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Abstract: This paper addresses the problem of evaluating vehicle failure modes efficiently during
the driving process. Generally, the most critical factors for preventing risk in potential failure modes
are identified by the experience of experts through the widely used failure mode and effect analysis
(FMEA). However, it has previously been difficult to evaluate the vehicle failure mode with crisp
values. In this paper, we propose a novel hybrid scheme based on a cost-based FMEA, fuzzy analytic
hierarchy process (FAHP), and extended fuzzy multi-objective optimization by ratio analysis plus
full multiplicative form (EFMULTIMOORA) to evaluate vehicle failure modes efficiently. Specifically,
vehicle failure modes are first screened out by cost-based FMEA according to maintenance informa-
tion, and then the weights of the three criteria of maintenance time (T), maintenance cost (C), and
maintenance benefit (B) are calculated using FAHP and the rankings of failure modes are determined
by EFMULTIMOORA. Different from existing schemes, the EFMULTIMOORA in our proposed
hybrid scheme calculates the ranking of vehicle failure modes based on three new risk factors (T,
C, and B) through fuzzy linguistic terms for order preference. Furthermore, the applicability of the
proposed hybrid scheme is presented by conducting a case study involving vehicle failure modes of
one common vehicle type (Hyundai), and a sensitivity analysis and comparisons are conducted to
validate the effectiveness of the obtained results. In summary, our numerical analyses indicate that
the proposed method can effectively help enterprises and researchers in the risk evaluation and the
identification of critical vehicle failure modes.

Keywords: risk evaluation; vehicle failure mode; cost-based FMEA; FAHP; EFMULTIMOORA

1. Introduction

Recently, motivated by the explosive growth of the technical complexity of modern
vehicles and their corresponding reliability [1], research on risk evaluation and safety
assessment procedures has attracted much attention. Risk evaluation is regarded as an
analytical method to assess quantitative and qualitative issues regarding various risk fac-
tors, and investigates potential results of possible problems on systems, designs, processes,
services, etc. [2]. As one of the most promising risk evaluation methods, the failure mode
and effects analysis (FMEA) method can identify and prioritize potential failure modes in
fields whose risk has been assessed to figure out the causes and effects associated with such
failure modes. In traditional FMEA, the rank of failure modes usually depends on the value
of the risk priority number (RPN), which can be obtained by RPN = S×O× D, where S
denotes the severity of the effect of the failure, O denotes the occurrence probability of the
failure, and D denotes the detectability of the failure before its influence occurred [3,4]. In
order to implement improvement measures to optimize vehicle design and maintenance
effectively, the failure of obtaining a higher value of RPN should be analyzed as a pri-
ority. Therefore, after it was proposed in 1963 by NASA, FMEA was widely adopted to
improve the safety and reliability in a wide variety of operational applications, such as in
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the aerospace, automobile and pharmaceutical industries [5–7]. Although conventional
FMEA is regarded as an effective tool, it has certain drawbacks. For example, one of the
major drawbacks is that the same RPN can be caused by different combinations of risk
factors, which may increase the difficulty of risk control [8–10].

In addition, the value of RPN using traditional methods has been intensely condemned
in previous research for its inaccuracy. Many studies [6,11,12] have presented solutions to
overcome the drawbacks of FMEA. After Zadeh et al. [13] put forward the fuzzy set theory
for the first time, a number of researchers [5,14,15] tried to describe the three risk factors in
the FMEA method through fuzzy linguistic terms in conjunction with fuzzy “if–then” rules.
Additionally, the conventional risk factors increased the difficulty of making an accurate
judgment for experts who might not be familiar with FMEA. Ishii [16] defined cost as a risk
factor to describe the conventional risk factors of S and D quantitatively. Indeed, a failure
mode that is hard to detect would more easily increase the cost of maintenance. In the
same vein, Khalilzadeh [17,18] has described a risk evaluation model with the risk factors
of time, cost and profit to achieve the risk control for accidents in an industrial steel mill.

Among the various tools for risk evaluation [19–21], the multi-criteria decision making
(MCDM) method, which can be used to explain experts’ preferences under multi-criteria
environments both quantitatively and qualitatively, plays an important role due to its high
effectiveness and feasibility [22,23]. As one of the most extensively developed MCDM
methods, the comparison matrix is determined by utilizing fuzzy numbers instead of
crisp numbers in the fuzzy analytic hierarchy process (FAHP) method. Laarhoven [24]
first presented the FAHP to find weights for each criterion under a fuzzy environment.
Gul [25] proposed a two-stage fuzzy multi-criteria method, where the weights of risk
criteria were calculated through FAHP in the evaluation of a Turkish hospital. Currently,
this method is always employed in conjunction with other risk evaluation methods for
obtaining the weights [26,27]. As another useful risk evaluation tool, the multi-objective
optimization by ratio analysis (MULTIMOORA) was purposed originally by Brauers and
Zavadskas [28,29] and consisted of the ratio system, the reference point approach, and
the full multiplicative form. In previous studies, this method has been conducted as a
tool to perform risk evaluation in different fields [6]. For example, Gou [30] combined
fuzzy linguistic language and MULTIMOORA to improve the effectiveness of conventional
methods. Liu [31] also proposed a hybrid model according to this method as well as
another decision-making methodology to evaluate risk priority in the health-care waste
management system. Khalilzadeh [17] introduced a hybrid risk evaluation based on
FMEA, AHP, and MULTIMOORA under a fuzzy environment for evaluating accidents in a
factory, which obtained a better result than traditional risk criteria. In the above-mentioned
studies, failure modes are usually classified by the opinions of experts or researchers,
which may cause some confusion for experts who are not familiar with conventional
criteria. For these reasons, a novel hybrid approach based on cost-based FMEA, FAHP, and
the extended fuzzy MULTIMOORA (EFMULTIMOORA) method with new risk criteria,
including maintenance time (T), maintenance cost (C), and maintenance benefit (B), is
presented in this paper for evaluating the reliability of vehicles.

In this paper, we propose a three-stage scheme to evaluate the risk of vehicle failure
modes. After classifying critical failure modes of vehicles using cost-based FMEA from
maintenance information in the first stage, the weights of all risk criteria and the ranking
of vehicle failure modes are obtained using FAHP and EFMULTIMOORA in the second
and third stages, respectively. This therefore results in better accuracy in analyzing the
judgments from the expert team as well as improving the feasibility and applicability of the
risk evaluation method. Furthermore, it is easier for experts to judge the criteria used in
EFMULTIMOORA and FAHP with new the risk criteria of T, C, and B, which can improve
greatly with an improvement in vehicle reliability. In addition, a method for transforming
triangular fuzzy numbers to crisp numbers is conducted in both previously proposed
methods.
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This paper is organized as follows. Section 2 describes the fuzzy set theory and a
method for the defuzzification of triangular fuzzy numbers. Section 3 presents cost-based
FMEA, FAHP, and EFMULTIMOORA methods. Section 3 also describes the proposed
hybrid approach for evaluating vehicle failure modes. Section 4 details the proposed
method using a case study of a Hyundai vehicle and elucidates its analysis results. Finally,
conclusions and future work are discussed in Section 5.

2. Fuzzy Set Theory
2.1. Fundamental Theory of Fuzzy Set

A fuzzy set is a collection of elements in a universe of information where the boundary
of the set contained in the universe is ambiguous, vague, and otherwise fuzzy [32]. In this
study, we consider fuzzy numbers as positive triangular fuzzy numbers, which are charac-
terized by a membership function shown in Equation (1) and Figure 1 [33]. The arithmetic
operations between two fuzzy numbers, such as A =

(
a, b, c

)
, M =

(
m, n, k

)
and r ∈ R+, are demonstrated as shown in Equations (2)–(6) [18].

Figure 1. Fuzzy triangular number with 10-cut.

µ(x) =


0, x < a;
x−a
b−a , a ≤ x ≤ b;
c−x
c−b , b ≤ x ≤ c;
0, x ≥ c;

(1)

A⊕M = [a + m, b + n, c + k] (2)

AΘM = [a− k, b− n, c−m] (3)

A⊗M ∼=
(

am, bn, ck
)

(4)

A�M ∼=
[ a

k , b
n , c

m

]
(5)

A× r ∼=
[
ar , br, cr

]
(6)

2.2. Defuzzification for Triangular Fuzzy Numbers

How to rank fuzzy numbers plays an important role in decision making [34]. Since
all the vehicle failure modes are evaluated using fuzzy numbers, the comparison among
these fuzzy numbers is indeed a comparison among alternatives. Usually it is necessary to
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transform the fuzzy numbers into crisp numbers to obtain better ranking results [35]. Such
a transformation process can be defined as defuzzification. In this section, we introduce a
method for defuzzification based on the method of α-cuts.

There are three possible conditions for the fuzzy number A =
(

a, b, c
)
. First,

when (a = b = c), we can draw n vertical-cut lines with equal distances between a and b.
Then we can get xhi and yhi using Equations (7) and (8), as follows. More details and proof
about this defuzzification can be found in [14].

xhi = a + i
(

b− a
n + 1

)
, i = 1, 2, . . . , n (7)

yhi =

(
1

b− a

)
∗ (xhi − a), i = 1, 2, . . . , n (8)

The same process is also performed for side bc, as shown in Equations (9) and (10), as
follows.

xhi = a + i
(

c− b
n + 1

)
, i = n + 1, n + 2, . . . , 2n (9)

yhi =

(
−1

c− b

)
∗ (xhi − b) + 1, i = n + 1, n + 2, . . . , 2n (10)

where xh2n+1 = b, yh2n+1 = 1, and RA is the crisp number correlated with A, which can be
calculated as follows:

RA =
1

2n

2n

∑
i=1

(
xhi ∗ yh0.01

i

)
+ b (11)

When a = b < c and a < b = c, it can be obtained as follows:

RA =
1

2n

2n

∑
i=1

(
xhi ∗ yh0.01

i

)
+ a (12)

RA =
1

2n

2n

∑
i=1

(
xhi ∗ yh0.01

i

)
+ b (13)

3. Methodology

In this section, a hybrid approach based on cost-based FMEA, FAHP, and EFMULTI-
MOORA is presented to address the problem of risk evaluation for vehicle failure modes
with interconnections and feedback between certain risk factors. The proposed hybrid
approach for evaluating the risk of vehicle failure modes consists of three main stages:
(1) identify the potential failure modes using cost-based FMEA; (2) calculate the influential
weights of risk criteria using FAHP; (3) rank the vehicle failure modes using EFMULTI-
MOORA. The flowchart of the proposed hybrid method can be seen in Figure 2.



Sensors 2021, 21, 661 5 of 15

Figure 2. Flowchart of the proposed hybrid evaluation method.

3.1. Cost-Based FMEA

It is very labor intensive for experts to give their judgments on hundreds of vehicle
failure modes. Thus, it is necessary to find a method to perform a preliminary screening. In
the first stage, the FMEA based on the vehicle maintenance data is employed to select the
top potential failure modes by calculating the value of RPNs. The steps of this modified
method are stated follows:

Step 1. Collect maintenance data from automobile service factory.
Information is selected for target type from the factory database. The cost and proba-

bility of each failure mode can be obtained as shown in Equations (14)–(16).

Pij =
mi
N
×

k j

mi
=

k j

N
(14)

where Pij denotes the probability of the jth vehicle failure mode in the ith system, mi
denotes the frequency of vehicle failure mode in the ith system, N denotes the number
of vehicle samples and k j denotes the frequency of the jth vehicle failure mode in the ith
system.

wij(C) = wij(Ct) + wij(Cm) + wij(C0) (15)
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where wij(C), wij(Ct), wij(Cm), wij(C0) denote the total cost, man-hour cost, material cost,
and the other charges of the jth vehicle failure mode in the ith system.

wij(Ct) = pij × nij (16)

where pij denotes the price of per maintenance man-hour of the jth failure mode in the ith
system and nij denotes the number of maintenance man-hours of the jth failure mode in
the ith system.

Step 2. Build risk evaluation model based on maintenance cost.
In order to resolve the ambiguity of measuring detection difficulty and get more

accurate of results, a cost-based FMEA model is proposed as shown in Equation (17) [16].

wRPN =
n

∑
j=1

(
wij(C)× Pij

)
(17)

where wRPN denotes the value of RPN and n denotes the number of failure modes.
Step 3. Rank the vehicle failure modes.
In this step, the vehicle failure mode is ranked by sorting the values of wRPN in

decreasing order.
Step 4. Identify the failure modes.
Select the top five failure modes to perform further risk analysis according to the

results from Step 3.

3.2. FAHP

In the second stage, the conventional AHP is extended to calculate the weight of each
criterion under a fuzzy environment. The steps of this FAHP are as follows:

Step 1. Build hierarchical structure to evaluate risk criteria.
Step 2. Construct fuzzy pair-wise comparison matrix A.
Considering Table 1, the fuzzy pair-wise comparison matrix A is determined by an

expert team, which can be expressed as Equation (18).

A =
(
aij
)

n×n, (i, j = 1, 2, · · · , n) (18)

where aij = 1 with i = j and aij = 1/aji with i 6= j.
Step 3. Normalize the columns of A.

aij = aij/
n

∑
i=1

aij(i, j = 1, 2, · · · , n) (19)

Step 4. Normalize the rows of A.
In order to rank fuzzy numbers, the ratio of each fuzzy number with the summed

values obtained in Step 3 can be computed as follows [36,37]:

wi = aij/
n

∑
j=1

wij(i, j = 1, 2, · · · , n) (20)

Step 5. Calculate wi.
The weights of risk factors are obtained by calculating the arithmetic mean value

among the results obtained in Step 4, as follows.

wi = wi/
n

∑
i=1

wi(i = 1, 2, · · · , n) (21)
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Table 1. Linguistic variables for rating the risk factors.

Linguistic Variable Triangular Fuzzy Number

Equal (1,1,1)
Moderate (1,1,1.5)

Strong (1,1.5,2)
Very strong (1.5,2,2.5)

Extreme (2,2.5,3)

3.3. EFMULTIMOORA

In the final stage, the conventional MULTIMOORA method is developed under a
fuzzy environment to determine the ranking priorities by calculating the final weights
of each alternative in three approaches [31]. The steps of the EFMULTIMOORA are as
follows:

Step 1. Collect the decision makers’ opinion.
The collected opinions can be recorded by the fuzzy ratings, xij, measured based on

Table 2, which can be used to build the fuzzy group decision matrix X =
[
xij
]

m×n, as
follows: 

xij =
(

xij1, xij2, xij3
)

xij1 = 1
l

l
∑

k=1
xk

ij1, xij2 = 1
l

l
∑

k=1
xk

ij1, xij3 = 1
l

l
∑

k=1
xk

ij1
(22)

Table 2. Linguistic variables for rating the vehicle failure modes.

Linguistic Variable Triangular Fuzzy Number

Very low (VL) (0,0,1)
Low (L) (1,2,3)

Medium low (ML) (1,3,5)
Medium (M) (3,5,7)

Medium high (MH) (5,7,9)
High (H) (7,9,10)

Very high (VH) (9,10,10)

Step 2. Normalize X into R.
The X obtained in Step 1 can be normalized into the normalized fuzzy decision matrix

R =
[
rij
]

m×n, as follows.

rij =
(
rij1, rij2, rij3

)
=

(
xij1
x∗ij3

,
xij2
x∗ij3

,
xij3
x∗ij3

)
x∗ij3 =

√
m
∑

i=1
x2

ij3

(23)

Step 3. Construct weighted fuzzy group decision matrix R′.
According to the weights of all risk factors obtained in the last section, the R′ = [r′ij]m×n

is formed as follows:

r′ij =
(

r′ij1, r′ij2, r′ij3
)
= wj ⊗ rij =

(
wjrij1, wjrij2, wjrij3

)
(24)

Step 4. Apply the ratio system.
For optimization, the responses of experts are summarized as follows [29]:

yi = (⊕g
j=1x′ij)Θ(⊕n

j=g+1x′ij) (25)

where i = 1, 2, . . . , g denotes the risk factors of benefit, i = g + 1, g + 2, . . . , n denotes the
risk factors of cost, and yi denotes the calculated assessment of vehicle failure mode Fi.
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Then, according to Equation (25), the weight of each risk factor with these values combined
can be obtained as follows.

w′i =
yi

∑
j

yj
(26)

Step 5. Apply the reference point approach.
The reference point theory is based on R′ = [r′ij]m×n

, which is obtained in Step 3,
whereby a fuzzy maximal objective reference point (FMORP) is also deduced [17]. Because
the elements r′ij ∈ [0, 1] and ∀i, j ∈ [0, 1], we can define this parameter as r∗j = (1, 1, 1) when
j belongs to benefit criteria or r∗j = (0, 0, 0) when j belongs to cost criteria. Then, we can
obtain the distance matrix D =

[
dij
]

m×n, as follows:

dij = d(r′ij, r∗j ) =

√
1
3

[(
r′ij1 − r∗j1

)2
+
(

r′ij2 − r∗j2
)2

+
(

r′ij3 − r∗j3
)2
]

(27)

where dij denotes the gap of vehicle failure mode Ai in the jth risk factor Cj. The distance
of each vehicle failure mode from FMORP can be measured as follows:

di = max
j

∣∣dij
∣∣ (28)

The weight of each risk factor in this step can be computed as follows:

w′′ i =
1− di

∑
j

(
1− dj

) (29)

Step 6. Apply the full multiplicative form.
The utility of the ith vehicle failure with objectives to be maximized and objectives to

be minimized can be express as follows:

ui =
ai
bi

(30)

where ai = ⊗g
j=1x′ ij denotes the benefit factors, and bi = ⊗m

j=g+1x′ ij denotes the cost
factors.

Step 7. Calculate and rank the normalized weights of each alternative.
In this step, after sorting the values yi and ui with i = 1, 2, . . . , m in decreasing order

and di with i = 1, 2, . . . , m in increasing order, the normalized weight of each alternative is
obtained by calculating the arithmetic mean of the weights using Steps 4–6. Finally, the
ranking order of all alternatives can be determined based on the normalized weight lists.

4. Empirical Example

In this section, in order to illustrate the feasibility and benefit of the mentioned hybrid
approach, an empirical study is conducted in evaluating failure modes of a common
passenger vehicle. First, we classify the critical failure from hundreds of failure modes
from maintenance information using the cost-based FMEA. Second, the weight of new risk
criteria, which is provided by experts, can be obtained by FAHP. Finally, the risk ranking of
selected failure modes can be listed using EFMULTIMOORA. Then, a sensitivity analysis
is conducted to verify the applicability of the new risk criteria. For the sake of showing the
superiority of this hybrid method, the same maintenance information is also applied in
other risk evaluating methods as a contrast.

4.1. Implementation

We selected the maintenance information for the Hyundai from an automobile service
factory in Zhejiang Province, China [38]. The current investigation involved sampling and
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analyzing the maintenance information for 415 vehicles of the same type during March
2017, which consisted of hundreds of vehicle failure modes. The maintenance information
consisted of vehicle license number, VIN number, mileage, maintenance type, failure cause,
maintenance cost, etc. It involved all types of maintenance issues, such as overhaul by
accidents, ordinary maintenance, and minor overhaul. This study focused on the vehicle
failure modes under normal conditions, so the information belonging to overhaul by
accidents was not taken into consideration. Part of the information that we collected can
be seen in Table 3. According to the probability and cost of maintenance, we were able to
identify the top potential vehicle failure modes by the proposed cost-based FMEA method.

Table 3. Part of the maintenance information for the Hyundai vehicles.

No. VIN Mileage Type Failure Cause Cost

1 LBELMBKC3DY322169 9200 km Minor overhaul Replace oil and air filter ¥120
2 LBELMBKC9EY572517 12,560 km Minor overhaul Replace trunk switch ¥180
3 LBELMBKC0GY705216 3912 km First maintenance None ¥0

Lots of quantitative and qualitative factors need to be considered when determining
the top critical vehicle failure mode. It is worth noting that more vehicle failure modes
were found in this application than are specified here; however, the study was limited to
five critical modes for the sake of simplicity. The identified five failure modes include brake
pad worn (F1), vehicle-mounted battery broken (F2), damaged or worn tires (F3), damaged
air-conditioning filter element (F4), and damaged driveline bearing (F5) as shown in Table 4.
In this study, the evaluation was conducted by a team of five decision makers, namely,
DM1, DM2, DM3, DM4, and DM5, which involved a professional mechanical engineer, a
skilled technician, a technical advisor, and two others working at the Mercedes Benz and
Hyundai dealership in College Station, Texas, USA. A technical questionnaire about these
failure modes was prepared concerning the evaluation criteria. The decision makers were
required to provide their judgments on the interrelationship between the risk factors and
the ratings for each risk factor. In addition, according to their experience and position, the
propriety weights for the above-specified decision makers were 30%, 30%, 20%, 10%, and
10%, respectively, in identifying and analyzing failure modes.

Table 4. Part of the results of evaluation.

Failure Systems Failure Mode Probability Cost/¥ RPN

Engine Replace oil and air filter 0.0048 120 0.576
Replace spark plug 0.0072 180 1.296

Drive system Replace the fixed card buckle 0.0072 60 0.432
Replace the bearing 0.0096 200 1.92

Steering system Replacement tire 0.0048 800 3.84
Traveling system Check steering wheel 0.012 60 0.72
Barking system Replace brake block 0.024 185 4.44

Instrument lighting Equipped with low LED 0.0024 600 1.44
Maintain high beam 0.0024 400 0.72

Safety device Adjust the gap round the auto door 0.0024 600 1.44
Air-conditioning system Replace air filter 0.038 60 2.28

Electronic equipment
Replace trunk switch 0.0024 180 0.432

Replace HBC-A 0.014 20 0.28
Replace battery 0.0096 400 3.84

Bodywork polishing 0.0048 380 1.824

The data were collected by consulting first with decision makers on their opinions.
An overview of each risk factor and failure mode was provided, and each decision maker
was then given a 3 × 3 linguistic scale direct-influence matrix for comparison of the three
risk-evaluating criteria. The remaining portions of the matrix were left blank to be filled in
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by the expert team. It is worth noting that some published articles regarding vehicle failure
modes were provided to the experts before filling in the questionnaire in order to assist
with the accuracy of their judgments between risk factors and the performance of vehicle
failure mode.

The results collected in the first and second stages are summarized in Table 5. We
then utilized the proposed FAHP to calculate the weights of T, C, and B, where T, C, and
B denote the required maintenance time, maintenance cost, and maintenance benefit of
taking the mentioned corrective measures to decrease or eliminate the influences of vehicle
failure mode, respectively. As Table 5 shows, B is the most important risk factor in this case.

Table 5. Fuzzy pair-wise comparison matrix for the three risk factors.

Risk Criteria T C B Weight

T (1,1,1) (2/3,1,1) (1/2,2/3,1) 0.283
C (1,1,1.5) (1,1,1) (2/3,1,1) 0.330
B (1,1.5,2) (1,1,1.5) (1,1,1) 0.387

T, C, B denote the maintenance time, maintenance cost, and maintenance benefit of failure modes.

Then, the normalized weight of each selected alternative was calculated using EF-
MULTIMOORA, considering the fuzzy linguistic terms as shown in Table 2. Table 6 shows
the results for the risk criteria as provided by the five decision makers.

Table 6. The results of the three risk factors for vehicle failure modes.

Criteria DMs Weight F1 F2 F3 F4 F5

T (−)

DM1 20% M M M M H
DM2 30% VL VL VL VL MH
DM3 30% VL ML VL VL VH
DM4 10% ML VL VL VL ML
DM5 10% L L L VL H

C (−)

DM1 20% ML M M M MH
DM2 30% ML ML MH L H
DM3 30% MH ML MH VL VH
DM4 10% L L VL L L
DM5 10% M ML L VL VH

B (+)

DM1 20% VH VH VH MH MH
DM2 30% H VH VH M H
DM3 30% VH H VH M VH
DM4 10% H MH VH M VH
DM5 10% VH MH VH MH VH

T, C, B denote the maintenance time, maintenance cost, and maintenance benefit of failure modes.

Finally, Table 7 presents the ranking of failure modes according to the proposed
EFMULTIMOORA method. Since final weight indicates the integrated assessment of alter-
natives, the higher value indicates a higher weight and thus requires the most immediate
attention. The ranking sequence shows that the failure mode F1 is the most critical choice,
followed by F2, F3, F4, and F5. Consequently, utilizing the hybrid risk analysis method
proposed in this study, the expert team could recommend that a worn brake pad (F1) is the
most critical failure mode for this type of vehicle.
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Table 7. The ranking alternatives according to extended fuzzy multi-objective optimization by ratio analysis plus full
multiplicative form (EFMULTIMOORA).

FM yi Rank di Rank ui Rank Weight Rank

F1 (−0.0654, 0.0121, 0.0738) 1 0.8310 5 (14.38, 45.30, 158.5) 3 0.2674 1
F2 (−0.0344, 0.0356, 0.0805) 2 0.8390 2 (12.36, 39.97, 213.1) 2 0.2213 2
F3 (−0.0449, 0.0277, 0.0614) 4 0.8237 4 (15.85, 46.97, 117.5) 4 0.2188 3
F4 (0.0124, 0.0348, 0.0271) 3 0.8983 1 (16.60, 94.69, 385.5) 1 0.2186 4
F5 (−0.0705, −0.0362, 0.0555) 5 0.8390 2 (2.763, 4.120, 6.854) 5 0.0736 5

FM denotes Failure mode; yi, di, ui, denote the risk criteria.

A sensitive analysis was implemented to validate the feasibility of this hybrid ap-
proach. Thus, it was necessary to change the weights of risk factors, which were computed
by the FAHP method (wT , wC, and wB). As shown in Table 8, three different weights were
carried out during the process of sensitive analysis. For these different cases, Case 1 came
from Hyundai, and each of the other three cases had a different dominated risk factor. The
results, presented in Figure 3, suggest that the weights of T, C, and B have a significant
effect on risk evaluation of vehicle failure modes. Therefore, for automobile manufacturers
and enterprise, it is beneficial to take both real conditions and experts’ opinions into con-
sideration in the process of determining proper weights of risk factors and reasonable risk
prioritization for vehicle failure modes. In summary, we found that this hybrid method
could obtain more reasonable judgments to control risk and provide proper information
for evaluating vehicle failure modes.

Table 8. The percentages of sensitivity analysis cases.

Criteria Case 1 Case 2 Case 3 Case 4

T 0.283 0.1 0.1 0.6
C 0.330 0.2 0.8 0.3
B 0.387 0.7 0.1 0.1

Figure 3. Results of ranking in sensitivity analysis.

4.2. Comparisons and Discussion

The results of the above empirical study provide some interesting findings. First,
when a failure mode is difficult to detect or its severity is underestimated, it can result
in increased maintenance costs. Consequently, the maintenance cost can well replace the



Sensors 2021, 21, 661 12 of 15

original factors of S and D. The cost-based FMEA can effectively provide a preliminary
screening for hundreds of vehicle failure modes in the maintenance information. It draw
experts’ attention to critical failure modes and can result in more accurate judgments.

Second, in accordance with the results of FAHP, the maintenance benefit (B) is the
most important risk factor, with the effective weight of 0.387, and the maintenance time
(T) is the least important one, with the effective weight of 0.283. The reason for weighing
these factors in the proposed FAHP is to obtain more precise evaluation results, which
can overcome the drawbacks of the conventional method effectively. Consequently, in the
proposed hybrid approach, the weights of T, C, and B are applied to conduct risk evaluation
for each vehicle failure mode.

Third, from the results obtained by the proposed EFMULTIMOORA, as shown in
Table 7, the ranking sequence, which is F1 > F2 > F3 > F4 > F5, indicates that brake pad
worn (F1) is the most critical failure mode. The reason for applying the EFMULTIMOORA
method is to understand what effects the risk of a vehicle failure in the light of these
three risk factors have on the whole vehicle system. Consequently, for the vehicle failure
modes that take relatively little maintenance time or involve low maintenance costs and
show relatively high benefits from maintenance, higher priority should be given in the
optimization design for vehicles. Accordingly, automobile enterprises should perform
appropriately corrective actions on these vehicle failure modes with higher priority given
to them over others. Therefore, automobile enterprises can optimize vehicle design with
maximum efficiency after decreasing or eliminating failure effects by taking properly
corrective measures.

In addition, for validating the feasibility of the proposed hybrid evaluation approach
with respect to alternatives, it is necessary to utilize the above example under comparable
methods, such as cost-based FMEA, VIKOR, and MULTIMOORA, with conventional
risk criteria S, O, and D. Table 9 exhibits the ranking comparisons of all vehicle failure
modes as obtained by using these methods. It is clear that the rankings obtained by the
proposed hybrid method are almost the same as those derived by the proposed cost-based
FMEA and VIKOR methods [39] using the same risk criteria. Moreover, the ranking is also
more in line with the experts’ opinions, which demonstrates the validity of the proposed
hybrid method. However, this ranking order is remarkably different from that obtained by
MULTIMOORA with the conventional risk criteria S, O, and D. One important reason is
that the conventional risk criteria are more difficult for experts to use in expressing their
real risk attitudes toward vehicle failure modes. Each industry should establish its own risk
evaluation system. This cognitive error, coming from the difference of fields, may increase
the difficulty in making decisions, which may cause inconsistencies in risk evaluation. The
comparisons demonstrate the feasibility and applicability of the proposed hybrid method
for evaluating the risk of vehicle failure modes. Compared with previous approaches on
evaluating vehicle failure modes, this hybrid method has the following advantages.

Table 9. The results of comparisons.

Failure Mode
Cost-Based FMEA VIKOR with T, C, B MULTIMOORA with S, O, D

RPN Rank S R Q Rank yi di ui Rank

F1 4.44 1 1.8229 1.1321 0.6791 2 0.4990 0.9115 0.0329 1
F2 3.84 2 1.9322 0.6838 0.0720 1 0.2840 0.9256 0.0074 4
F3 3.84 2 1.9062 1.5709 1.3990 3 0.4831 0.9205 0.0281 3
F4 2.28 4 3.0868 2.7551 3.9718 4 0.2045 0.9538 0.0032 5
F5 1.92 5 5.9008 2.7802 5.8657 5 0.4841 0.9115 0.308 2

S, Q, R are the risk criteria in VIKOR method.

First, the proposed method selects the top five critical failure modes from maintenance
information, which makes the results consistent with the real vehicle conditions. In ad-
dition, it is beneficial for the experts to make judgments on the critical alternatives after
using this preliminary screening method.
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Second, the risk criteria of failure modes and their interdependent relationships are
judged using fuzzy numbers rather than crisp values. This allows for more reasonable and
precise expression of their risk attitudes during the process of evaluation. In addition, the
new risk criteria of T, C, and B are easy to understand for experts, which enable them to
express their judgement more accurately.

Third, the priority ranking of failure modes is determined by EFMULTIMOORA,
which can be easily carried out with high applicability. Therefore, the proposed risk-
evaluating framework can result in a highly robust evaluation of the vehicle failure modes
and can have great feasibility in real-world applications.

5. Conclusions

In this paper, we propose a three-stage scheme to evaluate the risk of vehicle failure
modes. In order to present the feasibility of our hybrid method, an empirical study
was conducted for a common vehicle. By utilizing the method of FAHP, the criteria for
evaluating failure modes were proven to be interrelated and interdependent. Considering
the effects of all factors, priority should be given to the most beneficial factors when making
decisions. In this hybrid method, the ranking of vehicle failure modes is presented by
the suggested EFMULTIMOORA with the new risk criteria of T, C, and B. As a result,
the alternative F1 is the most critical failure mode for the Hyundai vehicle, followed by
the alternatives F2, F3, F4, and F5. The selected ranking is similar to those obtained by
cost-based FMEA and VIKOR methods. Therefore, it has been validated that the proposed
fuzzy hybrid method is an effective tool in evaluating the risk of vehicle failure modes
with interdependent factors and compromise alternatives.

In addition, we point out several open issues for future research. First, our proposed
hybrid method is restricted to the failure mode evaluation for Hyundai; it can be employed
with similar reliability for other types of vehicles in future research. Furthermore, to further
validate the reliability of the proposed method, extensive research should be conducted in
different industries in the future.
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