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Abstract: The interfaces between users and systems are evolving into a more natural communication,
including user gestures as part of the interaction, where air-writing is an emerging application for
this purpose. The aim of this work is to propose a new air-writing system based on only one array
of ultrasonic transceivers. This track will be obtained based on the pairwise distance of the hand
marker with each transceiver. After acquiring the track, different deep learning algorithms, such as
long short-term memory (LSTM), convolutional neural networks (CNN), convolutional autoencoder
(ConvAutoencoder), and convolutional LSTM have been evaluated for character recognition. It has
been shown how these algorithms provide high accuracy, where the best result is extracted from the
ConvLSTM, with 99.51% accuracy and 71.01 milliseconds of latency. Real data were used in this work
to evaluate the proposed system in a real scenario to demonstrate its high performance regarding
data acquisition and classification.

Keywords: ultrasound; air-writing; gesture recognition; deep learning

1. Introduction

Air-writing is a particular case of gesture recognition. The user draws in the air the
character or word to recognize, and the system performs the tracking of the movement and
matches the drawn with the actual character or word [1,2]. Air-writing systems present
several challenges, such as the lack of a physical writing plane (gestures performed in an
imaginary plane) and the detection of starting and ending points of the drawn character.
In addition, these systems present a lack of visual feedback when a sequence of tracks is
performed, thus increasing the recognition task complexity.

Air-writing systems are described in the literature using different technologies. There
are systems based on video [3], infrared (IR) sensors [4,5], radar [6–8], Wi-Fi signal [9],
RFID [10], or a combination of those technologies (i.e., IR sensors and video [11,12]). There
are also works based on ultrasound technology such as Chen H. et al. [13], who proposed a
system where the recognition is based in a fixed receiver array performing the localization
of a transmitter array attached to the user’s hand. Similarly, Chen J. et al. [14] describe the
use of ultrasonic signal and radio signal together to develop a transmitter 3D-pen, and the
algorithm to positioning it based on a set of receiver nodes.

The aim of this work is to propose a new air-writing system based on only one array
of ultrasonic transceivers, which will perform both emitter and receiver roles. This array
will remove the necessity of any active part used by the person performing the character
track. This track will be calculated based on the pairwise distance of the hand marker with
each transceiver.
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The development of the air-writing system can be depicted as the study of two
individual tasks, as shown in Figure 1. The first task consists of the estimation of the
character drawn by the user. After the track is estimated, in the second task, the recognition
of the character will be performed. To do so, the recognition algorithm may execute
necessary transformations to the track.

Figure 1. General block diagram for air-writing systems.

The first task starts with signal acquisition and analysis. While this is highly technology-
dependent, the following steps may use common approaches. The hand marker location
can be based on a method such as Time of Flight (ToF) [15], Time Difference of Arrival
(TDoA) [16], Direction of Arrival (DoA) [17], Angle of Arrival (AoA) [18], etc. After the
parameter calculation, the actual position has to be computed. The preferred method
in the literature to determine the position is Trilateration (or its generalization for multi-
ple nodes, Multilateration) [19]. The system described in this paper is based on the ToF
method to acquire the hand marker position. The 3D position is determined by using mul-
tidimensional scaling (MDS) and optimization algorithms, as Limited-Memory Broyden
Fletcher Goldfarb Shanno (LM-BFGS) algorithm. Those algorithms have been proved to
deal with the ultrasonic noise figure on air, needing a filtering step to remove possible
outliers afterwards [20].

The second task is to perform the characters recognition. The track estimated in
the previous steps may need to be transformed to fit the characteristic of the recognition
algorithms. There is a huge variety of algorithms in the literature for this purpose. As
examples, Arsalan et al. [6] transform the three-dimensional estimated track and in a two-
dimensional track, which will be fed into a Neural Network to perform the recognition;
Leem et al. [8] convert the point-based track obtained from the radar signal to an actual
image, using image processing techniques to obtain the written character.

In this work, multiple classification algorithms have been tested on ultrasound-based
gesture recognition to determine their suitability. To be precise, these Deep Learning (DL)
algorithms are Convolutional Neural Networks (CNN), Long Short-Term Memory Neural
Networks (LSTM NN), Autoencoders, and variations of these algorithms. These algorithms
have been selected according to the high-accuracy results achieved by other authors for
gesture recognition tasks [6,8,9].

The use of ultrasound technology mitigates the disadvantages that other technologies
present. Image-based systems (cameras or IR sensors) are affected by changes in the ambi-
ent light conditions, and they may also lead to privacy issues related to the identification
of users. Radio-based systems (such as Wi-Fi or radar), thanks to intrinsic technology
characteristics, could overcome these problems. These systems could suffer from signal
interference regardless due to the increasing number of applications based on this technol-
ogy. Finally, the use of active wearable-based systems (such as ultrasound transmitters)
can lead to a more complex solution, which would consequently be less intuitive for users.

This work is structured as follows: Section 1 introduces the state of the art. Sections 2
and 3 explain in detail the algorithms studied in this work for the track acquisition and
classification, respectively. Section 4 presents the dataset used in this work and the specific
parameters used for each of the classification algorithms. Section 5 summarizes the results
obtained. Finally, Section 6 focuses on the conclusions of this work.
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2. System Description

This section covers the detection of the user movements and the translation into a
temporal series of positions. It is divided into three tasks, covering the movement sensing,
individual position calculation and the complete track estimation, following the steps
shown in Figure 2.

Figure 2. Track generation pipeline.

2.1. Hardware

For user detection, this work uses four dual-backplate MEMS microphone-based ul-
trasonic transceivers [21] in a square-shaped matrix, as shown in Figure 3. The transceivers
need low bias voltage and support the use of both audio microphones (with a 68 dB(A)
signal-to-noise (SNR) performance) and an airborne ultrasonic transceiver (with between
80 and 90 dB SNR). The use of the transceiver to emit an ultrasonic pulse produces a
shadow zone of about 10 cm due to the free oscillation of the membrane (ringing).

Figure 3. Position of the ultrasonic transceivers.

For the transceivers’ actuation and read-out, the Analog Discovery 2 (AD) was
used [22]. As each AD has two analog input channels, it is necessary to use two devices
to acquire the output signal of the four transceivers. The AD waveform generator allows
the creation of arbitrary signals, used for the transceiver actuation. The parameters used
for the transceivers’ actuation and data acquisition are listed in Table 1. The parameter
selection is based on results extracted from previous works [23].
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Table 1. Parameter settings used for the transceivers’ actuation and data acquisition.

Parameters Setting

Actuation pulse frequency (Fc) 30 kHz
Number of pulses 6
Pulse repetition interval 20 ms
Sampling frequency (Fs) 200 kHz

2.1.1. Signal Model/Target Detection

As stated in Section 1, the system is based on the time elapsed between the signal
emission and the echo reception, known as ToF. In the literature, numerous methods can be
found based on techniques such as biologically inspired algorithms [24], based on phase
difference [25] or frequency difference [26]. Most works use a method based on cross-
correlation and threshold power because of the low computational power required and
the noise influence removal effect of the cross-correlation, which acts as matched filtering.
Using a template of the expected echo and performing the correlation with the acquired
signal, this method produces a time–domain signal with a peak value when the actual echo
is received [14,27].

For this work, the ToF will be obtained through a cross-correlation algorithm and
a dynamic threshold method. The target distance is then obtained from the ToF. This
algorithm locates the closest target that generates the first echo. Obstacles located further
than the relevant target are not detected as part of the gesture. The process can be divided
into four steps [23]:

1. Cross-correlation. The acquired signal is cross-correlated with a template containing
the expected echo. This method will give a maximum value in the sample where the
template and the acquired signal match.

2. Dynamic Threshold. In order to distinguish whether there is an echo or not, the value
of the cross-correlated signal needs to be greater than a threshold level. The dynamic
threshold used in this step decrease the value with the time, to match the attenuation
of the signal with the distance traveled [28]. This parameter can be increased or
decreased to fit certain conditions, i.e., ambient noise. The cross-correlated signal
obtained in the previous step is filtered to extract the envelope, and this envelope is
then evaluated to check if and where it crosses the threshold level.

3. ToF calculation. All previous calculations are done over the sample number. When
the crossing point between the cross-correlation envelope and threshold is calculated,
the sample can be converted to time using the ADC sampling frequency parameter.

4. Distance calculation. Once the ToF is calculated, it can be converted to distance using
the following equation [29]:

d =
ToF cs

2
(1)

where d is the distance between the hand marker and the transceiver, ToF indicates
the ToF calculated, and cs is the speed of sound.

2.1.2. Object Positioning

Once the pairwise distance between the hand marker and each anchor has been
obtained as explained in the previous section, those values can be fed to the algorithm to
determine the 3D space position, as shown in Figure 4a.

As described in Section 1, in this work a novel algorithm [20] will be used, instead of
Multilateration. This method proposes a two-step algorithm to obtain the hand marker
location. The first step performs the anchor location, and the second step calculates the
hand marker location based on the previously calculated anchors position and the pairwise
distances. As the distances among the anchors are known, the first step can be repeated
with low frequency to check whether the previously calculated anchor positions are still
valid or not. The hand marker position must be calculated with every new sample (each
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20 ms as explained in Table 1). The 3D position will be calculated using the LM-BFGS
algorithm, minimizing the mean squared error as the objective function.
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Figure 4. Different steps in the track estimation: Pairwise distances among transceivers and hand marker (a), 3D position
time series (b), 2D projection (c).

2.1.3. Track Definition and Filtering

Based on the algorithms previously described, and performing the position estimation
periodically, the trajectory of the hand marker is built as a discrete time series of successive
points, as shown in Figure 4b. The knowledge of parameters like the maximum speed
of the movement and the time between samples makes possible the use of filters. These
filters can be used to smooth the trajectory, remove the effect of outliers and restore missing
points by interpolation. In this work, the smoothing will be based on the moving average
filter algorithm (EQ), which has been proven to reconstruct the original gesture [20].

y[n] =
1
M

(M−1)
2

∑
j=−(M−1)

2

x[n + j] (2)
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where X is the input signal, Y is the output, and M is the window size—M being odd.
This filter behaves as a low-pass filter but is focused on time-based response instead of
frequency-based. The bigger the window size (greater M), the stronger the noise reduction
but the greater the delay introduced by the filter as well. Therefore, the value M has to be a
trade-off to remove the noise but also to be able to respond to faster movements [30].

2.1.4. Track Transformations

Before using the gathered data for gesture recognition, the data have been adapted
to the required format for each of the researched classification algorithms. The first step
in the preprocessing pipeline was the projection of the 3D gestures into a 2D plane, as
depicted in Figure 4c, to generate 2D images that can be fed into the CNN, ConvLSTM and
the convolutional autoencoder. The selected 2D plane was the XY plane as the variance of
the gesture with respect to the Z-axis is much smaller than the variance in the other axis.
These images were later normalized and converted to grayscale to reduce their dimensions
while maintaining relevant features. Due to the nature of the data studied in this research,
data augmentation techniques have been applied to the image in addition to 3D coordinate
data, as described in Section 4.1.

3. Character Recognition Algorithms

Multiple Deep Neural Networks (DNN) are examined for character recognition based
on the previously generated trajectory data. The trajectory can be represented as an image
or as the 3D numerical coordinates depending on the data type required for each algorithm.

Using these two datasets (images and 3D coordinates), a large range of DNN models
can be trained for the classification of the gestures. The most relevant DNN structures in ges-
ture recognition have been selected to classify our data due to previous high-performance
results [3,4,6–9,13,31–33]. Different DNN approaches are included in this work to also
compare the effect in the classification of the two previously depicted data types. The
compared algorithms are:

• Convolutional Neural Network. This DNN model is based on a set of convolutional
filters that are applied sequentially to the input data to generate feature maps. The
bias and kernel values of these filters are calculated during the training phase of
the model. The features extracted with these convolutional filters are later used by
fully connected layers for classification or prediction tasks as a traditional Multilayer
Perceptron would do. In this work, the CNN will be used to classify the input data as
one of the possible studied characters. The input data fed into the CNN are the final
2D-images where the whole characters are represented. Consequently, this DNN is
trained to classify each input data point individually without taking into account the
length of time of each character or the time distribution of the positions.
This DNN structure was selected according to the high-accuracy results achieved
in the literature for gesture recognition [3,6,8,9]. These works focus on gesture data
recorded with multiple sensors such as radar or Wi-Fi. Because of this, it is desired to
research if similar results can be achieved when using ultrasound data.

• Convolutional Autoencoder. The convolutional autoencoder can be employed to
extract features from data in an unsupervised fashion [34]. This DNN consists of two
main parts: an encoder, which maps the images into an embedded representation
called code, and a decoder that reconstructs the original image from the code. There-
fore, the encoder and decoder can be trained by using the same data as input data and
expected output. The Autoencoder can also be combined with convolutional filters
for efficient data coding when a more complex feature extraction is required. As for
CNN, the encoder can be the input of fully connected layers for the classification of
features in different categories. The use of encoders in classification tasks can bring
several benefits such as dimensionality reduction and performance improvements in
supervision [13,31–33]. As with CNN, the inputs fed into the convolutional autoen-
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coder are the final 2D images where the whole characters are represented. Therefore,
no time information is considered.

• Long Short-Term Memory (LSTM) DNN. This DNN structure focuses on studying
temporal features of the input data by studying its evolution during a selected period
of time following a window approach, as shown in Figure 5. The main characteristic
of this structure lies in the fact that the output of a hidden layer is transferred, as part
of the input, to the hidden layer of the next time step to preserve previous information.
After temporal features are extracted, the data are transmitted to fully connected layers
to perform the classification or prediction, as with the previously explained models.
To extract these temporal features, the model maps the input data to a sequence of
hidden parameters of the network. This leads to an output series of activation by
implementing (3):

h(k) = σ(Whxx(k) + h(k − 1)Whh + bh) (3)

where σ is the used nonlinear activation function for the DNN, h(k) represents the
hidden parameters of the network, x(k) represents the input data, bh is the bias vector
of the hidden layer and W represents the weights of the kernels. These weights can be
divided into two sets of weights: input layer Whx and hidden layers Whh.
The input data for this model are a time series that includes temporal features, which
in our case are the 3D coordinates values. These values can be studied to extract
the evolution of the movement (direction in 3 axes as well as the speed). This DNN
structure has been analyzed in the literature for gesture recognition as well as trajectory
prediction, due to its capabilities of extracting features from movements [4,6,7].

• Convolutional LSTM. This model, often called ConvLSTM, is a variation of the previ-
ous LSTM model that includes convolutional layers. These initial convolutional layers
are used to extract non-temporal features in a previous step. To do so, this structure
uses convolutions to study the input data executing convolutions at each gate in the
LSTM structure rather than using matrix multiplications typical of the dense layer
approach in the traditional LSTM structure. Because of this, apart from time series,
image series can be studied with this algorithm to extract information about the time
evolution of the images. However, non-image data type inputs can also be used in
case this feature extraction step is desired as in this work, where 3D coordinate data
will be used as input for this model. However, since the ConvLSTM studies the time
evolution of the trajectory, to ensure the length of the characters is always the same, a
number of 0s were included at the end of some samples to achieve the desired length.
This DNN structure, as the previously mentioned ones, was selected due to the
high-accuracy results achieved in the literature for gesture recognition and trajectory
prediction tasks [6,35]. One of the possible reasons for its good performance results is
the fact that this model can extract high-level features such as movement direction
before studying its time evolution, leading to a more logical feature study pipeline.

Figure 5. Sliding window used when studying time series with LSTM.
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The configuration of each of these models for the specific application researched in
this work, as well as a deeper description of the gathered data for this task, are presented
in the next section.

4. Experiment Definition
4.1. Dataset

To the best of our knowledge, there is no public dataset available. So far, only Chen
H. et al. [13] have created an air-writing system based on ultrasound technology, using
their own dataset. That work was based on an active ultrasound array location, instead of
the passive approach described in this work, making not possible the use of this database
as input in our system for comparison purposes. Consequently, a new ultrasound data
dataset was recorded for this experiment.

This dataset, recorded to test the proposed system, is composed of a series of 3D
coordinates where each of these series represents one sample of the studied gestures. These
gestures are the digits “1”, “2”, “3” and “4”, as well as the characters “A”, “B”, “C” and
“D”, as shown in Figure 6. Due to the characteristics of the studied gestures, the length of
the 3D coordinates series varies. The length of each gesture is in the range of 5–8 s except
for the gesture “C”, which, due to the simplicity of performing it, takes between 3 and
7 s. The labeling and data separation tasks have been executed manually to ensure the
presence of a single gesture in each gesture sample. The gesture end detection was based
on detection of the lack of new position information, which would mean the target cannot
be located anymore.

Figure 6. Samples of series of 3D coordinates from the recorded gestures.

Using the previously explained time-series dataset, a 2D image dataset was generated.
These images, of dimensions 100 × 100 pixels, are the projection of the gestures in the XY
plane, as shown in Figure 7.

Figure 7. Samples of images generated from the studied gestures.

Initially, 40 samples were recorded of each possible gesture. During the data recording
sessions, the intraclass diversity of the gestures was ensured to generate a dataset that
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represents a large number of possibilities and scenarios. Then, multiple data augmentation
techniques were applied to generate synthetic data in order to have a large enough dataset
to train the DL models. An example of the resulting images after applying this technique is
shown in Figure 8. The used data augmentation techniques are:

• Gesture translation (Figure 8b): The center positions of the initial gestures were not
constant but they were always near the center of the image. To include more positions
in the dataset, all the gesture were translated so their centers are located in the center
position in the XY plane. After this step, a random translation is performed in the X-
and Y-axis or only in one of them.

• Gesture scaling (Figure 8c): The gestures were scaled within a random percentage in
the interval 20–50% to generate a more variate dataset. Since the data are represented
in two dimensions, each time that scaling was applied, a random variable controls if
the scaling was performed in one of the axis or in both as well as the scaling factor for
each axis. Consequently, uniform scaled images as well as anisotropic scaled images
are included in the dataset.

• Gesture rotations (Figure 8d): The images were rotated at a random angle in the
interval 1°–359° to generate positions different from the original. As a result of this,
all writing directions are included in the generated dataset.

Figure 8. Images of original “1” image (a), translation (b), translation-scaling (c) and rotation (d).

Gesture translation, scaling and rotation were selected as the data augmentation
techniques due to the spacial characteristic of the initial data. These techniques generate
synthetic data based on the original gestures to extend the initial dataset. For example, as a
result of the rotation technique, the dataset includes gestures in all orientations to ensure
that the system can recognize gestures no matter their orientation. The same procedure
would apply to translation and scaling, which makes the system independent of the center
position and size of the gestures, respectively.

The dataset was augmented to 27,670 samples where 5539 (which includes 20% of the
original samples as well as the synthetic data generated based on those original gestures
using data augmentation techniques) were used for testing purposes and 22,131 for training.
Consequently, the data (original and synthetic) were not shared between train and test
dataset to correctly measure the accuracy results in the test data. These test and train
sub-datasets were equally split between the image and 3D coordinate data to ensure a
correct comparison of the accuracy results among the studied algorithms.

4.2. Deep Neural Networks Configuration

Each of the researched algorithms for the classification task studied in this paper was
tuned and trained to fit the application. Therefore, their final structure and characteristics
are further commented on in each of the following subsections.

4.2.1. Convolutional Neural Network

The final structure of this model is shown in Figure 9, where it is possible to observe
that it has 3 convolutional layers to extract relevant features from the input data. The
first layer has 32 filters of dimensions 5 × 5, the second layer has 64 filters of dimensions
5 × 5 and the final convolutional layer has 64 filters of dimensions 3 × 3. After these
convolutional layers, a flatten layer and 3 fully connected layers (64, 32 and 8 neurons,
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respectively) are included in the network structure to classify the features into the 8 possible
gestures. Between all the layers, batch normalization layers have been included to ensure
the normalization of the data is not lost during the data study. All the layers included
in this network use the ReLU activation function except for the last fully connected layer
which uses the softmax activation function for the final classification.

Figure 9. CNN structure implemented for the gesture recognition.

4.2.2. Convolutional Autoencoder

The training of this model takes place in two steps:

• The two main components of the autoencoder are trained to reconstruct as output, the
images provided as input. The structure of this model consists of three 2D convolu-
tional layers for the encoder and another three identical and mirrored layers for the
decoder. In the encoder, the first layer has 128 filters of dimensions 5 × 5, the second
layer has 64 filters of dimensions 3 × 3, and the final convolutional layer has 32 filters
of dimensions 3 × 3.
The internal code layer, which provides the embedding, consists of a max 2D pooling
applied on the 32 filters. All these convolutional layers use the ReLU activation
function, except for the last layer of the decoder, which employs a sigmoid activation
function for the nonlinear image reconstruction. The used loss function is the binary
cross-entropy while the optimizer is Adam. The application of the autoencoder enables
the reduction of dimensionality from 10,000 (100 × 100) corresponding to an image,
to only 1296 (6 × 6 × 36) values, which represent the embedding space dimension.

• After the autoencoder training, the encoder part is extracted and kept frozen for
training, so that it can be used as a feature extractor without further parameter tuning.
A flatten layer and two dense layers consisting of 32 and 8 neurons respectively are
then connected to the model. The parameters of the fully connected layer are trained
so as to associate the information extracted from the encoder with the respective labels
of the drawn characters. The first dense layer uses the ReLU activation function while
the second one uses the softmax activation function for the categorization purpose.

The model in its ensemble (Convolutional Autoencoder and Fully Connected) is
shown in Figure 10.

4.2.3. Long Short-Term Memory Neural Network

The structure of this network is an LSTM layer with 100 units, with a time-step
of size 10, followed by 3 fully connected layers (100, 40 and 8 neurons in each layer,
respectively) with batch normalization layers between the fully connected layers. All these
fully connected layers use the ReLU activation function except for the last layer which uses
the traditional softmax activation function for classification tasks. The structure can also be
visualized in Figure 11.

4.2.4. 1D Convolutional LSTM Neural Network

The network structure is similar to the previously commented LSTM DNN but it
includes a 1D convolutional layer at the beginning of the network to extract relevant
features that later can be studied over time, as shown in Figure 12. This convolutional
filter has a dimension of 128 × 3. Following the convolutional layer, an LSTM layer with
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100 units is in charge of studying the time evolution of the data and 3 fully connected
layers (40, 40 and 8 neurons, respectively) to classify the data. All these fully connected
layers use the ReLU activation function except for the last layer which uses the traditional
softmax activation function for classification tasks. Between all layers, batch normalization
layers have been included to ensure the normalization of the data is not lost during the
model training.

Figure 10. Convolutional Autoencoder structure for gesture recognition.

Figure 11. LSTM NN structure for gesture recognition.

Figure 12. 1D-ConvLSTM NN structure for gesture recognition.

5. Results

The results of the studied classification algorithms when using the test dataset are
presented in Table 2. The compared parameters are the accuracy, number of parameters
and the latency of the models to provide information regarding their suitability for the
tasks as well as the complexity and size of the models.
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Table 2. Comparison of the studied classification algorithms for the gesture classification.

Algorithm Number of Parameters Latency (ms) Accuracy

CNN 1,730,472 63.43 97.39%

ConvAutoencoder 184,396 45.50 98.28%

LSTM 56,868 71.90 83.25%

ConvLSTM 99,960 71.01 99.51%

It is important to remark that all the latency measurements have been executed in the
same device (Intel core i5 CPU) in order to be able to compare the latency results. Similarly,
test datasets (images and 3D coordinates) contain the same samples.

Table 2 shows how the accuracy achieved by the CNN, ConvAutoencoder and Con-
vLSTM classification algorithms are quite similar since they all achieve accuracy of above
97.39% while the LSTM algorithm achieves accuracy of 83.25%. The model that achieved
the best accuracy results is the ConvLSTM model with 99.51%. However the CNN and
ConvAutoencoder achieved similar results with a difference of a 2.02% and 1.23% lower
accuracy respectively. The LSTM model achieved the lowest accuracy among the studied
algorithms with a different respect the ConvLSTM model of a 16.26% in the accuracy results.
This may be the result of the complexity of the dataset when study as individual numerical
values in a time series in comparison with an image where the information of the gesture is
easier to extract. Regarding the number of parameters and latency, the CNN model has
the larger number of parameters (1,730,472 parameters), which is one or two orders of
magnitude higher than the rest of the models. The LSTM model only has 56,868 parameters.
This shows how there is a trade-off between the size of the model and the accuracy, apart
from the network structure. However, even when the CNN model has the larger number
of parameters, it still achieves latency results comparable with the rest of the models and
even faster than the ConvLSTM and LSTM models. Nevertheless, the fastest model among
the studied ones is the ConvAutoencoder that only requires 45.5 milliseconds to generate
an output from an input data. The rest of the models require a similar time between 63.43
and 71.90 milliseconds.

Apart from the general accuracy achieved by the studied models, the accuracy for
each of the individual classes is shown in Figures 13–16. The labels in these tables have
been codified where gestures “1” to “4” are represented with the labels 1 to 4 and the
characters “A” to “D” with the labels 5 to 8. These figures show how the accuracy of the
classes are well balanced in the studied algorithms except for LSTM, where the gesture
“1” and “C” achieved an accuracy under the average. At the same time, in Figure 13 we
can see how most of the CNN misclassification errors are located in the gestures “2”, “C”
and “D”. This may be because these three gestures have similar curves that can lead the
algorithm to a misclassification in some cases. In the rest of the studied algorithms, the
error distribution among classes does not indicate a clear misclassification between specific
classes since errors are equally distributed among all of them.

It can be observed how the ConvLSTM model has the best performance taking into
account the trade-off among its latency, the number of parameters and classification accu-
racy (99.51%), especially when comparing it with the LSTM model that also studies the
temporal evolution of the data. As regards models that require the whole image as input,
the ConvAutoencoder provides better results than the CNN in terms of latency, number
of parameters and accuracy. This might be due to the efficient compression of relevant
features performed by the ConvAutoencoder that leads to a better classification accuracy.

After the comparison of the performance of the studied classification algorithms,
a comparison of our results with other technologies and authors is shown in Table 3.
This table shows how multiple technologies are being tested for air-writing tasks. Even
when different technologies are used, such as radar, ultra-wide-band and ultrasound,
the target detection can be calculated based on similar techniques. This is because these



Sensors 2021, 21, 6700 13 of 17

technologies calculate the position of the target by measuring the time difference between
the transmission of a signal and the reception of its echo. Consequently, the classification
algorithms are compared in Table 3 rather than the technique for the data gathering. At
the same time, it is important to remark that, since the technologies, gesture number and
platform are different, this comparison should be understood as a general observation to
gain a deeper understanding of the state of the art rather than a direct comparison among
techniques.

Figure 13. Confusion matrix generated using the CNN algorithm.

Figure 14. Confusion matrix generated using the ConvAutoencoder algorithm.
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Figure 15. Confusion matrix generated using the LSTM algorithm.

Figure 16. Confusion matrix generated using the ConvLSTM algorithm.

Among the compared techniques, the most popular are the DL techniques such as
CNN or LSTM due to their high-performance results for classification tasks. Only one of
the compared techniques is based on a different approach, the Order-Restricted Matching
(ORM) classification algorithm. This algorithm, differently from the rest of the algorithms,
is not trained in advance but features are extracted and later compared directly with a
feature template for each of the possible characters. The sequence with the minimum
accumulated distance between the features and the template feature is selected as the
classification result.
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Table 3. Comparison of state-of-the-art techniques for air-writing.

Studies No. of Characters Accuracy Latency (ms) Method Hardware

ORM 26 96.31% 1.8 Order-restricted matching 2 ultrasound
Ultrasound [13] (ORM) classifier arrays

Radar 15 98.33% – ConvLSTM-CTC 3 radarsDNN [6]

Radio 10 99.7% 52.2 CNN 3 radarsCNN [8]

This work 8 99.51% 71.01 ConvLSTM 1 ultrasound
array

This work 8 98.28% 45.5 ConvAutoencoder 1 ultrasound
array

However, even if different technologies and approaches are used for this task, similar
accuracy results are achieved. All the compared techniques have an accuracy between
96.31% and 99.7%. Among these techniques, the one that provides the highest accuracy
results is the Radio CNN (99.7%). Nevertheless, if the latency of the system is taken into
account, the ORM Ultrasound technique may provide a best performance since the accuracy
difference compared to the Radio CNN is 3.39% but it achieves a latency reduction by a
factor of 29 times. Our studied ConvAutoencoder could be considered as a middle point
between these two extreme cases since it achieves an accuracy of 98.28%, higher than the
ORM technique, and a latency of 45.5 ms, 7.7 ms faster than the Radar DNN.

Another feature that can be compared is the devices integrated into these systems.
The techniques based on radar sensors require at least three sensors in order to locate
the target in three dimensions. Each of these radar sensors includes a different number
of transmitter and receiver antennas, i.e., each of the radars integrated in the system
in [6] uses one receiver and one transmitter antenna. In the case of ORM Ultrasound,
two arrays of ultrasound sensors are required. The sensors of the first array are used
exclusively for transmitting while the ones from the second array are used to receive the
echo signals. On the other hand, the system presented in this work only requires one array
where one ultrasound transceiver is used to transmit and receive while the other three
transceivers are only used for receiving. As a result of this, a smaller number of devices
are required in comparison with the rest of the compared techniques while maintaining
similar high-performance results.

6. Conclusions

An air-writing system, based on one ultrasonic array that includes four transceivers
is presented in this work. The system determines the point-to-point distance to the target
from the ToF. Those calculated distances are fed to the positioning algorithm to extract
the 3D position of the target, and determine the trajectory as a successive series of points
equally spaced in time.

To test this system, a dataset containing eight gestures (four letters and four numbers)
was recorded. These raw data were then filtered and preprocessed to generate a dataset
for gesture classification. Multiple algorithms were researched for this paper to study
this dataset. Since the original dataset was a time-series of 3D coordinates, two different
approaches were studied to analyze the data: time evolution algorithms (LSTM and
ConvLSTM) and image classification algorithms (CNN and ConvAutoencoder).

It is shown in this paper how these algorithms provided high accuracy, whereby the
best result was extracted from the ConvLSTM, with 99.51% accuracy and 71.01 milliseconds
of latency, when studying time-series of 3D coordinates. Among the algorithms based on
images, the ConvAutoencoder provided the best results with a latency of 45.50 milliseconds
and an accuracy of 98.28%. Consequently, we can conclude that the proposed system
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could be implemented in multiple ways so the recognition algorithm can fit the desired
platform/scenario.
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