
sensors

Article

Secure Outsourcing of Matrix Determinant Computation under
the Malicious Cloud

Mingyang Song and Yingpeng Sang *

����������
�������

Citation: Song, M.; Sang, Y. Secure

Outsourcing of Matrix Determinant

Computation under the Malicious

Cloud. Sensors 2021, 21, 6821.

https://doi.org/10.3390/s21206821

Academic Editor: Raffaele Gravina

Received: 4 September 2021

Accepted: 8 October 2021

Published: 14 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China;
songmy5@mail2.sysu.edu.cn
* Correspondence: sangyp@mail.sysu.edu.cn

Abstract: Computing the determinant of large matrix is a time-consuming task, which is appearing
more and more widely in science and engineering problems in the era of big data. Fortunately,
cloud computing can provide large storage and computation resources, and thus, act as an ideal
platform to complete computation outsourced from resource-constrained devices. However, cloud
computing also causes security issues. For example, the curious cloud may spy on user privacy
through outsourced data. The malicious cloud violating computing scripts, as well as cloud hard-
ware failure, will lead to incorrect results. Therefore, we propose a secure outsourcing algorithm
to compute the determinant of large matrix under the malicious cloud mode in this paper. The
algorithm protects the privacy of the original matrix by applying row/column permutation and
other transformations to the matrix. To resist malicious cheating on the computation tasks, a new
verification method is utilized in our algorithm. Unlike previous algorithms that require multiple
rounds of verification, our verification requires only one round without trading off the cheating
detectability, which greatly reduces the local computation burden. Both theoretical and experimental
analysis demonstrate that our algorithm achieves a better efficiency on local users than previous ones
on various dimensions of matrices, without sacrificing the security requirements in terms of privacy
protection and cheating detectability.

Keywords: matrix determinant; secure outsourcing; cloud computing

1. Introduction

The development of cloud computing provides great convenience to resource-constrained
clients. They can outsource complex computations into the cloud by paying a fee. Com-
putation outsourcing brings economic benefits to both resource-constrained clients and
high-performance servers. Nevertheless, in practice, cloud servers are untrustworthy,
which brings many security issues to computation outsourcing. According to [1], security
has become a top issue that affects the business potential of cloud computing. The out-
sourced data usually contain private user information. The curious cloud may spy on user
privacy through outsourced data. Besides, the malicious cloud may violate the computing
scripts and return incorrect results to the client. Even without considering the malicious-
ness of the cloud, computing errors caused by the cloud hardware failure, software errors,
etc. should also be detected by the client locally. In addition to these traditional security
issues, with the development of smart phones, virtual assistants (VA) have been widely
used in smart phones, which are vulnerable to malicious attacks; it uploads voice records
to the cloud without the user’s knowledge or consent [2]. Therefore, cloud-based secure
computation outsourcing algorithms have become hot topics of researches.

There are generally two types of security assumptions in cloud-based secure outsourc-
ing algorithms [3]. The cloud that is assumed to be semihonest (or honest-but-curious)
is only curious about the privacy contained in outsourced data. The cloud assumed
to be malicious may firstly be semihonest, and then cause damage or forge results to

Sensors 2021, 21, 6821. https://doi.org/10.3390/s21206821 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7870-2422
https://orcid.org/0000-0002-2085-4359
https://doi.org/10.3390/s21206821
https://doi.org/10.3390/s21206821
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21206821
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21206821?type=check_update&version=1

Sensors 2021, 21, 6821 2 of 20

sabotage the computation. Besides, in the above two security assumptions, the local com-
putational burden of the client should be as low as possible. Otherwise, the efficiency
benefit of outsourcing will be nullified. Therefore, the secure outsourcing algorithms
under the malicious model require the considerations of efficiency, privacy protection, and
cheating detectability.

In order to reduce the local computational burden using cloud computation outsourc-
ing while protecting privacy and detecting false results, researchers have proposed secure
outsourcing algorithms for many commonly used and complex computations, includ-
ing the computation of matrix determinant. The computation of matrix determinant has
appeared more and more widely in science and engineering problems recently. Many
researches of medicine and biology use the matrix determinant for signal processing before
using machine learning algorithms for practical classification tasks. For example, when
machine learning algorithms are used for medical diagnosis, the data collected by the med-
ical sensors are usually time series and contain private user information. Many researches
divide the signal into several segments and fill them into matrices. Then, the determinants
of matrices are considered as the feature values of the original signal. However, the com-
putation of matrix determinant is still unaffordable for the sensors. They usually need to
outsource matrix determinant computations to high-performance hardware.

To improve the detectability of cheating behaviors from the malicious cloud, all
previous algorithms must increase the rounds of verification, which significantly increase
the local computational burden of the client. Moreover, the currently known algorithm
with the best privacy protection in [4] uses significantly more local computations than
other algorithms. Therefore, we aim to propose a novel algorithm for secure outsourcing of
matrix determinant computation, to solve the conflicts between the efficiency and security
issues. The contributions of this paper are summarized as follows:

• We propose a secure outsourcing algorithm for the matrix determinant computation
under the malicious cloud model, which can not only ensure the confidentiality of
matrix, but also detect the forged results returned from the malicious cloud. We
use the permutation, mix-row/mix-column, and split operations in our algorithm to
protect privacy, which achieves the currently known lowest computation cost.

• We propose a one-round verification method in the proposed algorithm, which
achieves a high cheating detectability. The malicious forged results can only escape
our local verification with the probability of 1

(n!)4 , given a matrix of n× n dimensions.
In all the previous algorithms, the detectability of malicious forged results depends on
the rounds of verification, and to achieve a high cheating detectability, multiple rounds
of verification are required, which also brings high computational burden to the client.
In the previous three algorithms [4–6], the succeeding probability of malicious forged
results is 1

2l , where l is the number of verification rounds and recommended to be
greater than 20.

• We conduct theoretical proofs of the correctness, efficiency, privacy protection, and
cheating detectability for the proposed algorithm. Experimental results also demon-
strate the superior efficiency of the proposed algorithm.

The rest of the paper is organized as follows: We introduce the related work and
comparative analysis in Section 2. In Section 3, we introduce some background knowledge
and the system model of our algorithm. Section 4 describes the proposed secure outsourcing
algorithm for matrix determinant. We conduct the correctness, security, and complexity
analysis of the proposed algorithm in Section 5. We evaluate the performance of our
algorithm in Section 6. Finally, we conclude our work in Section 7.

2. Related Work and Comparative Analysis

Recently, the privacy and security issues in lightweight devices are widely concerned
(e.g., the intrusion detection system on lightweight devices [7] and the secure computation
outsourcing on resource-constrained devices). As we all know, although cloud computation
outsourcing brings convenience to resource-constrained devices, it also causes privacy

Sensors 2021, 21, 6821 3 of 20

issues. Therefore, there are many researches on how to protect user privacy and verify the
correctness of results when using cloud computing. From the perspective of the cloud, data
access control mechanisms can be used to protect user privacy and ensure data availability.
Kayes et al. [8] gave a survey on context-aware access control mechanisms (CAAC) during
data management in cloud and fog networks. They also proposed a new generation of Fog-
Based CAAC (FB-CAAC) framework for accessing data from distributed cloud data centers.
When computations on the encrypted data are required, access control mechanisms are not
enough. From the perspective of the client, Fully Homomorphic Encryption algorithms
(FHE) [9–12] and Attribute-based Encryption algorithms (ABE) [13–15] have great appli-
cation potential in cloud secure computation outsourcing, but their high computational
complexities limit their practical applications, especially for resource-constrained devices.
In addition, there are a large number of researches on the secure outsourcing algorithms for
commonly-used and complex scientific computations (e.g., modular exponentiation [16,17],
extended Euclidean [18], bilinear pairings [19–21], polynomial multiplication [22]).

There are many applications of matrix in the field of computer science, such as Digital
Image Processing (DIP), computer graphics, computer geometry, Artificial Intelligence
(AI), network communications, and so on. Thus, many computations of matrix are also
commonly used and complex. However, some scientific computations of matrix have
high computational complexities. Therefore, there are also many researches on secure
outsourcing algorithms for computations of matrix. For example, the secure outsourcing
algorithm for matrix multiplication has been widely studied [23–26]. In addition, Non-
negative Matrix Factorization (NMF) is widely used in DIP, face recognition, text analysis,
and other fields. Thus, there are many secure outsourcing algorithms for NMF [27–30].
Matrix inverse is also one of the most basic computations in large-scale data analysis.
Computing the inverse of matrix on resource-constrained devices such as sensors is usually
costly. Thus, there are also some secure outsourcing algorithms for matrix inverse [31–33].
Besides, in the field of machine learning, Singular Value Decomposition (SVD) has a wide
range of applications. It can be used not only for feature decomposition in dimension
reduction algorithms but also recommendation system, Natural Language Processing
(NLP), and other fields. Securely outsourcing SVD to the cloud can greatly reduce the
computation costs of the client. Chakan et al. proposed a secure outsourcing algorithm for
SVD [34]. The local computational complexity of this algorithm is O(n2) and the complexity
of cloud is O(n3). Chen et al. proposed a secure outsourcing scheme for SVD with less
interactions between the client and the cloud [35].

Similar to the above computations of matrix, the determinant is also an important
computation of matrix in the field of scientific and engineering. In the semihonest model,
Kim et al. proposed a secure matrix determinant outsourcing method based on FHE [36].
Their scheme computes the determinant by the standard definition of matrix determinant,
which results in a high computational burden of the client. Zong et al. introduced a
division-free computational method for FHE-based secure matrix determinant computation
outsourcing [37], which is significantly more efficient than the method in [36]. The above
two algorithms only considered the privacy under the semihonest model.

However, in practice, the cloud may be malicious. To the best of our knowledge, the
existing secure outsourcing algorithms for matrix determinant computation under the
malicious model include [4–6]. In [5], Lei et al. used the block matrix and permutation
techniques to protect privacy. In their algorithm, the client’s local computations include
(2+ l)n2 + 2m2 + 4mn + 2n + m multiplications, where m is the increase in dimension after
encryption and n is the original dimension of matrix. Liu et al. proposed a new matrix de-
terminant secure outsourcing algorithm using the permutation and mix-row/mix-column
operations, which avoid the increase in matrix dimension during the encryption and re-
duces the number of local multiplications to (2 + l)n2 + 3n [6]. Zhang et al. proposed a
method that has better privacy [4]; however, because 8n times of elementary column/row
transformations are involved in the process of encryption, it has a higher local computa-
tional burden than other algorithms, which require (10+ l)n2 + 6n local multiplications. All

Sensors 2021, 21, 6821 4 of 20

the above three algorithms and our proposed algorithm have the same cloud computational
complexity (O(n2.373)).

In our algorithm, in addition to the permutation and mix-row/mix-column operations,
we used split operation to achieve a higher privacy. To prevent malicious cloud from
forging computation results, the above three algorithms adopted the idea of Freivalds’
algorithm [38] with ln2 computation costs that need to increase the frequency of verification
(l) to improve the cheating detectability. l is greater than 20 at least in their works. In our
proposed algorithm, only one round of verification is required, so there is no factor l in
the computation cost. Table 1 demonstrates comparisons of our algorithm and the three
existing algorithms from aspects of local multiplications, privacy protection level, and
cheating detectability. Since multiplications dominate the local computation, local additions
are omitted here and will be discussed later in Section 5. As we will discuss in Section 5,
our proposed algorithm uses the lowest overall local computation cost to achieve a high
detectability of result cheating (or a negligible probability of cheating success).

Table 1. Efficiency and Security comparative assessment.

Algorithm Local Multiplications Probability of
Privacy Leakage

Probability of
Cheating Success

Our algorithm 12n2 + 12n 1
(n!)4(2λ)4n

1
(n!)4

Lei’s algorithm [5] (2 + l)n2 + 2m2 + 4mn + 2n + m 1
((n+m)!)2(2λ)2(n+m)

1
(2)l

Liu’s algorithm [6] (2 + l)n2 + 3n 1
(n!)2(2λ)2n

1
(2)l

Zhang’s algorithm [4] (10 + l)n2 + 6n 1
(n!)2(2λ)10n−8

1
(2)l

3. Preliminary

The notations and their implications used in this paper are shown in Table 2. This
section will introduce some background knowledge of our algorithm.

Table 2. Symbols and implications.

Symbol Implication

r A vector
M A full rank n× n matrix

det(M) The determinant of matrix M
α← K Choose an element α from set K randomly

λ Security parameter
Probx

A(χ) The probability that attacker A obtains the secret input x using data χ

Prob f orge
C (χ) The probability that the client C detects the forged results f orge using data χ

M(i, j), Mi,j The element in the ith row and jth column of matrix M
mi,− / m(i,−) The ith row of matrix M
m−,j / m(−, j) The jth column of matrix M

MT The transpose of M
a � b The inner product of vector a and vector b

fLU(M) The Low triangle and Up triangle decomposition of matrix M

3.1. System Model

The secure outsourcing algorithm for matrix determinant consists of the following
five parts.

• KeyGen(λ)→ (SK1, SK2): λ is a security parameter related to key generation. The
generated key SK1 is used to encrypt the input data, and SK2 is used to verify and
decrypt the returned results. Both SK1 and SK2 should be kept privately by the
client C.

Sensors 2021, 21, 6821 5 of 20

• Encrypt(x, SK1)→ (σx): x is the input data. The client uses SK1 to encrypt the input x
and gets encrypted data σx. σx is sent to the server S for computing.

• Compute(f , σx)→ (σy): f is a function given by the client. The server computes σy
using the given function f and encrypted data σx.

• Verify(σy, SK2)→ (True/⊥): The client verifies the results returned from the cloud. If
the σy is valid, the output of this function is True. Otherwise, the output is ⊥.

• Decrypt(σy, SK2)→ (y): The client uses the secret key SK2 to decrypt σy and obtains
the result y.

The proposed algorithm is effective in the malicious cloud model. The malicious cloud
can not only use its known information to infer the privacy of the client, but also maliciously
forge false computation results to tamper with the whole algorithm. The system model of
secure outsourcing for matrix determinant in this paper is shown as Figure 1.

Figure 1. System model of secure outsourcing for matrix determinant computation.

3.2. Definitions of Correctness, Efficiency, and Security

When the key generation function KeyGen(λ) produces (SK1, SK2) satisfying
∀x ∈ Domainde f ine (Domainde f ine is the domain of input x), if Encrypt(x, SK1)→ (σx) and
Compute(f , σx)→ (σy), then y = Decrypt(σy,SK2). The outsourcing algorithm is correct.

A semihonest attacker may only be curious about the privacy contained in outsourced
data. As shown in Equation (1), for any attacker A in the cloud server, if the probability of
computing the secret input x with its known information (σx, f , σy) is so small that it can
be ignored in the polynomial time, the proposed secure outsourcing algorithm for matrix
determinant is privacy-protected.

Probx
A(σx, f , σy)→ negli (1)

A malicious attacker may cause damage or forge results to sabotage the computation.
As shown in Equation (2), for any forged computation results (f orge) returned from the
cloud server, if the probability that the client (C) recognizes the forged results using the
Verify(σy,SK2) function is infinitely close to 1, the proposed secure outsourcing algorithm
for matrix determinant is cheating-detected, which means the cheating detectability of the
algorithm is high, and the success probability of attacker’s result cheating is negligible.

Prob f orge
C (Veri f y, SK2, σy)→ 1 (2)

If the local computation complexity of the client is substantially less than the compu-
tation complexity of the previous algorithm without outsourcing, the secure outsourcing
algorithm for matrix determinant is efficient.

Sensors 2021, 21, 6821 6 of 20

4. Secure Outsourcing of Matrix Determinant

In this section, we propose a secure outsourcing algorithm for matrix determinant.
In comparison with the previous algorithms, our algorithm aims to improve the privacy
protection ability and cheating detectability with less local computation costs. We use the
permutation, mix-row/mix-column, and split operations in our algorithm to protect the
privacy of matrix. Besides, we use a new result verification method to improve the cheating
detectability, which is different from [4–6]. The main idea of the verification method is to
ensure that at least the diagonal elements in the results of Low triangle and Up triangle
(LU) decomposition returned from the cloud are correct. The security analysis in Section 5
will prove that it is more difficult for the forged results returned from the malicious cloud
to pass this verification than the previous ones. The proposed algorithm is described as
follows. The size of the input matrix is n× n in the rest of this section.

4.1. Key Generation

• The client needs to input a key space K. Eight diagonal matrices {P1, P2, P3, P4, Q1,
Q2, Q3, Q4} are generated by selecting random nonzero values from K. Then, the
client picks 8 random parameters n1, n2, n3, n4, m1, m2, m3, m4 (lines 2 and 3 of
Algorithm 1).

• The client computes SK2 ← {t1, t2, t3, t4} by lines 4–6 of Algorithm 1. It is easy to see
that ti in SK2 is the determinant of PiQi.

• The client computes SK1 by lines 7–14 of Algorithm 1.

Algorithm 1 Procedure of Secret Key Generation

1: function KEYGEN(λ)
2: Select random nonzero values from K to generate 8

diagonal matrices {P1, P2, P3, P4, Q1, Q2,
Q3, Q4}

3: Pick 8 random parameters satisfying
n ≤ n1, n2, n3, n4, m1, m2, m3, m4 ≤ 2n

4: for i = 1→ 4 do
5: ti ← (−1)ni+mi ∏n

j=1 Pi(j, j)Qi(j, j)
6: end for
7: for i = 1→ 4 do
8: for j = 1→ ni do
9: Randomly select two rows of Pi and exchange them.

10: end for
11: for j = 1→ mi do
12: Randomly select two columns of Qi and exchange them.
13: end for
14: end for
15: return SK1 ← {P1, P2, P3, P4, Q1, Q2, Q3, Q4}

SK2 ← {t1, t2, t3, t4}
16: end function

In the KeyGen function, K can be {0, 1}λ, given a security parameter λ. From the
analysis in Section 5, the number of elements in K is associated with the security of the
algorithm. When λ = 10, the probability that the cloud obtains the privacy input is less
than 1

240 , which is negligible. Other ways of defining K are also applicable, as long as the
number of elements in the set K is sufficient to resist the brute-force attack of the cloud.

m′i + m′′i = mi (3)

m′j + m′′j = mj (4)

Sensors 2021, 21, 6821 7 of 20

4.2. Encryption

• While keeping the other rows, the client randomly splits the ith and jth rows of M to
get four matrices M1, M2, M3, M4. (lines 2–3 of Algorithm 2).

• The client computes σx ← {Y1, Y2, Y3, Y4} by lines 4–7 of Algorithm 2.

Algorithm 2 Procedure of Encryption

1: function ENCRYPT(M = [m1, . . . , mn]T ,SK1)
2: Pick random i, j (1 ≤ i, j ≤ n)
3: Construct matrices

M1 = [m1, . . . m′i . . . , mn]T ;
M2 = [m1, . . . m′′i . . . , mn]T ;
M3 = [m1, . . . m′j . . . , mn]T ;
M4 = [m1, . . . m′′j . . . , mn]T ;
satisfying Equations (3) and (4).

4: Y1 ← P1M1Q1.
5: Y2 ← P2M2Q2.
6: Y3 ← P3M3Q3.
7: Y4 ← P4M4Q4.
8: return σx = {Y1, Y2, Y3, Y4}
9: end function

In the algorithm of Encrypt, the computations of matrices (M1, M2, M3, M4) involve
the generations of vectors m′i , m′′i , m′j, and m′′j . We can randomly pick n numbers as the
elements of vector m′i from K. Then, we can compute m′′i = mi −m′i . In the same way, we
can compute m′j and m′′j . After computing the matrices Y1, Y2, Y3, Y4, the client sends the
matrices Y1, Y2, Y3, Y4 to the cloud.

4.3. Computations of Server

• After receiving the matrices, the cloud computes the LU decomposition for Y1, Y2,
Y3, and Y4 to get L1, U1, L2, U2, L3, U3, L4, U4, where fLU is the LU decomposition
function (lines 2–5 of Algorithm 3).

• The cloud computes determinants of Y1, Y2, Y3, Y4 and obtains r1, r2, r3, r4. (lines 6–9 of
Algorithm 3).

• The cloud returns σy = {r1, r2, r3, r4, L1, U1, L3, U3} to the client.

r1
?
=

n

∏
i=1

L1(i, i)U1(i, i) (5)

r3
?
=

n

∏
i=1

L3(i, i)U3(i, i) (6)

r1

t1
+

r2

t2

?
=

r3

t3
+

r4

t4
(7)

Sensors 2021, 21, 6821 8 of 20

Algorithm 3 Procedure of Computation

1: function COMPUTE(σx, fLU)
2: {L1, U1} ← fLU(Y1).
3: {L2, U2} ← fLU(Y2).
4: {L3, U3} ← fLU(Y3).
5: {L4, U4} ← fLU(Y4).
6: r1 ← ∏n

i=1 L1(i, i)U1(i, i).
7: r2 ← ∏n

i=1 L2(i, i)U2(i, i).
8: r3 ← ∏n

i=1 L3(i, i)U3(i, i).
9: r4 ← ∏n

i=1 L4(i, i)U4(i, i).
10: return σy = {r1, r2, r3, r4, L1, L3, U1, U3}
11: end function

4.4. Verification

• The client initializes the f lag to true.
• The client performs the verifications of Equations (5)–(7). If any of them are invalid,

the function returns ⊥ (lines 3–5 of Algorithm 4).
• The verifications in lines 6–17 verify all the diagonal elements in L1, L3, U1, U3 at least

once. If any verification is invalid, the function returns ⊥.
• If all the verifications are valid, the function returns true.

If the output of the Verify function is true, the clients executes the Decrypt function.
Otherwise, the client rejects the results returned from the cloud.

Algorithm 4 Procedure of Verification

1: function VERIFY(σy,SK2)
2: f lag← true
3: if any verification of Equations (5)–(7) is invalid then
4: f lag← ⊥; return f lag.
5: end if
6: for i = 1→ n do
7: Pick j, k in [i, n] randomly.
8: if Y1(i, j) 6= l1(i,−) � u1(−, j)T or

Y3(i, k) 6= l3(i,−) � u3(−, k)T then
9: f lag← ⊥; return f lag.

10: end if
11: end for
12: for j = 1→ n do
13: Pick i, k in [1, j] randomly.
14: if Y1(i, j) 6= l1(i,−) � u1(−, j)T or

Y3(k, j) 6= l3(k,−) � u3(−, j)T then
15: f lag← ⊥; return f lag.
16: end if
17: end for
18: return f lag
19: end function

4.5. Decryption

• The client computes the result (Algorithm 5) det(M) = y = r1
t1
+ r2

t2
.

Algorithm 5 Procedure of Decryption

1: function DECRYPT(σy,SK2)
2: y← r1

t1
+ r2

t2
3: return y
4: end function

Sensors 2021, 21, 6821 9 of 20

Obviously, the input parameters of the Verify and Decrypt functions are the same. In
fact, the result of the Decrypt function can be obtained during the execution of the Verify
function in the proposed algorithm. We separate them into two parts for the sake of clarity
and convenience to compare with the previous algorithms. The specific flowchart of the
proposed algorithm is shown in Figure 2.

Figure 2. Flowchart of the secure outsourcing algorithm for matrix determinant computation.

In the next section, the correctness, security, and computational complexity of the
proposed algorithm will be analyzed.

5. Correctness, Security, and Computational Complexity Analysis
5.1. Correctness

Theorem 1. The proposed secure outsourcing algorithm for matrix determinant is correct.

Proof of Theorem 1. When proving the correctness of a secure outsourcing algorithm, it is
reasonable to believe that both the client and the cloud honestly follow the procedure of
the algorithm. In the procedure of DECRYPT, the determinant of matrix is computed by

det(M) = DECRYPT(σy, SK2) =
r1

t1
+

r2

t2
(8)

where
r1 = det(Y1) = det(P1)det(M1)det(Q1) (9)

r2 = det(Y2) = det(P2)det(M2)det(Q2) (10)

According to the function KEYGEN, we can obtain

t1 = det(P1)det(Q1) (11)

t2 = det(P2)det(Q2) (12)

Sensors 2021, 21, 6821 10 of 20

Thus, we can obtain

det(M) = det(M1) + det(M2)

=
det(P1)det(M1)det(Q1)

det(P1)det(Q1)
+

det(P2)det(M2)det(Q2)

det(P2)det(Q2)

=
det(Y1)

det(P1)det(Q1)
+

det(Y2)

det(P2)det(Q2)

=
r1

t1
+

r2

t2

(13)

Finally, Equation (8) is proved. This implies that the function DECRYPT always yields
the correct determinant and the proposed algorithm is correct.

5.2. Computational Complexity

We analyze the computational complexities of the client and the cloud in this section.
The KEYGEN function, ENCRYPT function, VERIFY function, and DECRYPT function
are executed by the client. The COMPUTE function is executed by the cloud. We first
analyze the computational complexity of the client.

Theorem 2. The computational complexity of the client side of the proposed secure outsourcing
algorithm for matrix determinant is O(n2).

Proof of Theorem 2. The operations involved in the KEYGEN function include multiplica-
tion and mix-row/mix-column, where multiplications and additions need to be computed.
The computations in lines 4–6 require a total of 8n multiplications. The computations in
lines 7–14 and line 5 require a total of 8n + 4 multiplications.

The ENCRYPT function involves matrix split operations and matrix multiplications.
Obviously, the matrix split operation needs only 2n subtractions. The major computations
are lines 4–7. Since P1, P2, P3, P4, Q1, Q2, Q3, and Q4 are obtained by randomly swapping
rows/columns of diagonal matrices, the computations of Y1, Y2, Y3, and Y4 require a total of
8n2 multiplications; therefore, the ENCRYPT function requires a total of 8n2 multiplications
and 2n subtractions.

In the VERIFY function, the verifications of Equations (5)–(7) require 4n multiplica-
tions. The verifications of lines 6–17 compute 4n times of the vector’s inner product,
which require 4n2 additions and multiplications. The verification in Equation (7) re-
quires 2 additions. Therefore, the VERIFY function requires 4n2 + 4n multiplications
and 4n2 + 2 additions.

Two divisions and one addition are required in DECRYPT. Thus, it is easy to see that
the computational complexity of the DECRYPT function is O(1).

In conclusion, the client needs to undertake a total of 12n2 + 12n multiplications and
4n2 + 10n + 7 additions. Therefore, the computational complexity of the client side of the
proposed algorithm is O(n2).

In Table 3, the number of multiplications required by every part of the proposed algo-
rithm is demonstrated and compared with three existing algorithms from [4–6]. In Table 4,
the numbers of additions required by the proposed algorithm are listed and compared
in the same way as Table 3. Although the complexity of the KEYGEN and ENCRYPT is
higher than the compared schemes [5,6], the complexities of VERIFY and DECRYPT in
the compared schemes are higher than that of the proposed algorithm. According to [4–6],
to improve security, the value of l is usually greater than 20 and the value of m is usually
greater than 100, where l is the frequency of verification and m is the increase of the dimen-
sion after encryption. In fact, when l in the compared algorithms is set to 20, the security
of those algorithms are very poor, which is equivalent to the security of the proposed
algorithm running on a matrix of dimensions 4× 4. When pursuing higher security, the
local computational cost of the compared algorithms will be significantly higher than the

Sensors 2021, 21, 6821 11 of 20

algorithm in this paper. Therefore, it is easy to see that the proposed algorithm has the
lowest local computational burden.

Table 3. Local multiplication burden.

Function KEYGEN ENCRYPT V ERIFY DECRYPT Total

Our algorithm 8n 8n2 4n2 + 4n 1 12n2 + 12n
Lei’s algorithm [5] n + m 2(n + m)2 ln2 n (2 + l)n2 + 2m2 + 4mn + 2n + m
Liu’s algorithm [6] 2n 2n2 ln2 n (2 + l)n2 + 3n

Zhang’s algorithm [4] 2n 10n2 ln2 4n (10 + l)n2 + 6n

Table 4. Local addition burden.

Function KEYGEN ENCRYPT V ERIFY DECRYPT Total

Our algorithm 8n + 4 2n 4n2 + 2 1 4n2 + 10n + 7

Lei’s algorithm [5] 2(n + m) + 1 0 2l(n + m)2 − l(n + m) 0 2l(n + m)2 − (l −
2)(m + n) + 1

Liu’s algorithm [6] 2n + 1 0 2ln2 − ln 0 2ln2 − (l − 2)n + 1

Zhang’s algorithm [4] 2n + 1 4n2 2ln2 − ln 0 (2l + 4)n2 − (l − 2)n +
1

Theorem 3. The computational complexity of the server side of the proposed secure outsourcing
algorithm for matrix determinant is O(n2.373).

Proof of Theorem 3. Only the COMPUTE function is performed by the server side. Four
iterations of LU decomposition computations and 8n multiplications are required in
Algorithm 3. If the server supposes the fastest LU decomposition algorithm (e.g., Williams’
algorithm [39]), the computational overhead for the cloud side can be reduced to O(n2.373),
which has been proven in [5].

In comparison with the previous algorithms, the specific theoretical performance of
the proposed algorithm is shown in Table 5. The nonoutsourcing algorithm for matrix
determinant is O(n2.373) using the fast LU decomposition method in paper [39]. Obvi-
ously, the local computation complexity of the client (O(n2)) is substantially less than the
computation complexity of nonoutsourcing (O(n2.373)).

Table 5. Theoretical computational complexity.

Function KEYGEN ENCRYPT V ERIFY DECRYPT COMPUTE

Our algorithm O(n) O(n2) O(n2) O(1) O(n2.373)
Lei’s algorithm [5] O(n + m) O((n + m)2) O(ln2) O(n) O(n2.373)
Liu’s algorithm [6] O(n) O(n2) O(ln2) O(n) O(n2.373)

Zhang’s algorithm [4] O(n) O(n2) O(ln2) O(n) O(n2.373)

5.3. Security

A cloud server can be a passive or active attacker. Next, we will analyze the security
of the proposed algorithm against both passive and active attacks.

5.3.1. Privacy against Passive Attacks

A passive attacker (semihonest) follows the procedure of the algorithm while exploit-
ing the intermediate information to breach the privacy of matrix.

Theorem 4. The proposed secure outsourcing algorithm for matrix determinant is privacy-protected.

Sensors 2021, 21, 6821 12 of 20

Proof of Theorem 4. It is easy to see that the methods of encrypting matrices M1, M2, M3,
and M4 are consistent. The privacy input matrix M can be obtained by computing {M1, M2}
or {M3, M4}. We take {M1, M2} as an example to prove that the proposed algorithm is
privacy-protected. As Y1 and Y2 are visible to the attacker, to restore {M1, M2}, the attacker
needs to guess P1, Q1, P2, and Q2. Then, the attacker uses the inverse matrices of P1, Q1,
P2, and Q2 to restore {M1, M2}. When generating the original diagonal matrices P1, Q1,
P2, and Q2 in the KEYGEN function, a total of 4n elements are selected from the key space
K = {1, 0}λ. The probability of attacker A correctly guessing the 4n elements is 1

(2λ)4n .
Besides, from the perspective of the attacker, as long as the frequencies of mix-rows/mix-
columns (n1, n2, m1, m2) are large enough, it is equivalent to repositioning the n nonzero
elements of the diagonal matrix (P1, Q1, P2, Q2) to ensure that all rows/columns of the
new matrix have only one element. Thus, through the mix-row/mix-column operations
in lines 7–14 of Algorithm 1, the attacker successfully guessing any matrix requires n!
attempts. Therefore, the passive attacker should make (n!)4(2λ)4n brute-force guesses
to obtain {M1, M2}. Then, the attacker can easily compute M. The probability that the
attacker A obtains the secret input M is shown at Equation (14). When either the size of
the matrix or the key space K is large enough, the value of ProbM

A will be so small that it
can be ignored.

As for the privacy of the output det(M), because det(M) = r1
t1
+ r2

t2
, the attacker

must obtain t1, t2 before computing det(M). As t1 = det(P1)det(Q1), t2 = det(P2)det(Q2),
computing t1, t2 is equivalent to guessing P1, Q1, P2, and Q2. Thus, the probability that the
attacker A obtains the secret output det(M) is the same as obtaining the input privacy.

Thus, we can conclude that the proposed secure outsourcing algorithm for matrix
determinant is privacy-protected.

ProbM
A (Y1, Y2) =

1
(n!)4(2λ)4n → negli (14)

5.3.2. Security against Active Attacks

An active attacker (malicious) injects false computation results into the algorithm to
tamper with the whole procedure.

Theorem 5. The proposed secure outsourcing algorithm for matrix determinant is cheating-detected.

Proof of Theorem 5. There are three types of attacks with different complexity levels.
In the first attack, the attacker returns random r′1, r′2, r′3, r′4, L′1, L′2, U′1, U′2 to the

client with O(1) computational complexity. Obviously, r′1 6= ∏n
i=1 L′1(i, i)U′1(i, i),

r′3 6= ∏n
i=1 L′3(i, i)U′3(i, i), and r′1

t1
+

r′2
t2
6= r′3

t3
+

r′4
t4

. Thus, it cannot pass the verifications
of Equations (5)–(7). The malicious cloud can also perform a small number of com-
putations with O(n) computational complexity so that r′1 = ∏n

i=1 L′1(i, i)U′1(i, i) and
r′3 = ∏n

i=1 L′3(i, i)U′3(i, i), which can nullify the verifications of Equations (5) and (6). How-
ever, due to the lack of t1, t2, t3, t4, it still fails to pass the verification of Equation (7).

The complexity of the second type of attack is O(n2.373). There are two ways of attack-
ing. In the first way, the attacker computes the correct results σy, but chooses a random
ath element on the diagonal of L1 or U1 and tampers with it (e.g., L′1(a, a) = γL1(a, a)).
In the same way, the attacker tampers with a random bth element on the diagonal of
L3 or U3 (e.g., L′3(b, b) = γL3(b, b)). Besides, the attacker also changes the r1, r2, r3, r4 by
r′1 = γr1, . . . , r′4 = γr4. The above attack returns r′1, r′2, r′3, r′4, L′1, U1, L′3, U3 to the client,
which can successfully nullify the verifications of Equations (5)–(7). However, it cannot
pass the verification in lines 6–17 of the VERIFY function. The verifications in lines 6–17
verify all the diagonal elements in L1, L3, U1, and U3 at least once. The nature of the
verifications in lines 6–17 is to select 2n elements in the matrices Y1 and Y3, respectively, to
verify the correctness of the diagonal elements in L1, L3, U1, and U3. As shown in Equa-

Sensors 2021, 21, 6821 13 of 20

tions (15) and (16), the error in the ath/bth term in l′1(a,−)/l′3(b,−) will be propagated
to Y′1(a, j)/Y′3(b, k), which is not equal to Y1(a, j)/Y3(b, k). Thus, the forged L′1(a, a) and
L′3(a, a) can be certainly detected.

Y1(a, j) = l1(a,−) � u1(−, j) 6= l′1(a,−) � u1(−, j), (a ≤ j ≤ n) (15)

Y3(b, k) = l3(b,−) � u3(−, k) 6= l′3(b,−) � u1(−, k), (b ≤ k ≤ n) (16)

In the second way, before performing the COMPUTE function, the attacker tampers
with a random element in Y1 and Y3, respectively (Tampering with more items will be
easier to detect.). Then, the attacker performs the COMPUTE function with the forged
input Y ′1 , Y ′3 , and returns the cheating result σ′y = r′1, r2, r′3, r4, L′1, U′1, L′3, U′3 to the client.
As the verification in lines 6–17 can only detect this attack with a probability of 2

n . This
way of attacking can easily nullify the verification in lines 6–17. However, as shown in
Equation (17), it cannot pass the verification of Equation (7). Forging more elements in
Y1, Y3, or elements in Y2, Y4 can also be detected by Equation (7) (e.g., the cloud returns
σ′y = r1, r′2, r′3, r′4, L1, U1, L′3, U′3 to the client where r′i is the cheating result and ri is the
correct result).

r′1
t1

+
r2

t2
6=

r′3
t3

+
r4

t4
(17)

The complexity of the third attack is much greater than others. In order to pass all the
verification, before attacking, the attacker has to make (n!)4 brute-force guesses to get the
4n positions that the client verifies in Y1 and Y3 (lines 6–17). Then, the cloud constructs two
forged matrices Y ′1 and Y ′3 . The forged matrices Y ′1 and Y ′3 satisfy the condition that the
elements at the detected positions remain unchanged, and the elements at other positions
are changed. Meanwhile, the attacker ensures det(Y ′1) = γdet(Y1), det(Y ′3) = γdet(Y3).
Afterwards, the cloud tampers with r1, r2, r3, r4 by r′1 = γr1, . . . , r′4 = γr4. The third attack
is the only way to pass all the verifications in VERIFY with a probability of 1

(n!)4 and

return a forged result y′ = γy. The probability that the client C successfully detects the
forged result is shown in Equation (18), which infinitely approaches 1 when n is large
enough. Thus, we can conclude that the proposed secure outsourcing algorithm for matrix
determinant is cheating-detected, when the size of the matrix is large enough.

Prob f orge
C (r1, r2, r3, r4, L1, L3, U1, U3) = (1− 1

(n!)4)→ 1 (18)

As shown in Table 6, the theoretical security of the proposed algorithm is significantly
higher than the other three algorithms while using the same key space K = {1, 0}λ.
According to [4–6], the parameter l is recommended to be greater than 20. Thus, when
n ≥ 5, the proposed algorithm can achieve a high cheating detectability comparable to these
three algorithms with the lowest computational cost, as demonstrated in Tables 3 and 4.
Actually, it is common to compute the determinant of the large matrices with dimensions
of far-greater than 5 in DIP and machine learning.

Table 6. Probability of successful attack.

Attack Our Algorithm Liu’s Algorithm [6] Lei’s Algorithm [5] Zhang’s Algorithm [4]

Privacy Leakage 1
(n!)4(2λ)4n

1
(n!)2(2λ)2n

1
((n+m)!)2(2λ)2(n+m)

1
(n!)2(2λ)10n−8

Result cheating 1
(n!)4

1
(2)l

1
(2)l

1
(2)l

Sensors 2021, 21, 6821 14 of 20

6. Performance Evaluation

According to the above theoretical analysis, our algorithm can significantly reduce the
local computational burden of the client. In this section, we implement the algorithm to
assess its practical efficiency. The client and the cloud server functions in our experiments
were conducted on the same machine, which has an Intel(R) Core(TM) i7-8550U CPU
1.80 GHz with eight cores. We implemented the proposed algorithm by Matlab and used
the LAPACK [40] package to perform the LU decomposition. The communication costs
between the client and the server were ignored, since the computations dominate the
running time. Table 7 shows the notations used in this section.

Table 7. Notations in experiments.

Notations Implication

to The time consumption of nonoutsourcing scheme.
ts The time consumption of cloud.
tc1 The time consumption of client in key generation and encryption.
tc2 The time consumption of client in decryption and verification.
tc The time consumption of client.
to
tc

Acceleration ratio of client.

Our goal is to reduce the client’s computational burden through outsourcing. There-
fore, the ratio of time consumption without outsourcing to time consumption with out-
sourcing is an important measure, which is referred to as the Acceleration Ratio of clients.

In our comparisons, we only considered the existing algorithms proposed for the
malicious model, without considering those merely for the semihonest model, since the
former model is more secure. As far as we know, the currently existing algorithms for
the malicious model include only Lei’s algorithm [5], Liu’s algorithm [6], and Zhang’s
algorithm [4]. In the experiment, we set the parameter l to 20 in the three previous algo-
rithms, and set the parameter m to 500 in Lei’s algorithm. We compared the running time
of every part of the algorithms on matrices of different dimensions. Table 8 and Figure 3
show that our algorithm has the highest acceleration rate on matrices of all dimensions.
The time consumption on cloud in our algorithm is slightly higher than the three previous
algorithms, which is not a big issue since this follows the aim of outsourcing by moving
computational burden from local to cloud. As shown in Figure 4, compared with the previ-
ous algorithms and nonoutsourcing algorithms, our proposed algorithm has the lowest
local computational burden. As for the security level, even if l is set to 20, the security of
the three previous algorithms are still much lower than the proposed algorithm.

In order to prove that the proposed algorithm achieves a higher security level with less
local computation costs. we also compare the local running time of the proposed algorithm
with the previous three algorithm on different values of parameter l. In this experiment, the
dimension of matrix is fixed at 2000. As shown in Figure 5, because the proposed algorithm
uses a new verification method, which does not involve the parameter l, the local running
time of the proposed algorithm remains unchanged. As the parameter l increases, the
cheating detectability of the previous three algorithms increases, since the forged results
can escape local verifications with the probability of 1

2l , while in our algorithm the cheating
detectability remains at the probability of 1− 1

(2000!)4 . However, the local computational
burden of the three algorithms also increases significantly.

We also apply the proposed secure outsourcing algorithm as a basic module to the
Cramer’s rule to solve linear equations. We compare the time consumption of outsourc-
ing determinant computation and nonoutsourcing in solving linear equations of differ-
ent dimensions. As shown in Figure 6, outsourcing the computations of determinant
can significantly reduce the time consumption of solving linear equations, which also
proves the efficiency superiority of the proposed secure outsourcing algorithm for matrix
determinant computation.

Sensors 2021, 21, 6821 15 of 20

Table 8. Experimental results (time in milliseconds).

Algorithm Dimension to tc1 tc2 tc ts
to
tc

Our algorithm

500 32.829 14.188 3.547 17.735 49.264 1.851

2000 290.013 94.517 31.670 126.187 352.725 2.298

3000 606.768 191.122 41.954 233.078 903.288 2.603

5000 2410.926 470.294 148.515 618.809 2982.729 3.896

8000 4666.675 808.776 228.117 1036.893 6163.738 4.501

10,000 12,818.648 1960.510 459.867 2420.337 15,895.125 5.296

Lei’s algorithm [5]

500 32.829 1.747 25.184 26.931 45.775 1.219

2000 290.013 5.528 186.026 191.554 348.904 1.514

3000 606.768 10.951 341.002 351.953 894.031 1.724

5000 2410.926 42.309 974.528 1016.837 2767.491 2.371

8000 4666.675 274.662 1198.869 1473.532 5495.207 3.167

10,000 12,818.648 796.518 2779.116 3575.634 14,175.942 3.585

Liu’s algorithm [6]

500 32.829 0.793 19.764 20.557 38.379 1.597

2000 290.013 4.923 152.771 157.694 311.684 1.839

3000 606.768 7.595 258.414 266.009 894.031 2.281

5000 2410.926 30.519 669.924 701.443 2531.673 3.442

8000 4666.675 132.731 985.303 1118.034 4951.749 4.174

10,000 12,818.648 551.634 2024.461 2576.095 13,667.593 4.976

Zhang’s algorithm [4]

500 32.829 18.475 20.498 38.973 37.517 0.842

2000 290.013 104.772 167.538 272.310 324.941 1.065

3000 606.768 207.462 277.737 485.199 875.963 1.251

5000 2410.926 522.743 720.335 1243.078 2539.492 1.939

8000 4666.675 983.769 1142.779 2126.548 5027.820 2.194

10,000 12,818.648 2647.539 3176.957 5824.496 12,741.742 2.201

Sensors 2021, 21, 6821 16 of 20

Figure 3. Acceleration ratio of the client.

Figure 4. The time consumption of the client.

Sensors 2021, 21, 6821 17 of 20

Figure 5. The time consumption of the client when using different parameter l.

Figure 6. The time consumption of solving linear equations.

7. Conclusions

In this paper, we propose a new secure outsourcing algorithm for matrix determinant
computation under the malicious model. We also conduct theoretical analysis to prove

Sensors 2021, 21, 6821 18 of 20

the correctness, efficiency, privacy protection level, and cheating detectability for the
proposed algorithm. In comparison with the previous algorithms in [4–6], the proposed
algorithm achieves higher cheating detectability with less computations on the client. The
previous algorithms [4–6] use Freivald’s method [38] for verification, which achieves a
high cheating detectability by continuously increasing local computational burden. The
cheating detectability of the proposed algorithm does not depend on the frequency of
verification but is only related to the size of the matrix. Even in the case that the dimension
of the matrix is not large enough (greater than or equal to 5), the cheating detectability
of our algorithm is significantly better than the previous algorithms. For the privacy, the
state-of-the-art algorithm [4] has the highest privacy, but its local computation cost usually
nullifies the efficiency benefit of outsourcing when the dimension of matrix is less than 2000.
Our algorithm with the lowest local computation cost achieves privacy comparable with
the state-of-the-art works. We also conduct experiments to demonstrate the local efficiency
superiority of the proposed algorithm. However, the theoretical analysis and experimental
results also show that the proposed algorithm has a higher cloud computation cost than the
three previous algorithms, which is not a big issue since this follows the aim of outsourcing
by moving computational burden from local to cloud. As future work, we will study
how to reduce the cloud’s computational burden in the secure outsourcing algorithms for
computations of the matrix.

Author Contributions: Conceptualization, M.S. and Y.S.; methodology, M.S.; software, M.S.; vali-
dation, M.S. and Y.S.; formal analysis, M.S. and Y.S.; investigation, M.S.; resources, M.S. and Y.S.;
data curation, M.S.; writing—original draft preparation, M.S.; writing—review and editing, Y.S.;
visualization, M.S.; supervision, Y.S.; project administration, Y.S.; funding acquisition, Y.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Science and Technology Program of Guangzhou, China
(Grant No. 201904010209), and the Science and Technology Program of Guangdong Province, China
(Grant No. 2017A010101039).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Brunette, G.; Mogull, R. Security guidance for critical areas of focus in cloud computing v2.1 Cloud Secur. Alliance 2017, 1–76.

Avaliable online: http://www.cloudsecurityalliance.org/csaguide.pdf (accessed on 4 September 2021).
2. Bolton, T.; Dargahi, T.; Belguith, S.; Al-Rakhami, M.S.; Sodhro, A.H. On the security and privacy challenges of virtual assistants.

Sensors 2021, 21, 2312. [CrossRef] [PubMed]
3. Goldreich, O.; Micali, S.; Wigderson, A. How to play any mental game, or a completeness theorem for protocols with honest

majority. In Providing Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali; ACM: New York, NY,
USA, 2019; pp. 307–328.

4. Zhang, S.; Tian, C.; Zhang, H.; Yu, J.; Li, F. Practical and Secure Outsourcing Algorithms of Matrix Operations Based on a Novel
Matrix Encryption Method. IEEE Access 2019, 7, 53823–53838. [CrossRef]

5. Lei, X.; Liao, X.; Huang, T.; Li, H. Cloud computing service: The caseof large matrix determinant computation. IEEE Trans. Serv.
Comput. 2014, 8, 688–700. [CrossRef]

6. Liu, J.; Bi, J.; Li, M. Secure outsourcing of large matrix determinant computation. Front. Comput. Sci. 2020, 14, 1–12. [CrossRef]
7. Nykvist, C.; Larsson, M.; Sodhro, A.H.; Gurtov, A. A lightweight portable intrusion detection communication system for auditing

applications. Int. J. Commun. Syst. 2020, 33, e4327. [CrossRef]
8. Kayes, A.; Kalaria, R.; Sarker, I.H.; Islam, M.; Watters, P.A.; Ng, A.; Hammoudeh, M.; Badsha, S.; Kumara, I.; et al. A survey of

context-aware access control mechanisms for cloud and fog networks: Taxonomy and open research issues. Sensors 2020, 20, 2464.
[CrossRef]

9. Brakerski, Z. Fully homomorphic encryptionwithout modulus switching from classical GapSVP. In Annual Cryptology Conference;
Springer: Berlin/Heidelberg, Germany, 2012; pp. 868–886.

http://www.cloudsecurityalliance.org/csaguide.pdf
http://doi.org/10.3390/s21072312
http://www.ncbi.nlm.nih.gov/pubmed/33810212
http://dx.doi.org/10.1109/ACCESS.2019.2913591
http://dx.doi.org/10.1109/TSC.2014.2331694
http://dx.doi.org/10.1007/s11704-019-9189-7
http://dx.doi.org/10.1002/dac.4327
http://dx.doi.org/10.3390/s20092464

Sensors 2021, 21, 6821 19 of 20

10. Chillotti, I.; Gama, N.; Georgieva, M.; Izabachène, M. TFHE: Fast fully homomorphic encryption over the torus. J. Cryptol. 2020,
33, 34–91. [CrossRef]

11. Shen, T.; Wang, F.; Chen, K.; Wang, K.; Li, B. Efficient leveled (multi) identity-based fully homomorphic encryption schemes.
IEEE Access 2019, 7, 79299–79310. [CrossRef]

12. Da Silva, D.W.; de Araujo, C.P.; Chow, E.; Barillas, B.S. A new approach towards fully homomorphic encryption over geometric
algebra. In Proceedings of the 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference
(UEMCON), New York, NY, USA, 10–12 October 2019; pp. 0241–0249.

13. Li, J.; Yu, Q.; Zhang, Y.; Shen, J. Key-policy attribute-based encryption against continual auxiliary input leakage. Inf. Sci. 2019,
470, 175–188. [CrossRef]

14. Waters, B. Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure realization. In International
Workshop on Public Key Cryptography; Springer: Berlin/Heidelberg, Germany, 2011; pp. 53–70.

15. Attrapadung, N. Unbounded dynamic predicate compositions in attribute-based encryption. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 2019; pp. 34–67.

16. Fu, A.; Li, S.; Yu, S.; Zhang, Y.; Sun, Y. Privacy-preserving composite modular exponentiation outsourcing with optimal
checkability in single untrusted cloud server. J. Netw. Comput. Appl. 2018, 118, 102–112. [CrossRef]

17. Su, Q.; Zhang, R.; Xue, R. Secure outsourcing algorithms for composite modular exponentiation based on single untrusted cloud.
Comput. J. 2020, 63, 1271–1271. [CrossRef]

18. Zhou, Q.; Tian, C.; Zhang, H.; Yu, J.; Li, F. How to securely outsource the extended euclidean algorithm for large-scale polynomials
over finite fields. Inf. Sci. 2020, 512, 641–660. [CrossRef]

19. Ren, Y.; Ding, N.; Wang, T.; Lu, H.; Gu, D. New algorithms for verifiable outsourcing of bilinear pairings. Sci. China Inf. Sci. 2016,
59, 1–3. [CrossRef]

20. Lin, C.; He, D.; Huang, X.; Xie, X.; Choo, K.K.R. Blockchain-based system for secure outsourcing of bilinear pairings. Inf. Sci.
2020, 527, 590–601. [CrossRef]

21. Tong, L.; Yu, J.; Zhang, H. Secure Outsourcing Algorithm for Bilinear Pairings without Pre-Computation. In Proceedings of the
2019 IEEE Conference on Dependable and Secure Computing (DSC), Hangzhou, China, 18–20 November 2019; pp. 1–7.

22. Song, M.; Sang, Y.; Zeng, Y.; Luo, S. Blockchain-Based Secure Outsourcing of Polynomial Multiplication and Its Application in
Fully Homomorphic Encryption. Secur. Commun. Netw. 2021, 2021, 9962575.

23. Zhang, Y.; Blanton, M. Efficient secure and verifiable outsourcing of matrix multiplications. In International Conference on
Information Security; Springer: Berlin/Heidelberg, Germany, 2014; pp. 158–178.

24. Kumar, M.; Mishra, V.; Shukla, A.; Singh, M.; Vardhan, M. A novel publicly delegable secure outsourcing algorithm for large-scale
matrix multiplication. J. Intell. Fuzzy Syst. 2020, 38, 6445–6455. [CrossRef]

25. Wang, S.; Huang, H. Secure outsourced computation of multiple matrix multiplication based on fully homomorphic encryption.
KSII Trans. Internet Inf. Syst. (TIIS) 2019, 13, 5616–5630.

26. Wu, Y.; Liao, Y.; Liang, Y.; Liu, Y. Secure and Efficient Protocol for Outsourcing Large-Scale Matrix Multiplication to the Cloud.
IEEE Access 2020, 8, 227556–227565. [CrossRef]

27. Duan, J.; Zhou, J.; Li, Y. Secure and verifiable outsourcing of nonnegative matrix factorization (NMF). In Proceedings of the 4th
ACM Workshop on Information Hiding and Multimedia Security, Vigo, Spain, 20–22 June 2016; pp. 63–68.

28. Liu, Z.; Li, B.; Han, Q. Secure and verifiable outsourcing protocol for non-negative matrix factorisation. Int. J. High Perform.
Comput. Netw. 2018, 11, 14–23. [CrossRef]

29. Fu, A.; Chen, Z.; Mu, Y.; Susilo, W.; Sun, Y.; Wu, J. Cloud-based outsourcing for enabling privacy-preserving large-scale
non-negative matrix factorization. IEEE Trans. Serv. Comput. 2019. [CrossRef]

30. Duan, J.; Zhou, J.; Li, Y. Secure and verifiable outsourcing of large-scale nonnegative matrix factorization (NMF). IEEE Trans. Serv.
Comput. 2019. [CrossRef]

31. Hu, C.; Alhothaily, A.; Alrawais, A.; Cheng, X.; Sturtivant, C.; Liu, H. A secure and verifiable outsourcing scheme for matrix
inverse computation. In Proceedings of the IEEE INFOCOM 2017-IEEE Conference on Computer Communications, Atlanta, GA,
USA, 1–4 May 2017; pp. 1–9.

32. Pan, S.; Wang, Q.; Zheng, F.; Dong, J. Secure and efficient outsourcing of large-scale matrix inverse computation. In International
Conference on Wireless Algorithms, Systems, and Applications; Springer: Berlin/Heidelberg, Germany, 2018; pp. 374–386.

33. Chen, Z.; Fu, A.; Xiao, K.; Su, M.; Yu, Y.; Wang, Y. Secure and verifiable outsourcing of large-scale matrix inversion without
precondition in cloud computing. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas
City, MO, USA, 20–24 May 2018; pp. 1–6.

34. Pramkaew, C.; Ngamsuriyaroj, S. Lightweight scheme of secure outsourcing SVD of a large matrix on cloud. J. Inf. Secur. Appl.
2018, 41, 92–102. [CrossRef]

35. Chen, J.; Liu, L.; Chen, R.; Peng, W. SHOSVD: Secure Outsourcing of High-Order Singular Value Decomposition. In Australasian
Conference on Information Security and Privacy; Springer: Berlin/Heidelberg, Germany, 2020; pp. 309–329.

36. Kim, D.; Son, Y.; Kim, D.; Kim, A.; Hong, S.; Cheon, J.H. Privacy-preserving approximate GWAS computation based on
homomorphic encryption. BMC Med. Genom. 2020, 13, 77. [CrossRef] [PubMed]

37. Zong, H.; Huang, H.; Wang, S. Secure Outsourced Computation of Matrix Determinant Based on Fully Homomorphic Encryption.
IEEE Access 2021, 9, 22651–22661. [CrossRef]

http://dx.doi.org/10.1007/s00145-019-09319-x
http://dx.doi.org/10.1109/ACCESS.2019.2922685
http://dx.doi.org/10.1016/j.ins.2018.07.077
http://dx.doi.org/10.1016/j.jnca.2018.06.003
http://dx.doi.org/10.1093/comjnl/bxz165
http://dx.doi.org/10.1016/j.ins.2019.10.007
http://dx.doi.org/10.1007/s11432-016-5550-8
http://dx.doi.org/10.1016/j.ins.2018.12.043
http://dx.doi.org/10.3233/JIFS-179725
http://dx.doi.org/10.1109/ACCESS.2020.3045999
http://dx.doi.org/10.1504/IJHPCN.2018.088875
http://dx.doi.org/10.1109/TSC.2019.2937484
http://dx.doi.org/10.1109/TSC.2019.2911282
http://dx.doi.org/10.1016/j.jisa.2018.06.003
http://dx.doi.org/10.1186/s12920-020-0722-1
http://www.ncbi.nlm.nih.gov/pubmed/32693801
http://dx.doi.org/10.1109/ACCESS.2021.3056476

Sensors 2021, 21, 6821 20 of 20

38. Freivalds, R. Probabilistic Machines Can Use Less Running Time. In Proceedings of the IFIP Congress, Toronto, ON, Canada,
8–12 August 1977; Volume 839, p. 842.

39. Chen, Y.; Nguyen, P.Q. Faster algorithms for approximate common divisors: Breaking fully-homomorphic-encryption chal-
lenges over the integers. In Annual International Conference on the Theory and Applications of Cryptographic Techniques; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 502–519.

40. Anderson, E.; Bai, Z.; Bischof, C.; Blackford, L.S.; Demmel, J.; Dongarra, J.; Du Croz, J.; Greenbaum, A.; Hammarling, S.;
McKenney, A.; et al. LAPACK Users’ Guide; SIAM: Philadelphia, PA, USA, 1999.

	Introduction
	Related Work and Comparative Analysis
	Preliminary
	System Model
	Definitions of Correctness, Efficiency, and Security

	Secure Outsourcing of Matrix Determinant
	Key Generation
	Encryption
	Computations of Server
	Verification
	Decryption

	Correctness, Security, and Computational Complexity Analysis
	Correctness
	Computational Complexity
	Security
	Privacy against Passive Attacks
	Security against Active Attacks

	Performance Evaluation
	Conclusions
	References

