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Abstract: Designing beampatterns with constant beamwidth over a wide range of frequencies is
useful in many applications in speech, radar, sonar and communication. In this paper, we design
constant-beamwidth beamformers for concentric ring arrays. The proposed beamformers utilize the
circular geometry to provide improved beamwidth consistency compared to beamformers which
are designed for linear sensor arrays of the same order. In the proposed configuration, all sensors
on each ring share the same weight value. This constraint significantly simplifies the beamformers
and reduces the hardware and computational resources required in a physical setup. Furthermore, a
theoretical justification of the beamforming method is provided. We demonstrate the advantages of
the proposed beamformers compared to the one-dimensional configuration in terms of directivity
index, white noise gain and sidelobe attenuation.

Keywords: array processing; constant-beamwidth beamformer; circular sensor array; concentric ring array

1. Introduction

Applications in communication, radar and speech processing require dealing with
broadband signals [1]. A wide variety of tasks, such as source separation, noise reduction
and signal enhancement, are enhanced by using wideband beamforming algorithms in
these applications [2,3]. To avoid non-uniform attenuation and distortion caused by the
beamformer, several approaches implementing frequency invariant beamformers were
presented in the literature [4–12]. Implementing the desired beampattern is commonly
done by changing the weights given to each sensor under specified restrictions.

One of the main challenges associated with designing a wideband beamformer is main-
taining a constant beamwidth over a wide range of frequencies. In common beamforming
methods (as delay and sum [13]), the mainbeam becomes narrower as the frequency in-
creases. Many constant-beamwidth beamformers can be applied to produce beampatterns
with better beamwidth consistency and lower sensitivity. Beamforming algorithms using
least-squares, linearly constrained minimum variance, adaptive delay lines and minimum
variance distortionless response were suggested in the literature [14–18]. However, some
of these approaches suffer from high computational complexity and degradation in perfor-
mance measures (such as sensitivities to model mismatches, diverseness of sensors, and
deviation from nominal configuration).

Our design follows the approach proposed by Rosen et al. [19]. This method demon-
strated low computational complexity as well as improved array response results in var-
ious scenarios, compared to other methods in the field. The proposed approach utilizes
custom-tailored filters for each sensor, manipulating the beampattern beamwidth to remain
constant. The basic idea of the suggested algorithm includes a gradual elimination of active
sensors to achieve the desired constant beamwidth in different frequencies. The elimination
of the sensors is done by attenuating their signals as the frequency increases. This changes
the effective aperture of the array and results in beamwidth consistency. According to
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this approach, each sensor output is processed by a lowpass filter with different cutoff
frequencies, depending on the sensor position. In between the cutoff frequencies, smooth-
ing magnitude coefficients are calculated such that the beamwidth remains constant. In
addition, a post-summation normalization is applied to the output result, so the gain at
all the frequencies is also constant. This method showed better sidelobe attenuation and
robustness to array mismatches compared to other methods.

Most of the work on constant-beamwidth beamformers, and specifically the beam-
former mentioned above, deals with a 1D uniform linear array (ULA) geometry. Yet,
there is a growing interest in using 2D array geometries, specifically circular arrays, in
beamforming algorithms. Utilizing the uniform circular array (UCA) symmetry has the
potential of superior performance in terms of noise suppression, direction of arrival (DOA)
estimation and design flexibility. Hence, in applications where the signal of interest may
come from any direction, circular arrays are advantageous [20–22].

Due to the progress in audio and communication applications, many beamforming
methods were proposed for uniform concentric circular arrays (UCCAs) over the last
decade. A classical criterion in synthesizing the desired beampattern is minimizing the
minimum mean-square-error (MMSE). This approach for UCCAs was suggested in [23],
and was later incorporated in [24,25] as an optimization cost function. The employment
of convex optimization to attain broadband fixed pattern was also suggested in [26],
formulating a second-order cone programming problem. In [27], this method was modified
to 3D spherical arrays. Recently, the use of differential sensor arrays on the circular
geometry was investigated in [28–32]. The suggested beamformers provided enhanced
performance in terms of steering flexibility and beampatterns irregularities. In addition,
in [33], a greedy-based sparse design was introduced, optimizing simultaneously the
number of rings and the number of sensors in the array. This approach was later generalized
in [34], focusing on the 2D scenario. Window-based beamformers were also presented
in the literature for the task of designing frequency-invariant beampatterns. In [35], a
Kaiser window was applied on the UCCA to control the sidelobe levels while attaining
the required beamwidth. The window-based approach in [36,37] was used to weight
the sensors on the rings. The suggested method enabled a control of the elevation and
azimuth beamwidth. Most of the presented UCCA beamformers consider the scenario in
which the signal-of-interest arrives from the horizontal plane. However, in practical 3D
applications the elevation angle is not confined to be 90◦. The arbitrary elevation angle
directly affects the directivity factor (DF) and the white noise gain (WNG), which are
important performance measures of the array.

In this paper, we present beamformers with constant elevation beamwidth, covering
a pre-defined area of interest. The pre-configured locations of the sensors in the array
eliminate the need of beam steering. The weight given to each sensor is derived from
theoretical considerations. The exact weight value is calculated to attain the desired
beamwidth while gradually eliminating sensors from outer rings. In the design process,
we utilize concentric ring arrays (CRAs). That is, we restrict all the sensors on each ring to
have the same weights. This restriction allows a significant improvement in computational
complexity, since the number of weights is determined by the number of rings in the array,
rather than the number of sensors. In addition, designing joint weights to all the sensors
on a given ring enables an analog summation of the sensors’ signals before sampling.
Accordingly, this design enables to use a single A/D sampler per ring, instead of sampling
each sensor individually. We introduce a design method in the low frequency range that
modifies the filters applied to each array element from lowpass filters to bandpass filters.
This method exploits the circular geometry and results in better performance compared
to beamformers that are designed for ULA with an equivalent number of channels (i.e.,
beamformer order).

The paper is organized as follows: Section 2 describes the motivation behind the sug-
gested design. We describe the advantages of the proposed approach compared to existing
methods. In Section 3, we formulate the problem, and describe the geometrical setup.
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Section 4 provides a theoretical justification of implementing our constant-beamwidth
design on circular geometries. Section 5 introduces the design method of the constant-
beamwidth CRA, including a particular consideration to low frequencies and a time domain
implementation of the desired beamformer filters. Section 6 evaluates the performance of
the proposed beamformer compared to a constant-beamwidth beamformer, of the same
order, that is designed for ULAs. Finally, some conclusions are drawn in Section 7.

2. Motivation

Frequency invariant beamformers are used, e.g., in multi-speakers settings, such
as large conference rooms, auditoriums and lecture halls. The problem considered in
our paper deals with designing circular ceiling array beamformers, covering multiple
beamforming zones.

There are several types of beamforming technologies for designing ceiling sensor
arrays. Dynamic beamforming approach adaptively steers the mainbeam to the desired
speaker direction. The steering is preformed by separately sampling each sensor element
and applying individual complex weight to each sensor. While there are advantages to
adaptive beamforming, such as flexibility in the speaker locations, it usually requires
more hardware resources or higher computational complexity. In addition, adaptive
beamformers are used to steer the mainbeam to focus on the current speaker. Hence,
the performance of such beamformers in practical environments depends on the direct-
to-reverberant (DRR) ratio and the speakers’ distance from the array [38–40]. Moreover,
planar arrays are usually constructed of a large number of elements. A multichannel
beamforming design that steers the beam adaptively requires a significant number of phase
shifters, amplifiers, samplers and filters. The physical hardware affects the array cost,
maintenance, sensitivities to model mismatches, diversity of sensors, and deviation from
nominal configuration [41].

Developing ceiling sensor arrays with multiple fixed beam-forming zones that in-
corporate predetermined recording regions is a way of eliminating the need for beam
steering. The proposed system considered in our paper is illustrated in Figure 1. Given
a room layout and a number of ceiling circular arrays, one can cover the area of interest
by combining several fixed beamformers with designated beamwidth. Each signal in the
scope of the main beam arrives to the closest array from broadside with a certain elevation
angle. Afterwards, the signal is processed with the beamformer weights that are calculated
as described in the paper. A system of this type offers the following benefits:

1. Fixed beam direction: as the source signal is assumed to be within the area covered
by the main lobe, there is no need to estimate the source location and steer the beam
to the estimated direction.

2. Low resource setup: by eliminating the need of steering the beam, the proposed de-
sign enables to use fewer A/D samplers, phase shifters and filters, which is significant
in 2D arrays. In the proposed method, all sensors on each ring share joint weights. As
a result, we allow an analog summation of all the received signals from a given ring
before sampling.

3. Real-time processing: since the number of channels in each array is determined by
the number of rings (rather than the number of sensors), the beamformer includes
less filters, has lower computational complexity, and processing time is faster.

We introduce a constant-beamwidth beamformer that can be incorporated in the
multi-beam system described above. We present a simple, low resource design of the
beamformer weights and explain the physical considerations of choosing the array radii
and number of sensors.
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Figure 1. Conference room illustration with circular ceiling array covering multiple beamforming
zones. Illustration courtesy of Stem Audio.

3. Problem Formulation

In this section, we describe a discrete CRA, constructed of equally spaced omnidirec-
tional sensor elements on each ring. We consider a CRA composed of M rings, containing
Nm (m = 1, 2, . . . , M) sensors in each ring, and receiving a source signal in the farfield
(steered to broadside) as shown in Figure 2.

Figure 2. Illustration of a CRA with M rings, where ψm,k indicates the angular position of the kth
element on the mth ring, constructed of Nm sensor elements.

Given a ring with radius rm, the placement of the kth sensor (k ∈ [1, Nm]) on a Carte-
sian coordinate system is given by:

rm,k = rm(cos ψm,k, sin ψm,k, 0) , (1)

where ψm,k is the angle of the kth sensor on the mth ring, measured anti-clockwise from the
x-axis:

ψm,k =
2π(k− 1)

Nm
. (2)

We consider a plane wave with a wave vector α
4
= [sin θ cos φ, sin φ sin θ, cos θ], where

φ is the azimuth angle and θ is the elevation angle. The time delay between the origin of
the circular array and the signal received at the kth sensor on the mth ring is

τm,k =
α · rm,k

c
=

rm cos(φ− ψm,k) sin θ

c
, (3)

where c is the signal propagation speed (i.e., 340 m/s for acoustic signals propagating in
the air). Having a broadband signal x(t) received in the origin point, the kth sensor element
output is
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ym,k(t) = x(t− τm,k) . (4)

In the frequency domain, the signal model is given by

Ym,k( f ) = e−j2π f τm,k X( f ) , (5)

where f is the temporal frequency. Collecting all the outputs of the sensors on the mth ring,
we obtain

y
m
=
[
Ym,1( f ), Ym,2( f ), . . . , Ym,Nm( f )

]
= X( f )dm( f , θ, φ) , (6)

where dm( f , θ, φ) is the steering vector of the mth ring:

dm( f , θ, φ)
4
=


ej 2πrm f

c cos(φ−ψm,1) sin θ

ej 2πrm f
c cos(φ−ψm,2) sin θ

...

ej 2πrm f
c cos(φ−ψm,Nm ) sin θ

. (7)

By concatenating the M steering vectors, we express the array steering vector as:

d( f , θ, φ) =
[
dT

1 ( f , θ, φ), . . . , dT
M( f , θ, φ)

]T
(8)

where T denotes the transpose operator.
In the proposed beamformer design, all the sensors in the mth ring are multiplied

by the same weight value (in a given frequency f ), denoted by Hm( f ). Designing the
beampattern under this constraint provides two main advantages in practical applications.
First, the computational complexity of designing the beamformer weights is significantly
lower. Second, designing joint weights to all the sensors on a given ring enables an
analog summation of the sensors’ signals before sampling. In physical systems, this design
enables the use of a single A/D sampler per ring, instead of sampling each sensor signal
individually, which simplifies the required hardware. A block diagram of the proposed
design is provided in Figure 3.

r1,1
x (t− τ1,1)

r1,2
x (t− τ1,2)

r1,Nθ x (t− τ1,N )

A/D h1 [n]

r2,1
x (t− τ2,1)

r2,2
x (t− τ2,2)

r2,N
x (t− τ2,N )

A/D h2 [n]

rM,1
x (t− τM,1)

rM,2
x (t− τM,2)

rM,N

x (t− τM,N )

A/D hM [n]

S
U
M

Normalization

Figure 3. Block diagram of joint weights CRA beamformer.

A source signal arriving in angle θ to the circular array is delayed by τm,k according to
the sensor placements. The output signals are summed per-ring and sampled. Afterwards,
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each ring response is filtered by the temporal filters denoted by hm[n], where m ∈ [1, M].
The filter results are later summed and normalized by normalization filter to yield the
output signal.

Given this design restriction, the weigh vector of the mth ring is given by:

hm( f ) = Hm( f )11×Nm , (9)

where 11×Nm is the unit vector of length Nm. Let N
4
= ∑M

m=1 Nm denote the total num-
ber of sensors in the array. Concatenating all the weight vectors into an (N × 1) vector,
representing the weights applied on the array elements at frequency f , we obtain

h( f ) = [h1( f ), ..., hM( f )]T . (10)

The CRA beampattern is defined as the summation of all the weighted outputs signals, i.e.,

B[h( f ), θ, φ] = hT( f )d( f , θ) =
M

∑
m=1

Hm( f )
Nm

∑
k=1

ej 2πrm f
c cos(φ−ψm,k) sin θ . (11)

It can be shown that with a sufficient number of sensors, the beampattern of the
discrete sensor ring is approximately equal to the continuous ring beampattern [42]. As a
result, we can assume that the beampattern is independent of the azimuth angle φ. Hence,

without loss of generality, we can choose φ
4
= 0, implying that

B[h( f ), θ] ≈
M

∑
m=1

Hm( f )
Nm

∑
k=1

ej 2πrm f
c cos ψm,k sin θ . (12)

To simplify the notation, we denote the discrete ring responseRm( f , θ) as

Rm( f , θ)
4
=

Nm

∑
k=1

ej 2πrm f
c cos ψm,k sin θ . (13)

4. Theoretical Analysis

In order to design a constant-beamwidth beampattern for CRA, our suggested beam-
former includes a gradual elimination of the outer rings in the array as the frequency
increases. In this section, we provide a theoretical justification to the proposed approach by
analyzing the nature of the beampattern for continuous CRA geometry.

Let us first examine the beampattern of a rigid plane piston which is dependent on the
temporal frequency f , the piston radius R and the signal elevation angle θ as follows [43]

Bp( f , R, θ) =
J1

(
2π f

c R sin θ
)

π f
c R sin θ

, (14)

where J1 is the first-order Bessel function. Note that due to the symmetry of the problem,
the beampattern does not depend on the azimuth angle.

Let θBW define the desired beamwidth, achieved in the −3 dB amplitude of the

beampattern and denoted as βBW
4
= 0.7. The constant-beamwidth constraint in a given

frequency range defined by [ fL, fH] implies that:

∀ f ∈ [ fL, fH] : Bp

(
f , R,

θBW

2

)
= βBW . (15)
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Using the beampattern defined in (14), we obtain

2π f
c

R sin
(

θBW

2

)
≈ 1.638 . (16)

Since we aim to keep the beamwidth constant, the value of sin
(

θBW
2

)
should not

change over a wide range of frequencies. This can be achieved if the value of the product
f R is kept constant. Hence, decreasing the piston radius as the frequency increases yields a
constant beamwidth.

The CRA geometry contains concentric rings, which effectively sample the piston in
discrete radii. The beampattern of a continuous circular ring laying in the x-y plane is:

Br( f , r, θ) = J0

(
2π f

c
r sin θ

)
, (17)

where J0 is the zero-order Bessel function and r is the ring radius [43]. Note that similarly
to (16), the beamwidth of the beampattern in (17) depends on the frequency and ring radius.
Hence, as seen in the piston beampattern, to achieve a constant beamwidth, we need to
establish a constant f r relation.

Given a CRA constructed from M concentric rings, the beampattern will be a weighted
sum of the beampatterns shown in (17):

B( f , r, θ) =
M

∑
m=1

Hm( f )J0

(
2π f

c
rm sin θ

)
, (18)

where Hm( f ) denotes the weight given to the m-th ring in the frequency f and r
4
=

[r1, . . . , rM] is the radii vector of the CRA rings. By changing the weights given to each ring
as the frequency increases, we can control the effective radius of the sampled piston such
that the beamwidth will remain constant, as discussed above. In the following section, the
beamformers’ design is presented, relying on the radius–frequency relation with a gradual
decrease of the effective radius.

5. CRA Constant-Beamwidth Beampattern Design

As discussed in Section 4, the beamwidth of the CRA remains constant if we ensure
that the radius–frequency product is constant. Thus, in this section, we suggest a beam-
former design that involves elimination of the outer rings in the CRA as the frequency
increases. We also explain the geometric considerations in choosing the number of sensors
constructing the array.

All the results shown in this section and in Section 6 are for a CRA constructed of
M = 6 rings with radii r = [2.5, 5, 10, 15, 20, 25] cm having 16 sensors each and a desired
beamwidth of θBW = 30◦. Note that even though the array contains a large number of
elements, the number of weights calculated per frequency is determined by the number of
rings. For simplicity, the shown results are for a broadside array.

5.1. Number of Sensors

As mentioned in Section 3, the array is constructed of equally spaced discrete sensor
elements. To avoid spatial aliasing, the spacing between the elements should be smaller
than half of the wavelength λ [43]. Assuming that the sensor placement is uniform on each
ring, the inner spacing should satisfy:

δm = 2rm sin
(

π

Nm

)
≈ 2πrm

Nm
<

c
2 f

, (19)
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where δm is the inner space between two adjacent sensors. Let rout denote the radius of the
outermost effective ring, satisfying Hout( f ) 6= 0. From (19), the number of sensors on the
outer ring in a given frequency f should comply with

Nout >
4πrout f

c
. (20)

Since we attenuate the outer rings as the frequency increases, rout is smaller for higher
frequencies. Thus, the relation rout f remains constant. Consequently, the right side of the
inequality is constant for a wide range of frequencies. This implies that the number of
elements Nout should not change when decreasing the effective radius. As a result, the
number of sensors should be constant for all the rings in the CRA.

Equation (16) presents the relation between the radius–frequency product and the
desired beamwidth for a rigid piston beampattern:

f R ≈ 1.638c

2π sin
(

θBW
2

) . (21)

Substituting f R into (20) yields the following dependency between the number of
sensors and the desired beamwidth

N >
4π
c

1.638c

2π sin
(

θBW
2

) =
3.276

sin
(

θBW
2

) . (22)

Under the chosen beamwidth restriction, we have N > 12.7. To verify that the chosen
number of discrete sensor elements in the CRA is sufficient, we examine the discretization
error between the continuous ring CRA beampattern and the discrete CRA in the following
manner:

ε = max
f ,θ

∣∣∣∣∣ M

∑
m=1

Hm( f )
[
Rm( f , θ)− J0

(
2π f

c
rm sin θ

)]∣∣∣∣∣ , (23)

where f ∈ [0.9, 8] kHz and θ ∈ [−60◦, 60◦]. The evaluation of the maximal error in (23) for
different numbers of discrete sensors shows that having 16 elements on each ring results in
a ∼10−6 difference between the expected and the achieved beampattern.

5.2. Calculating the Attenuation Coefficients

The goal of the presented step is to determine the attenuation weights of the beam-
former as the frequency increases. In this stage, all the rings are effective in the beamforming
process, so that the weight given to each ring is equal to one. As frequency increases, the
outer rings are attenuated until eventually only one ring contributes to the beamforming
process. This gradual elimination process is similar to sampling a piston with a smaller
radius for higher frequencies. As explained in Section 4, this approach keeps the value of
f R constant, resulting in constant beamwidth.

To find the frequency range in which the desired beamwidth remains constant, let us
define the lowest and highest frequencies fL and fH for which the beamwidth is attained for
a given CRA. These frequency bounds are determined by two weight combinations: when
all the rings are active, i.e., Hm( fL) = 1 ∀m ∈ [1, M], the lower bound of the frequency
range satisfies

βBW =
1
N

M

∑
m=1
Rm

(
fL,

θBW

2

)
. (24)
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When only the innermost ring is active, i.e., H1( fH) = 1 and Hm( fH) = 0 for m 6= 1,
the upper bound of the frequency range satisfies

βBW =
1

N1
R1

(
fH,

θBW

2

)
. (25)

To ensure that the beampattern is equal to 1 at boresight, we normalize it by the
number of active sensors in the beamforming.

Since (24) and (25) are difficult to solve analytically, we use the bisection method to
find the roots of the above equations in the range f ∈ [0, 10] kHz. The bisection method
yields fL = 1617 Hz and fH = 9405 Hz (we limit the maximal frequency to 8000 Hz). By
repeating this process for all M possible array radii constellations (i.e., when all rings are
active, the M− 1 inner rings are active, etc.), we find the M transition frequencies where
the outermost ring is fully attenuated. Given a frequency in the range f ∈ [ fL, fH], we can
design the beamformer to achieve θBW, as described next.

We define fm as the frequency obtaining the desired beamwidth in an m rings array
(where 0 < m < M). We denote the total number of sensors in an m rings CRA as

N̂m
4
= ∑m

k=1 Nk. Given a frequency in the transition band f ∈ [ fm+1, fm], the m inner rings
are active and the m + 1 ring is attenuated such that:

Hi( f ) =
{

1, i ∈ [1, m],
∈ (0, 1), i = m + 1.

(26)

To obtain the desired beamwidth, the exact weight value, applied on the outer m + 1
ring, satisfies

βBW =

m
∑

i=1
Ri

(
f , θBW

2

)
+ Hm+1( f )Rm+1

(
f , θBW

2

)
N̂m + Hm+1( f )Nm+1

. (27)

Some mathematical manipulations of (27) lead to the attenuation amplitude of the
outer ring:

Hm+1( f ) =
βBWN̂m −

m
∑

i=1
Ri

(
f , θBW

2

)
Rm+1

(
f , θBW

2

)
− βBWNm+1

. (28)

Hence, the weight value for the mth ring (m ∈ [1, M]) is given by

Hm( f ) =


1, f < fm,

βBW N̂m−1−
m−1
∑

i=1
Ri

(
f , θBW

2

)
Rm

(
f , θBW

2

)
−βBW Nm

, fm < f < fm−1,

0, fm−1 < f .

(29)

The array beampattern of the lowpass filters beamformer (designed according to (29))
and without them (i.e., the result of a simple summation) are shown in Figure 4. We see
that in the frequency range f > fL, the mainlobe width after applying the filters (plot (b))
remains constant, as opposed to the changing beamwidth shown in Figure 4a. However,
in the lower frequency range f < fL, the main lobe is wider as the frequency decreases in
both cases. The next step of the suggested beamformer aims to extend the frequency range
of the constant beamwidth. In the suggested approach, the array filters are designed as
bandpass filters, instead of lowpass filters, by utilizing the circular geometry.
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Figure 4. Beampatterns of the 6-ring CRA, (a) without constant-beamwidth beamformer weights,
and (b) after applying the constant-beamwidth beamformer weights.

5.3. Weights Adaptation in Low Frequencies

We aim to extend the frequency range for which the beampattern attains the desired
beamwidth. To do so, we examine the beampattern of a single ring constructed of discrete
sensor elements. As mentioned in Section 3, the beampattern of the discrete ring is
approximately equal to the continuous beampattern if a sufficient number of sensors
is chosen. Hence, the beampattern of the discrete ring is similar to the zero-order Bessel
function of the first kind, shown in (17).

In the first beamformer design step, we assumed that all the rings are active in
low frequencies, resulting in lowpass filters applied on the CRA. As a result, the lowest
frequency for which the desired beamwidth is attained depends on the piston beampattern
shown in (14). However, the beampattern of a single ring allows an extension of the low
frequency range. By assuming that a single ring with radius r is active, we find that the
beamwidth is satisfied if

2π f
c

r sin
(

θBW

2

)
≈ 1.41 . (30)

From (30), we note that at frequencies lower than fL, the beampattern can attain the
desired beamwidth if we design the array to hold a single active ring. Therefore, we add
the following step to the design process: At low frequencies, all the CRA weights are null
except for the outer ring. As the frequency increases, we gradually add the inner rings
while maintaining a constant beamwidth, until the frequency reaches the lower bound
f = fL. From that point, where all the rings are active in the beamformer, we repeat the
gradual elimination of the outer ring as described in the previous section. Having the
extended beamwidth approach, the new lower frequency bound is given by

βBW =
1

NM
RM

(
f new
L ,

θBW

2

)
. (31)

Equation (31) is satisfied for f new
L = 940 Hz, compared to the lower bound in the

original implementation which was fL = 1617 Hz. By designing the filters as bandpass
filters, we can extend the constant-beamwidth frequency range. To calculate the weights
for the inner rings in the extended range f ∈

[
f new
L , fL

]
, we repeat the bisection process

and find the transition frequency bins.
In the suggested design, we denote fm as the frequency where the M − m outer

rings are active in the beamformer and the mth inner ring is gradually enhanced. For
f ∈ [ fm+1, fm], the weight of the outer ring is Hi( f ) = 1 ∀i ∈ [m + 1, M] while the inner
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mth ring is added to the array such that Hm ∈ (0, 1). Since we aim to increase the constant-
beamwidth frequency range, the weight given to the inner ring satisfies

βBW =

M
∑

i=m+1
Ri

(
f , θBW

2

)
+ Hm( f )Rm

(
f , θBW

2

)
Ñm + Hm( f )Nm

, (32)

where Ñm = ∑M
k=m+1 Nk is the total number of sensors in the active outer rings. From (32),

the weight given to the inner ring in the lower frequency range is

Hm( f ) =
βBWÑm −

M
∑

i=m+1
Ri

(
f , θBW

2

)
Rm

(
f , θBW

2

)
− βBWNm

. (33)

The beampattern of the extended beamwidth CRA (EXT-CRA) compared to the un-
modified CRA in the low frequency range f ∈ [0, 3000] Hz is shown in Figure 5. The grad-
ual addition of the rings, starting from the outer ring inwards, provides better beamwidth
consistency in frequencies smaller than fL. For frequencies lower than 940 Hz (for which
only the outer ring is active), we cannot modify the beampattern, so the beamwidth is
wider as the frequency decreases.
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Figure 5. Beampatterns of the 6-ring CRA, (a) without lower frequencies beamwidth extension,
and (b) with the extension. The dashed line marks the amplitude in which the BW is defined

βBW
4
= −3 dB.

5.4. Directivity Index Improvement

In Section 5.3, the beamformer filters were reshaped to broaden the frequency range
that attains the desired beamwidth. We can, however, improve the beamformer’s perfor-
mance further by relaxing the beamwidth constraint at lower frequencies.

In the suggested step, the weights of the 2 outer rings are modified for frequencies
f ≤ f new

L to maximize the directivity index (DI). The DI represents the array gain in a
diffuse noise environment, and defined as [2]

D[h( f )]
4
=

∣∣∣h( f )Td( f , θ0, φ0)
∣∣∣2

h( f )TΓh( f )
, (34)

where the pseudo-coherence matrix Γ is given by

Γ
4
=

1
4π

∫ 2π

0

∫ π

0
d( f , θ, φ)d( f , θ, φ)T sin θdθdφ . (35)
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In order to improve the DI in low frequencies, we search for the optimal ratio between
the outermost ring and the second outermost ring weights under the constraint that the
beamwidth is wider than θBW. Hence, we can utilize the circular geometry in the lower
frequency range to gain higher DI. A similar approach applied on one-dimensional ULA
was suggested in [44]. The results of the proposed design compared to the previous stages
are presented in Section 6.

5.5. Time Domain Filter Implementation

The previous sections presented the desired beamformer response given specified
frequency characteristics. In this section, we determine the temporal FIR filter coefficients.
The design aims to approximate the resulted beamformer response to the ideal beamformer
described above.

The time-domain FIR filters are calculated from their frequency responses using the
signal processing toolbox of MATLAB, which minimizes the integrated squared error
defined as [45]:

ε2 =
∫ π

0
W(ω)

(
Ĥ(ω)− H(ω)

)2dω , (36)

where ω is the normalized frequency, W(ω) is the non-negative weighting function, Ĥ(ω)
is the actual filter response and H(ω) is the ideal response. The FIR filters are designed to
have the same number of coefficients to maintain a fixed delay. The number of coefficients
is chosen based on the mainbeam constraint [46]. The constraint ensures that the resulting
beampattern at θBW is approximately equal to βBW over a grid of frequencies in the range
fi ∈

[
f new
L , fH

]
:

εBW = ∑
i
|B[h( fi), θBW]− βBW|2∆ f . (37)

By iterating over a range of possible filter lengths, a 36-coefficient FIR filter per-ring
was designed. This length compromises between the mainbeam constraint and the short
delay requirement.

In addition, the beamformer should maintain a uniform gain over the whole frequency
range to prevent distortion of the input signal. Hence, following the FIR filtering, the
output results are summed and processed by an additional FIR normalization filter. The
normalization filter taps are calculated by summing the absolute values of the previously
calculated sensor filters and multiplied by the number of elements per-ring, as described
in [19].

The entire design process is summarized in Algorithm 1. Note that even though the
results shown in this section are for θBW = 30◦, the proposed beamformer design supports
significantly lower beamwidths. However, choosing a smaller beamwidth increases the
minimal frequency for which the desired beamwidth is achieved as can be observed
from (30). Moreover, a lower beamwidth may require more sensors on each ring, as
obtained from (22).

The weights matrix of the suggested beamformer is shown in Figure 6a. The y-axis
represents frequency bins used for designing the array filters, and the x-axis represents
the ring index (1–6), where index 1 is the innermost ring. Notice the gradual addition
of inner rings in the lower frequency range, followed by the elimination of outer rings
as the frequency increases. The colorbar indicates the attenuation weight value, ranging
from 0 to 1. The final beampattern of the suggested beamformer is presented in Figure 6b.
The −3 dB amplitude is marked by the dashed white lines, which defines the beamwidth.
We note that there is a slight degradation in the beamwidth consistency compared to the
ideal beampattern, yet overall, the desired beamwidth is attained over a wide range of
frequencies.
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Algorithm 1 Constant-Beamwidth CRA Beamformer Design

Calculate the attenuation weight:
for m ∈ [1, M] do

find fm by solving: βBW =
∑m

i=1Ri

(
fm , θBW

2

)
∑m

i=1 Ni
using the Bisection algorithm.

end for
Define fL = fM , fH = min( f1, 8000).
for f ∈ [ fL, fH] do

Calculate ring weight based on (29).
end for
Modify the beamformer to expand the constant-beamwidth frequency range:
for m ∈ [1, M] do

find fm by solving: βBW =
∑M

i=mRi

(
fm , θBW

2

)
∑M

i=m Ni
using the Bisection algorithm.

end for
Define f new

L = fM.
for f ∈

[
f new
L , fL

]
do

Compute the ring weight based on (33).
end for
Improve the DI in lower frequencies:
for f ∈

[
0, f new

L
]

do
let HM( f ) = 1, find HM−1( f ) s.t h( f )TΓh( f ) is minimal.

end for
Implement the desired filters in time domain.
Calculate the normalization factor for each frequency.
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Figure 6. Constant-beamwidth beamformer for 6-ring CRA implemented with temporal FIR filters.
(a) Weight values applied on the rings; (b) beampattern.

6. Performance Analysis

To evaluate the performance of the different beamformers discussed above, we use
the DI and WNG measures. We also measure the first sidelobe level of the beampatterns
and compare the beamwidth consistency throughout a range of frequencies and different
beamwidths.

These performance measures are used to compare the following beamformers:

1. Constant-beamwidth ULA, which is designed using the algorithm suggested in [19],
based on the symmetry around the center element. The length of the ULA equals
to the diameter of the CRA, i.e., L = 50 cm. The element spacing is d = 3.5 cm to
prevent spatial aliasing, and the ULA consists of 15 sensors;

2. A 6-ring CRA applied with the lowpass design (CRA-LP) (as described in Section 5.2);
3. A 6-ring CRA with the lower frequency beamwidth extension (EXT-CRA), suggested

in Section 5.3;
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4. The improved DI beamformer (EXT-CRA-I) in low frequencies by allowing a moderate
widening of the beampattern. This design modification is described in Section 5.4.

All the performance measures presented in the following section were calculated after
implementing each beamformer in the time domain, as described in Section 5.5. Note that
even though the number of sensor elements in the CRA is larger compared to the ULA,
the suggested CRA beamformer is composed of only 6 channels (equivalent to the number
of rings in the array). Moreover, the beamformer is designed to attain constant elevation
beamwidth with efficient application in a physical setup. As a result, the existing UCCA
beamformers (mentioned in the introduction) which require considerably more physical
equipment and computational resources are not presented in this section.

6.1. Beamwidth Consistency

The main objective of the proposed beamformer is to design a constant-beamwidth
beampattern over a wide range of frequencies. Figure 7 presents the beamwidth of each
beamformer as a function of frequency. Compared to the CRA-LP design, the adaptation
of the weights in lower frequency (EXT-CRA) results in smaller beamwidth in the frequen-
cies f ∈ [940, 1617] Hz. Furthermore, for frequencies lower than 940 Hz, the beamwidth
increases as the frequency decreases for all the examined beamformers. However, the
beamwidth after the suggested modification is smaller compared to CRA-LP and the ULA.
In addition, we note that the DI improvement in the EXT-CRA-I beamformer affects the
attained beamwidth compared to the EXT-CRA. Due to the time domain implementa-
tion, there is an inconsistency of the beamwidth in lower frequencies for the EXT-CRA
beamformer. The EXT-CRA-I incorporates an additional ring in the beamforming process,
which smoothes the ideal frequency response at lower frequencies. Hence, the frequency re-
sponses of the FIR filters are closer to the desired responses, which improves the beamwidth
consistency in the lower frequency range.
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Figure 7. Beamwidth θBW as a function of frequency for different beamformers: CRA-LP (solid line
with circle), EXT-CRA (dashed line with asterisks), EXT-CRA-I (dotted line with squares) and ULA
(dash-dotted line with triangles).

6.2. Directivity Index and White Noise Gain

The WNG is a measure of the array gain in a spatially uncorrelated noise environment,
which is a good indicator of the performance robustness to sensor imperfections. The WNG
is calculated as [2]

W [h( f )]) =

∣∣h( f )Td( f , θ0, φ0)
∣∣2

h( f )Th( f )
. (38)

Figure 8 shows the performances of the discussed beamformers in terms of DI and
WNG. Notice that the CRA geometry achieves higher DI compared to the ULA. In the
frequency range f > 1620 Hz, the average difference is 7 dB. Note the improvement in
terms of DI between CRA-LP and the EXT-CRA beamformer in the lower frequency range.
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Furthermore, the EXT-CRA-I design achieves higher DI around f = 846 Hz compared to
EXT-CRA, as desired.

The WNG comparison in Figure 8b shows that the WNG of the CRA is 10 dB higher
than the ULA for frequencies in the range f > 1620 Hz. Since the number of sensors in
the LP-CRA is significantly higher than the number used in the ULA, it is more robust
to incoherent noise due to electronic noise and errors in the sensor placing. Moreover,
despite the improvements in beamwidth consistency, the WNG was smaller than the WNG
achieved with the non-modified CRA beamformer. For frequencies f < fL, there is a 8 dB
difference between the CRA-LP beamformer and the EXT-CRA beamformer.
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Figure 8. Performance measures for CRA-LP (solid line with circle), EXT-CRA (dashed line with
asterisks), EXT-CRA-I (dotted line with squares) and ULA (dash-dotted line with triangles): (a) DI,
and (b) WNG, as a function of frequency.

6.3. Sidelobe Attenuation

The sidelobe attenuation can be helpful in attenuating signals from out-of-beamwidth
directions and improving the directivity index. Figure 9 shows the beampatterns of
the EXT-CRA-I and ULA beamformers calculated at different frequencies in the range
f ∈ [2000, 8000] Hz. In terms of sidelobe attenuation, we see that the first sidelobe of the
EXT-CRA-I beamformer is lower than the sidelobe of the ULA by 7 dB. We observe that
both arrays satisfy the beamwidth constraint.
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Figure 9. Beampatterns at different frequencies calculated for (a) EXT-CRA-I, and (b) ULA. The first
sidelobe level, the desired BW and the −3 dB amplitude are marked by a dash-point line, solid line
and dotted line, respectively.

6.4. Beamwidth Variability

An important characteristic of a constant-beamwidth beamformer is its ability to
support variable system specifications. Thus, in this section, we present the beamformers’
performance for different desired beamwidths. That is, the beamformers’ competence
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to attain various beamwidths (under a constant ring constellation and number of sen-
sors) is examined. Figure 10 shows beampatterns for θBW = [20◦, 30◦, 40◦, 50◦] of the
EXT-CRA beamformer. Note that under a similar geometry, the proposed beamformer
attains multiple specified beamwidths. Marked by dashed-lines, the beamwidth remains
consistent throughout a wide range of frequencies. As the required beamwidth is wider,
the minimal frequency for which it is attained decreases. The relation between the lower
bound frequency and the beamwidth was shown in (30). At lower frequencies, only the
outermost ring is active while the rest of the rings are fully attenuated. Consequently, the
radius is constant and the lower frequency bound is inversely dependent on the desired
beamwidth.
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Figure 10. Beampatterns of a 6-ring CRA with several desired beamwidth specifications. The
presented beampatterns are for θBW = [20◦, 30◦, 40◦, 50◦], ordered from left to right.

Moreover, as the beamwidth is wider, the sidelobe levels are higher in high frequen-
cies ( f > 6 kHz). The attenuation of outer rings occurs in lower frequencies for wider
beamwidths. As a result, as the frequency increases, the significant weight is applied on
the innermost ring. Since the ring beampattern shares the characteristics of the zero-order
Bessel function, the first sidelobe is closer as the frequency increases. Hence, as the inner
ring is more dominant for a given wider beamwidth, the sidelobes are emphasized in
higher frequencies.

The beamwidth and the sidelobe level affect the beamformers’ performance. The DI
and WNG for the different beamwidths are presented in Figure 11. As expected, the DI
increases as the beamwidth is narrower. Note that the maximal DI for each beamwidth is
obtained at lower frequencies for wider beamwidths. In addition, the decrease of the DI in
higher frequencies is shown for θBW = [30◦, 40◦, 50◦]. The degradation is caused due to the
sidelobe levels, as discussed above.
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Figure 11. (a) DI, and (b) WNG, as a function of frequency, for EXT-CRA with beamwidths: θBW = 20◦

(solid line), θBW = 30◦ (point-dashed line), θBW = 40◦ (dashed line) and θBW = 50◦ (dotted line).

By examining the WNG plot, we note that as the beamwidth is wider, the increase and
the following decrease of the WNG occurs at smaller frequencies. Since the beamwidth
is achieved at lower frequencies, the gradual addition of inner rings increases the WNG.
When all the rings in the CRA are active, the attenuation of the outer rings gradually
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reduces the WNG. As the number of sensors is equal per-ring, the WNG graphs present
equivalent trend with shifting along the frequency axis.

7. Conclusions

We have introduced beamformers for concentric ring arrays, designed to have a
constant beamwidth over a wide range of frequencies. The suggested beamformers are
designed to be incorporated in a multi-beam system of circular ceiling arrays. We de-
scribed the advantages of the discussed system and the specifications required from the
beamformer. The proposed design applies the same filter to all the elements on each ring.
This constraint lowers computational complexity in design and enables a physical setup
that requires fewer resources. In addition, we modified the lower frequency band by
reducing the number of active rings in that range. The suggested modification utilizes the
geometrical properties of the array to extend the frequency range for which a constant
beamwidth is achieved. We also added an improved directivity index design in frequencies
lower than the range limits, and implemented the beamformer in the time domain with
FIR filters. The proposed beamformer showed superior performance in terms of directivity
index, white noise gain, beamwidth consistency and sidelobe attenuation, compared to a
constant-beamwidth beamformer of the same order, designed for a ULA.

The beamformers in this work are designed for uniformly spaced rings. We also
assumed that the elimination of rings as the frequency changes is continuous (from the outer
ring inwards). However, it is possible that there is a way to utilize the Bessel properties
in an optimal way to design a constant-beamwidth beampattern while improving other
criteria. The variability in the sensor placements, the number of elements on the rings, and
the relative positions of different rings can be investigated in future studies.
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