plane with a time complexity
of O(n);

3. Solve the coefficient matrix with a time complexity of O(n);
4. Find the final result in fixed time.

It can be seen from the above analysis that the image angle residual method can
be solved only by calculating the 3D point coordinate, the projection line parameter, the
solution coefficient matrix, and the least-squares solution, so the time complexity is O(n).

4. Experiments

Because the ground truth was not easy to obtain in the real experiment, we used the
simulation to verify the accuracy of the algorithm and then we used only the real data to
verify the validity of the algorithm.

4.1. Simulation

We simulated many conditions to validate the accuracy of our method. Firstly, the
variation of the intersection angle of the two cameras and the 3D line’s attitude variation
were simulated to verify the accuracy and robustness of the proposed algorithm. Secondly,
the various error conditions for the stereo vision were simulated, including the 2D line
extraction error, the external camera parameter error, and both the above errors. Thirdly,
we verified the accuracy while in a multiple camera system. Finally, we assessed the time
performance of our method in a multiple camera system.

4.1.1. Simulation Environment

The simulation platform was Windows 10 Pro, the implementation language of the
algorithm was C++, the implementation environment was Microsoft Visual Studio 2013,
and the processor was an Intel(R) Core TM i7-9850H 2.6GHz.

The equivalent focal length was (2181.8, 2181.8) and the image principal point was
(1024, 1024). The cameras were arranged in a circle around the target, and the radius of
the circle was 4.5 m. The origin of the world coordinate system was the center of the circle.
The two endpoints of the 3D line were A(−0.5,−0.5,−0.5) and B(1.5, 1.5, 1.5). The top
view of the simulation scenario is shown in Figure 3.
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4.1.2. Simulation Description

1. The corresponding image points used in the PtD method were obtained by adding
the same error to the projection of the endpoint A in the image, which ensured that
PtD method was also solved under the same error conditions.

2. The TPS, DtP, and PtD methods were used for each simulation. We used the angle
between the result and the ground truth and the distance from the two endpoints to
the result line to evaluate the accuracy. All simulations were calculated 1000 times,
and the root mean square (RMS) of the angular error and the average of distance were
obtained. The units of angular error were degrees, and the units of distance error
were meters.

E = cos−1 IIt

‖I‖‖It‖
(23)

Ed = abs(dAI) + abs(dBI) (24)

In the above equation It(lt, mt, nt) is the ground truth, and I(l, m, n) is the algorithm’s
result. dAI is the distance between the endpoint A of the 3D line segment to the result line,
and dBI is the distance between the endpoint B of the 3D line segment to the result line.

Simulations were conducted separately to determine the following conditions:

1. Angle between optical axes of binocular cameras.
2. 3D line’s attitude.
3. Line segments extraction error in image.
4. Errors of all camera external parameters.
5. All camera external parameters and extraction errors.
6. Number of cameras.
7. Running time.

Case 1 was to verify the precision under the different angle between the two cameras.
Case 2 was to verify the precision under the target’s different attitude. Cases 3–5 were to
verify the precision under the error of the cameras’ parameters. Case 6 was to verify the
precision as the number of cameras increased. Case 7 was to test the temporal performance
of the algorithm.

4.1.3. Simulation Results

The simulation details and results are given, respectively.
Firstly, we simulated the intersection angles of two cameras, which varied to verify

the accuracy of the three methods. As shown in Figure 3, C1 was placed in the fixed point
(4.5,0,0), and C2 was moved on the circle with a radius of 4.5 m. The angle between the
optical axes of C1 and C2 varied from 30◦ to 150◦. We simulated two conditions of the
3D line, one of which was the 3D line perpendicular to the baseline of C1 and C2. When
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the 3D line was perpendicular to the baseline, the endpoints of the 3D line segment were
A(−0.5,−0.5,−0.5) and B(−0.5, 1.5,−0.5). From the definition of the simulation scenario,
we knew that, as the intersection angle changed from 30◦ to 150◦, the line segment AB
was always perpendicular to the baseline, and the distance between AB and the baseline
became smaller and smaller. When the 3D line is not perpendicular to the baseline, the
endpoints of the 3D line segment were A(−0.5,−0.5,−0.5), B(1.5, 1.5, 1.5). A Gaussian
error with a mean of 0 was added to the optical center of the camera, with a 5 cm RMS
value. A Gaussian error with a mean of 0 was added to the camera angle, with a 1◦ RMS
value. A Gaussian error with a mean of 0 was added to the x- and y-directions of the two
endpoints of the 2D line segments, with a 2-pixel RMS value. The results are shown in
Figure 4.
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When the 3D line remained unchanged, the error was relevant to the intersection
angle. In the beginning, the three methods achieved the same accuracy. As the intersection
angle varied from 30◦ to 150◦, the distance between the baseline and AB grew smaller and
smaller. In other words, they were becoming closer and closer to each other, which meant
the intersection condition was getting worse; the PtD method had the same accuracy as the
DtP method. TPS had the best positional accuracy but the worst angular accuracy. In the
condition where the 3D line was not parallel to the imaging plane and was not perpendicu-
lar to the baseline, PtD had higher accuracy both on the position and angle than DtP; TPS
achieved the worst angular accuracy, and DtP achieved the worst positional accuracy.
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Secondly, we simulated the condition where the 3D line moved while the inter-
section angle remained unchanged; the C1 and C2 places were fixed. Endpoint A was
(−0.5,−0.5,−0.5), The initial position of endpoint B was (−0.5,1.5,−0.5), and the kth posi-
tion was (−0.5− k ∗ 0.05, 1.5,−0.5− k ∗ 0.05); k was the offset time. The end position of
point B was (−5.5,1.5,−5.5). A Gaussian error with a mean of 0 was added to the optical
center of the camera, with a 5 cm RMS value. A Gaussian error with a mean of 0 was added
to the camera angle, with a 1◦ RMS value. A Gaussian error with a mean of 0 was added
to the x- and y-directions of the two endpoints of the 2D line, with a 2-pixel RMS value.
The results of the simulation while the intersection angles are 90◦ and 120◦, and shown in
Figure 5a,b respectively.
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As shown in Figure 5, at the start, the TPS method had the best positioning accuracy
and the worst angular accuracy. However, as the intersection condition became, the TPS
had the best accuracy both in direction and position. The reasons are as follows.

Firstly, the 3D line became longer, and the final length was 3.68-times greater than
that of the initial length. Therefore, theoretically, if only the influence of the line length was
considered, the direction error of TPS would be the 1/3.68 of the original value. However,
the error of the 3D point B increased because the intersection angle of 3D point B became
smaller. Therefore, the error reduction was not proportional.

Secondly, the angle between the 3D line and the baseline remained unchanged—
it was always 90◦. However, the angle between the 3D line and the imaging plane var-
ied from 0 to 45◦ and the distance between the 3D line and the baseline became smaller.
At the start, when the intersection angle was 90◦, the distance between the 3D line and
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the baseline was 3.89 m; when the intersection angle was 120◦, the distance between the
3D line and the baseline was 2.94 m. At the end, however, the distances were 2.50 m and
2.30 m, respectively. The lengths of the baseline were 6.36 m and 7.79 m, respectively. From
the above analysis, we can determine that the smaller distance aggravated the degeneracy
of the lines’ reconstruction.

Thirdly, we simulated the condition where the cameras and the 3D line remained
unchanged, but the errors of the camera’s external parameters and 2D line were different.
The intersection angle was 120◦. The endpoints of the 3D line were A(0.5,−0.5, 0.5) and
B(1.5, 1.5, 1.5). We simulated for 2D line error, the error of the camera external parameters,
and all above errors. The error details were as below:

Case 1: A Gaussian error with a mean of 0 was added to the x- and y-directions at
the head and the tail of the line segment, with 0–4 pixels of RMS. The results are shown in
Figure 6.
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From Figure 6, we can see that if only the same 2D line error existed, the 3D line’s
accuracy of the three methods, from most to least accurate, was TPS, PtD, then DtP.

Case 2: A Gaussian error with a mean of 0 was added to the optical center of the
camera, with 1 mm to 50 mm of RMS, and the step size was 1 mm. A Gaussian error with a
mean of 0 was added to the camera angle, with 0.05–2.5◦ of RMS. The simulation results
are shown in Figure 7.
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From Figure 7, we can see that under the same error of the camera’s external pa-
rameters, the directional accuracy of the 3D line of the three methods, from most to least
accurate, was PtD, DtP, then TPS, and the positional accuracy of the 3D line of the three
methods from most to least accurate, was TPS, PtD, then DtP.
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Case 3: A Gaussian error with a mean of 0 was added to the optical center of the
camera, with 1 mm to 50 mm of RMS, and the step size was 1 mm. A Gaussian error with a
mean of 0 was added to the camera angle, with 0.05–2.5◦ of RMS. A Gaussian error with a
mean of 0 was added to the x-and y-directions of the two endpoints of the 3D line, with
0.1–5 pixels of RMS. The simulation results are shown in Figure 8.
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From Figure 8, we can see that under same error of external camera’s parameters
and the 2D lines, the 3D line’s direction accuracy of the three methods, from most to least
accurate, was PtD, DtP, then TPS, and the 3D line’s position accuracy of the three methods,
from most to least accurate, was TPS, PtD, then DtP. The position accuracies of TPS and
PtD are close, and the directional accuracy of PtD was far better than TPS.

Additionally, we simulated the condition where the camera number varied from 2
to 20; the cameras were evenly distributed on the circle as shown in Figure 3. The DtP
method used the LS [26] directly solve this scenario. A Gaussian error with a mean of
0 was added to the optical center of the camera, with a 10 mm root mean square (RMS)
value. A Gaussian error with a mean of 0 was added to the camera angle, with a 0.5◦

RMS value. A Gaussian error with a mean of 0 was added to the x- y-directions of the
two endpoints of the 3D line, with a 1-pixel RMS value. The endpoints of the 3D line
were A(0.5,−0.5, 0.5), B(1.5, 1.5, 1.5). The results are shown in Figure 9.
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From Figure 9, we can see that as the number of cameras increased, the accuracy of the
three methods increased gradually, indicating that these methods utilized the constraints
of the multi-camera. Similar to the result in Figure 8, with the increase in the number of
cameras, under the same error of the external camera’s parameters and the 2D lines, the 3D
line’s direction accuracy of the three methods, from most to least accurate, was PtD, DtP,
then TPS, and the 3D line’s positional accuracy of the three methods, from most to least
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accurate, was TPS, PtD, then DtP. The positional accuracies of TPS and PtD were close, and
the directional accuracy of the PtD method was far better than the TPS method.

Finally, we simulated the condition where the camera number increased from 2 to 20
to verify the time performance of our method. The linear algorithm took a small amount
of time; therefore, for the convenience of comparison, we counted the time it took to run
10,000 times. A Gaussian error with a mean of 0 was added to the optical center of the
camera, with a 5 cm RMS value. A Gaussian error with a mean of 0 was added to the
camera angle, with a 1◦ RMS value. A Gaussian error with a mean of 0 was added to the
x- y-directions of the two endpoints of the 2D line segments, with a 2-pixel RMS value. The
simulation results are shown in Figure 10.
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Figure 10 confirms that all three methods are linear methods; TPS took the longest,
then PtD, and the fastest was DtP. DtP only needs to solve each plane equation and then
solve the least-squares method; PtD needs to solve the 3D point coordinate and the line
parameters in two steps; TPS needs to solve the 3D point coordinate two times, which
explains the variances in running time between the methods.

4.1.4. Simulation Conclusion

The simulation results are shown in Table 2. The “F” in the table means first, the “S”
means second, and the “T” means third and the “S->T” means from second to third.

Table 2. All simulation results.

Method

Case 1 Case 2

Case 3 Case 4 Case 5 Case 6
Perpendicular Not

Perpendicular 90◦ 120◦

(A)DtP S F S→T S→T T S S S
PtD F F F→S F→S S F F F
TPS T S T→F T→F F T T T

DtP(D) T S T T T T T T
PtD S S S S S S S S
TPS F F F F F F F F
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From the above simulation results, we can come to some conclusions:

1. Under the same error of the external camera parameters and the 2D line, the PtD
method has the best directional accuracy, and the TPS method has the best posi-
tional accuracy.

2. When the intersection condition was normal, the 3D line’s direction accuracy of the
three methods, from most to least accurate, was PtD, DtP, then TPS, and the 3D line’s
position accuracy of the three methods, from most to least accurate, was TPS, PtD, and
DtP. Therefore, if the direction accuracy is more important, the PtD method should
be used, and if positional accuracy is more important, the TPS method should be
used—provided that there are two pairs of corresponding image points.

3. When the intersection condition was bad and the target was relative long, TPS
achieved the best accuracy, both in the direction and position of the 3D line. However,
it needs two pairs of corresponding image points, which is sometimes hard to satisfy.
PtD achieved better accuracy than DtP both in the direction and position of the 3D line,
so PtD can be used if there is only one pair of corresponding image points.

4.2. Physical Experiment

We used physical experiment 1 to verify the precision of our method, and used
physical experiment 2 (in which TPS could not be used) to verify the correctness of the
algorithm.

4.2.1. Physical Experiment 1
Physical Environment

We used three cameras to measure the lines—the camera setup is shown in Figure 11.
The physical environment is shown in Figure 12. The target was a checkerboard and was
placed in front of the cameras. The precision of the checkerboard was 0.01 mm. The 3D lines
to be reconstructed were the four edge lines in the checkerboard, as marked in Figure 12.
The length of the lines 1, 3, 5, and 7 were 30 cm, and the lines 2, 4, 6, 8 were 21 cm. From the
positional relationship between the camera and the target, we could ascertain that (a) was
in a better intersection condition than (b), and the lines 1 and 3 were in a better intersection
condition than the lines 2 and 4. All cameras were calibrated by the diagonal markers
behind the checkerboard, and the 3D coordinates of the diagonal markers were obtained
by the total station Leica TS60, with an accuracy of 0.6 mm. At the same time, we also
obtained the 3D coordinates of the four corners of the checkerboard using the Leica TS60.
PtD, DtP, and TPS methods were used to reconstruct the four 3D lines. The camera and
lens models were Basler (acA1440—220uc) and RICOH (6 mm 1:1.4), respectively.
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Experimental Procedure

The procedure of the experiment was as follows:

1. The world coordinate system was established by the total station. The total station
was used to obtain the coordinates of the calibration control points. The coordinate
system direction was vertically upwards (Y) and horizontal (XZ), and the system
constituted a right-hand coordinate system.

2. The stereo cameras were used to take photos synchronously. The checkerboard was
placed at two angles to verify the accuracy of the methods in two conditions. One
was where the 3D lines were parallel to the imaging plane, and the other was not.
The calibration control points were extracted from the image, and the 3D coordinates
were used to calibrate all of the cameras in a unified world coordinate system. All pa-
rameters of the camera were calibrated, including the main point, equivalent focal
length, lens distortion, and external parameters of the camera.

3. The 2D lines and the corresponding image points were extracted from the two images
by extracted the two endpoints of the 2D lines. The corresponding image points were
one of the endpoints of the 2D lines.

4. After the correction of lens distortion, DtP, PtD, and TPS were used separately to
obtain the 3D line I.

First, we estimated the precision by the distance of two points—the results are shown
in Table 3. From the results, we determined that the maximum of the distance error was
0.2 mm and the corresponding angle was tan−1( 0.2

300
)
= 0.038◦. The theoretical accuracy of

the total station was 0.6 mm, which meant a corresponding angle tan−1( 0.6
210
)
= 0.16◦.

Table 3. Errors of the total station (mm).

Line No. Measured Distance Ideal Distance

1 300.0 300.0
2 210.1 210.0
3 300.2 300.0
4 210.0 210.0
5 300.1 300.0
6 210.1 210.0
7 300.0 300.0
8 210.0 210.0
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The errors between the coordinates obtained by the total station and given by the
intersection method [21] to demonstrate the precision of the cameras’ parameters are shown
in Table 4. The ith point was the top or left endpoint of the ith line.

Table 4. Results of 3D points’ errors (mm).

Point No. X Y Z

1 −0.2 −0.7 −0.0
2 −0.5 −0.5 −0.1
3 −0.2 −0.6 −0.0
4 0.4 −0.5 0.8
5 −0.4 −0.2 0.6
6 −0.0 −0.0 0.1
7 −0.5 −0.6 0.2
8 −0.1 −0.5 0.7

Therefore, we used the point coordinates obtained by the total station to calculate the
direction of the line as the ground truth It. We calculated the angle between It and I as the
angular error, and the sum of distances from the two endpoints to I as the distance error,
to estimate the accuracy of our method.

All the results are shown in Tables 5 and 6. The second, third and fourth columns are
angular errors (◦), and the fifth, sixth and seventh columns are distance errors (mm).

Table 5. Experiment results for good conditions.

No. DtP PtD TPS DtP PtD TPS

1 0.10 0.10 0.09 2.4 1.2 1.4
3 0.10 0.11 0.12 1.6 1.5 1.4
5 0.12 0.12 0.12 0.9 0.8 0.7
7 0.06 0.07 0.08 1.6 1.5 1.6

sum 0.38 0.4 0.41 6.5 5 5.1

Table 6. Experiment results for bad conditions.

No. DtP PtD TPS DtP PtD TPS

2 0.58 0.28 0.03 7.7 2.0 1.1
4 0.78 0.50 0.23 6.8 2.0 1.6
6 0.07 0.07 0.16 2.9 0.4 0.7
8 1.07 1.08 0.08 4.1 4.3 1.5

sum 2.5 1.93 0.5 21.5 8.7 4.9

From the above tables, we can see that for the lines 1, 3, 5, and 7, the sum of the
angular errors of the 3D line, from lowest to highest, was TPS, PtD, then DtP, and they were
very close; the maximum difference was 0.02. The sum of the distance error of the 3D line,
from highest to lowest, was DtP, PtD, then TPS. For the lines 2, 4, 6, and 8, the accuracy of
the direction and distance, from lowest to highest, was TPS, PtD, then DtP. However, the
TPS needed two pairs of corresponding image points, which was difficult to meet under
certain conditions, such as in physical experiment 2.

4.2.2. Physical Experiment 2

Physical experiment 2 was designed to verify the correctness of our method if there
were more than two cameras.

Physical Environment

The setup for the physical experiment is shown in Figure 13. The target was placed on
the board in the center, and the diagonal markers on the side were the calibration control
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points. The 3D line to be reconstructed was the target’s central axis. The resolution of the
camera was 4288 × 2848 pixels, and the equivalent focal distance was approximately 5200.
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Figure 13. Physical scene for experiment 2. The target was placed on the board in the center, and
the diagonal markers on the side were the calibration control points (CCPs). The 3D line to be
reconstructed was the target’s central axis.

Experimental Procedure

The experiment was conducted as follows:

1. The total station was used to obtain the coordinates of the calibration control points
in the world coordinate system. The total station coordinate system was used as the
world coordinate system. The coordinate system direction was vertically upwards (Y)
and horizontal (XZ) and the system constituted a right-hand coordinate system.

2. The same camera was used to take photographs from nine different locations. The
calibration control points were extracted from the image, and the three-dimensional
coordinates were used to calibrate all of the cameras in a unified world coordinate
system.

3. The 2D line was extracted from the image. The corresponding image point was the
top point of the target.

4. DtP and PtD were used separately to obtain the results. For hard-to-find pairs of
corresponding image points on the target, TPS was not used.

All the target directional results are shown in Table 7. It can be seen from the table
that the results of the two methods were essentially the same.

Table 7. Experimental results.

Camera No. DtP PtD

2 (−0.012, 1, −0.014) (−0.012, 1, −0.014)
6 (−0.020, 1, −0.022) (−0.016, 1, −0.019)
9 (−0.017, 1, −0.012) (−0.018, 1, −0.014)

5. Conclusions

Considering the problem of 3D line reconstruction in binocular or multiple view stereo
vision, where there is only a pair of corresponding points on the line, a new method called
PtD was proposed. Compared to DtP and TPS methods, PtD uses both point and line
information for 3D line reconstruction. The simulation results in this paper demonstrate
that our method achieves the best accuracy for determining direction; and although the
positional accuracy of our method is worse than TPS, it is better than DtP. The physical
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experiment shows that under bad intersection conditions, the PtD method achieves better
accuracy than the DtP method.
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