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Abstract: The aim of this paper is to distinguish the vehicle detection and count the class number
in each classification from the inputs. We proposed the use of Fuzzy Guided Scale Choice (FGSC)-
based SSD deep neural network architecture for vehicle detection and class counting with parameter
optimization. The ‘FGSC’ blocks are integrated into the convolutional layers of the model, which
emphasize essential features while ignoring less important ones that are not significant for the
operation. We created the passing detection lines and class counting windows and connected them
with the proposed FGSC-SSD deep neural network model. The ‘FGSC’ blocks in the convolution layer
emphasize essential features and find out unnecessary features by using the scale choice method at the
training stage and eliminate that significant speedup of the model. In addition, FGSC blocks avoided
many unusable parameters in the saturation interval and improved the performance efficiency.
In addition, the Fuzzy Sigmoid Function (FSF) increases the activation interval through fuzzy
logic. While performing operations, the FGSC-SSD model reduces the computational complexity of
convolutional layers and their parameters. As a result, the model tested Frames Per Second (FPS)
on edge artificial intelligence (AI) and reached a real-time processing speed of 38.4 and an accuracy
rate of more than 94%. Therefore, this work might be considered an improvement to the traffic
monitoring approach by using edge AI applications.

Keywords: fuzzy guided scale choice; fuzzy sigmoid function; vehicle detection; fuzzy logic; vehicle
class counting; and intelligent AIoT vehicles application

1. Introduction

Vehicle detection, classification, counting, and monitoring all are regular tasks for the
traffic management authority. The volume of vehicles on the roads has an economic impact
on the transportation sector and the specific region around the country [1]. Geomagnetic
simulation, radio-frequency detection, or vision-based technology are all used to monitor
vehicles. Geomagnetic simulation [2] needs to be built beneath the road’s surface, and its
execution is quite complicated and expensive. The radio-frequency detection method [3,4]
has a good effect on results. In addition, the radio-frequency detection method is suitable
for vehicle counting and highway toll ticketing systems in favor of the e-Tag. However, the
approach requires an elevated bridge, which is not always accessible everywhere, making
it costly and inconvenient for the vendors. However, the image detection approach [5–7] is
simple to set up and maintain in any location. In addition, the image detection method also
can be directly combined with road surveillance cameras. Since there are many security
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cameras on highways, roads, and streets nowadays, image detection can quickly be related
to the existing system.

Computer vision systems extract the salient regions from the background of an input
image [8]. Many existing CNN-based salient object identification techniques aim to learn
feature vectors at various scales of picture portions, inferring the saliency of each part
in the image [9]. The necessity of many labeled images as data in the training stage is a
fundamental challenge in the existing deep saliency detection algorithms. The training
processes for pixel-wise ground-truth annotation techniques, on the other hand, are time-
consuming [10]. Salient Object Detection (SOD) methods expand the object detection,
segmentation, and annotating of the training data [11] without human efforts. Although
SOD methods provide saliency maps of object areas as output, detecting tiny objects and
achieving exact location remains problematic [12]. The SSD [13] model improves default
box output space, varied aspect ratios, feature map placement, and the modification of
default and bounding boxes to better fit object appearances. SSD has achieved significant
progress in detecting small-sized objects and increased localization accuracy with multiscale
feature maps and the default boxes method. We adopted the SSD model and extended it
with the fuzzy guided scale choice block.

Block sparse RSPCA [5] is useful for vehicle detection and counting. Using digital
signal processing-based image recognition technology, the total number of vehicles on
the road can be counted. The authors of [6] proposed vehicle counting with real-time
proceeding speeds, but their approach used the background subtraction method of low-
rank sparse to detect foreground moving objects and counting vehicles. We have considered
an AI-based method for vehicle object detection and class counting. Fast-SSD [7] is offered
for vehicle identification and counting, and it recognizes objects using six-scale feature
maps, resulting in good accuracy. However, Fast-SSD can operate only on one-way roads.
Furthermore, the SSD model is a sequential convolution approach, which causes many
weights to become zero, wasting time and resulting in low efficiency [14]. As a result,
we proposed the FGSC-SSD model for forward passing vehicle detection and backward
passing vehicle detection, separately, and class counting. The FGSC-SSD model solves
the efficient loss of multiple convolutional layers by utilizing learning weights to impose
important and irrelevant features. The operation choice mechanism skips the unimportant
characteristics that would have robust effects on the operation speed during the test stage.
The main contributions of this work are summarized as follows:

Sensors 2021, 21, x FOR PEER REVIEW 2 of 21 
 

 

roads, and streets nowadays, image detection can quickly be related to the existing sys-
tem. 

Computer vision systems extract the salient regions from the background of an in-
put image [8]. Many existing CNN-based salient object identification techniques aim to 
learn feature vectors at various scales of picture portions, inferring the saliency of each 
part in the image [9]. The necessity of many labeled images as data in the training stage is 
a fundamental challenge in the existing deep saliency detection algorithms. The training 
processes for pixel-wise ground-truth annotation techniques, on the other hand, are 
time-consuming [10]. Salient Object Detection (SOD) methods expand the object detec-
tion, segmentation, and annotating of the training data [11] without human efforts. Alt-
hough SOD methods provide saliency maps of object areas as output, detecting tiny ob-
jects and achieving exact location remains problematic [12]. The SSD [13] model improves 
default box output space, varied aspect ratios, feature map placement, and the modifica-
tion of default and bounding boxes to better fit object appearances. SSD has achieved 
significant progress in detecting small-sized objects and increased localization accuracy 
with multiscale feature maps and the default boxes method. We adopted the SSD model 
and extended it with the fuzzy guided scale choice block. 

Block sparse RSPCA [5] is useful for vehicle detection and counting. Using digital 
signal processing-based image recognition technology, the total number of vehicles on 
the road can be counted. The authors of [6] proposed vehicle counting with real-time 
proceeding speeds, but their approach used the background subtraction method of 
low-rank sparse to detect foreground moving objects and counting vehicles. We have 
considered an AI-based method for vehicle object detection and class counting. Fast-SSD 
[7] is offered for vehicle identification and counting, and it recognizes objects using 
six-scale feature maps, resulting in good accuracy. However, Fast-SSD can operate only 
on one-way roads. Furthermore, the SSD model is a sequential convolution approach, 
which causes many weights to become zero, wasting time and resulting in low efficiency 
[14]. As a result, we proposed the FGSC-SSD model for forward passing vehicle detec-
tion and backward passing vehicle detection, separately, and class counting. The 
FGSC-SSD model solves the efficient loss of multiple convolutional layers by utilizing 
learning weights to impose important and irrelevant features. The operation choice 
mechanism skips the unimportant characteristics that would have robust effects on the 
operation speed during the test stage. The main contributions of this work are summa-
rized as follows: 
 We set up the Region of Interest (ROI) for quick vehicle detection and class counting 

from forward passing and backward passing lanes.  
 Proposed FGSC blocks distinguish between significant and irrelevant features. Next, 

improved system operation speed by skipping unnecessary characteristics. 
 We have developed a fuzzy sigmoid function for controlling the activation interval 

and avoiding saturated output feature values. 
 In comparison to the SSD model, the proposed FGSC-SSD model has achieved higher 

speed under the same detection accuracy for the PASCAL VOC dataset and Bench-
mark BIT Vehicle dataset. 
The FGSC-SSD model-based vehicle detection and class counting system has been 

deployed on edge AI and in real-time. Its processed speed is about 38.4 FPS for real vid-
eo. The total accuracy rates achieved for cars, buses, and trucks was 95.1%, 92.3%, and 
90.9%, accordingly. 

2. Related Works 
Object detection is more challenging for visual attention, drawing the bounding box 

around each object of interest and assigning them a class. The deep learning (DL) algo-
rithm has made tremendous progress in object identification, demonstrating, classifica-
tion, higher feature extraction, and considerably improving detection. One of the most 

We set up the Region of Interest (ROI) for quick vehicle detection and class counting
from forward passing and backward passing lanes.

Sensors 2021, 21, x FOR PEER REVIEW 2 of 21 
 

 

roads, and streets nowadays, image detection can quickly be related to the existing sys-
tem. 

Computer vision systems extract the salient regions from the background of an in-
put image [8]. Many existing CNN-based salient object identification techniques aim to 
learn feature vectors at various scales of picture portions, inferring the saliency of each 
part in the image [9]. The necessity of many labeled images as data in the training stage is 
a fundamental challenge in the existing deep saliency detection algorithms. The training 
processes for pixel-wise ground-truth annotation techniques, on the other hand, are 
time-consuming [10]. Salient Object Detection (SOD) methods expand the object detec-
tion, segmentation, and annotating of the training data [11] without human efforts. Alt-
hough SOD methods provide saliency maps of object areas as output, detecting tiny ob-
jects and achieving exact location remains problematic [12]. The SSD [13] model improves 
default box output space, varied aspect ratios, feature map placement, and the modifica-
tion of default and bounding boxes to better fit object appearances. SSD has achieved 
significant progress in detecting small-sized objects and increased localization accuracy 
with multiscale feature maps and the default boxes method. We adopted the SSD model 
and extended it with the fuzzy guided scale choice block. 

Block sparse RSPCA [5] is useful for vehicle detection and counting. Using digital 
signal processing-based image recognition technology, the total number of vehicles on 
the road can be counted. The authors of [6] proposed vehicle counting with real-time 
proceeding speeds, but their approach used the background subtraction method of 
low-rank sparse to detect foreground moving objects and counting vehicles. We have 
considered an AI-based method for vehicle object detection and class counting. Fast-SSD 
[7] is offered for vehicle identification and counting, and it recognizes objects using 
six-scale feature maps, resulting in good accuracy. However, Fast-SSD can operate only 
on one-way roads. Furthermore, the SSD model is a sequential convolution approach, 
which causes many weights to become zero, wasting time and resulting in low efficiency 
[14]. As a result, we proposed the FGSC-SSD model for forward passing vehicle detec-
tion and backward passing vehicle detection, separately, and class counting. The 
FGSC-SSD model solves the efficient loss of multiple convolutional layers by utilizing 
learning weights to impose important and irrelevant features. The operation choice 
mechanism skips the unimportant characteristics that would have robust effects on the 
operation speed during the test stage. The main contributions of this work are summa-
rized as follows: 
 We set up the Region of Interest (ROI) for quick vehicle detection and class counting 

from forward passing and backward passing lanes.  
 Proposed FGSC blocks distinguish between significant and irrelevant features. Next, 

improved system operation speed by skipping unnecessary characteristics. 
 We have developed a fuzzy sigmoid function for controlling the activation interval 

and avoiding saturated output feature values. 
 In comparison to the SSD model, the proposed FGSC-SSD model has achieved higher 

speed under the same detection accuracy for the PASCAL VOC dataset and Bench-
mark BIT Vehicle dataset. 
The FGSC-SSD model-based vehicle detection and class counting system has been 

deployed on edge AI and in real-time. Its processed speed is about 38.4 FPS for real vid-
eo. The total accuracy rates achieved for cars, buses, and trucks was 95.1%, 92.3%, and 
90.9%, accordingly. 

2. Related Works 
Object detection is more challenging for visual attention, drawing the bounding box 

around each object of interest and assigning them a class. The deep learning (DL) algo-
rithm has made tremendous progress in object identification, demonstrating, classifica-
tion, higher feature extraction, and considerably improving detection. One of the most 

Proposed FGSC blocks distinguish between significant and irrelevant features. Next,
improved system operation speed by skipping unnecessary characteristics.

Sensors 2021, 21, x FOR PEER REVIEW 2 of 21 
 

 

roads, and streets nowadays, image detection can quickly be related to the existing sys-
tem. 

Computer vision systems extract the salient regions from the background of an in-
put image [8]. Many existing CNN-based salient object identification techniques aim to 
learn feature vectors at various scales of picture portions, inferring the saliency of each 
part in the image [9]. The necessity of many labeled images as data in the training stage is 
a fundamental challenge in the existing deep saliency detection algorithms. The training 
processes for pixel-wise ground-truth annotation techniques, on the other hand, are 
time-consuming [10]. Salient Object Detection (SOD) methods expand the object detec-
tion, segmentation, and annotating of the training data [11] without human efforts. Alt-
hough SOD methods provide saliency maps of object areas as output, detecting tiny ob-
jects and achieving exact location remains problematic [12]. The SSD [13] model improves 
default box output space, varied aspect ratios, feature map placement, and the modifica-
tion of default and bounding boxes to better fit object appearances. SSD has achieved 
significant progress in detecting small-sized objects and increased localization accuracy 
with multiscale feature maps and the default boxes method. We adopted the SSD model 
and extended it with the fuzzy guided scale choice block. 

Block sparse RSPCA [5] is useful for vehicle detection and counting. Using digital 
signal processing-based image recognition technology, the total number of vehicles on 
the road can be counted. The authors of [6] proposed vehicle counting with real-time 
proceeding speeds, but their approach used the background subtraction method of 
low-rank sparse to detect foreground moving objects and counting vehicles. We have 
considered an AI-based method for vehicle object detection and class counting. Fast-SSD 
[7] is offered for vehicle identification and counting, and it recognizes objects using 
six-scale feature maps, resulting in good accuracy. However, Fast-SSD can operate only 
on one-way roads. Furthermore, the SSD model is a sequential convolution approach, 
which causes many weights to become zero, wasting time and resulting in low efficiency 
[14]. As a result, we proposed the FGSC-SSD model for forward passing vehicle detec-
tion and backward passing vehicle detection, separately, and class counting. The 
FGSC-SSD model solves the efficient loss of multiple convolutional layers by utilizing 
learning weights to impose important and irrelevant features. The operation choice 
mechanism skips the unimportant characteristics that would have robust effects on the 
operation speed during the test stage. The main contributions of this work are summa-
rized as follows: 
 We set up the Region of Interest (ROI) for quick vehicle detection and class counting 

from forward passing and backward passing lanes.  
 Proposed FGSC blocks distinguish between significant and irrelevant features. Next, 

improved system operation speed by skipping unnecessary characteristics. 
 We have developed a fuzzy sigmoid function for controlling the activation interval 

and avoiding saturated output feature values. 
 In comparison to the SSD model, the proposed FGSC-SSD model has achieved higher 

speed under the same detection accuracy for the PASCAL VOC dataset and Bench-
mark BIT Vehicle dataset. 
The FGSC-SSD model-based vehicle detection and class counting system has been 

deployed on edge AI and in real-time. Its processed speed is about 38.4 FPS for real vid-
eo. The total accuracy rates achieved for cars, buses, and trucks was 95.1%, 92.3%, and 
90.9%, accordingly. 

2. Related Works 
Object detection is more challenging for visual attention, drawing the bounding box 

around each object of interest and assigning them a class. The deep learning (DL) algo-
rithm has made tremendous progress in object identification, demonstrating, classifica-
tion, higher feature extraction, and considerably improving detection. One of the most 

We have developed a fuzzy sigmoid function for controlling the activation interval
and avoiding saturated output feature values.

Sensors 2021, 21, x FOR PEER REVIEW 2 of 21 
 

 

roads, and streets nowadays, image detection can quickly be related to the existing sys-
tem. 

Computer vision systems extract the salient regions from the background of an in-
put image [8]. Many existing CNN-based salient object identification techniques aim to 
learn feature vectors at various scales of picture portions, inferring the saliency of each 
part in the image [9]. The necessity of many labeled images as data in the training stage is 
a fundamental challenge in the existing deep saliency detection algorithms. The training 
processes for pixel-wise ground-truth annotation techniques, on the other hand, are 
time-consuming [10]. Salient Object Detection (SOD) methods expand the object detec-
tion, segmentation, and annotating of the training data [11] without human efforts. Alt-
hough SOD methods provide saliency maps of object areas as output, detecting tiny ob-
jects and achieving exact location remains problematic [12]. The SSD [13] model improves 
default box output space, varied aspect ratios, feature map placement, and the modifica-
tion of default and bounding boxes to better fit object appearances. SSD has achieved 
significant progress in detecting small-sized objects and increased localization accuracy 
with multiscale feature maps and the default boxes method. We adopted the SSD model 
and extended it with the fuzzy guided scale choice block. 

Block sparse RSPCA [5] is useful for vehicle detection and counting. Using digital 
signal processing-based image recognition technology, the total number of vehicles on 
the road can be counted. The authors of [6] proposed vehicle counting with real-time 
proceeding speeds, but their approach used the background subtraction method of 
low-rank sparse to detect foreground moving objects and counting vehicles. We have 
considered an AI-based method for vehicle object detection and class counting. Fast-SSD 
[7] is offered for vehicle identification and counting, and it recognizes objects using 
six-scale feature maps, resulting in good accuracy. However, Fast-SSD can operate only 
on one-way roads. Furthermore, the SSD model is a sequential convolution approach, 
which causes many weights to become zero, wasting time and resulting in low efficiency 
[14]. As a result, we proposed the FGSC-SSD model for forward passing vehicle detec-
tion and backward passing vehicle detection, separately, and class counting. The 
FGSC-SSD model solves the efficient loss of multiple convolutional layers by utilizing 
learning weights to impose important and irrelevant features. The operation choice 
mechanism skips the unimportant characteristics that would have robust effects on the 
operation speed during the test stage. The main contributions of this work are summa-
rized as follows: 
 We set up the Region of Interest (ROI) for quick vehicle detection and class counting 

from forward passing and backward passing lanes.  
 Proposed FGSC blocks distinguish between significant and irrelevant features. Next, 

improved system operation speed by skipping unnecessary characteristics. 
 We have developed a fuzzy sigmoid function for controlling the activation interval 

and avoiding saturated output feature values. 
 In comparison to the SSD model, the proposed FGSC-SSD model has achieved higher 

speed under the same detection accuracy for the PASCAL VOC dataset and Bench-
mark BIT Vehicle dataset. 
The FGSC-SSD model-based vehicle detection and class counting system has been 

deployed on edge AI and in real-time. Its processed speed is about 38.4 FPS for real vid-
eo. The total accuracy rates achieved for cars, buses, and trucks was 95.1%, 92.3%, and 
90.9%, accordingly. 

2. Related Works 
Object detection is more challenging for visual attention, drawing the bounding box 

around each object of interest and assigning them a class. The deep learning (DL) algo-
rithm has made tremendous progress in object identification, demonstrating, classifica-
tion, higher feature extraction, and considerably improving detection. One of the most 

In comparison to the SSD model, the proposed FGSC-SSD model has achieved higher
speed under the same detection accuracy for the PASCAL VOC dataset and Bench-
mark BIT Vehicle dataset.

The FGSC-SSD model-based vehicle detection and class counting system has been
deployed on edge AI and in real-time. Its processed speed is about 38.4 FPS for real
video. The total accuracy rates achieved for cars, buses, and trucks was 95.1%, 92.3%,
and 90.9%, accordingly.

2. Related Works

Object detection is more challenging for visual attention, drawing the bounding box
around each object of interest and assigning them a class. The deep learning (DL) algorithm
has made tremendous progress in object identification, demonstrating, classification, higher
feature extraction, and considerably improving detection. One of the most successful
applications is the convolutional neural network (CNN) AlexNet [15], which outperformed
prior methods.
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In the research of object tracking, the two-stage object detection deep neural network
models are SPPNet [16], R-CNN [17], Fast R-CNN [18], Faster R-CNN [19], Mask R-
CNN [20], ME R-CNN [21], MFR-CNN [22], SWAE [23], and A CoupleNet [24], which all
improved performance. The models of the two stages need a Region Proposal Network
(RPN) to extract bounding boxes. Those bounding boxes are like ground-truth objects
which can precisely locate the object position with good performance. While two-stage
solves the instance segmentation problem, it also adds to the network’s processing cost
and computational complexity.

For considering the speed performance of the deep learning algorithm, some one-
stage methods such as, for example, YOLO [25], SSD [26], Retina-Net [27], SqueezeDet [28].
CornerNet [29], MSA-DNN [30], Image base [31], and DF-SSD [32], represent the object
detection deep neural network models. Accuracy and speed are frequently incompatible,
as can be seen when the accuracy of feature descriptors is significantly lower than that
of a DL technique. The one-stage eliminates the RPN and ROI pooling, so the one-stage
approach is faster than two-stage.

Table 1 depicts the performance of the object detection deep neural network models
ME R-CNN, MFR-CNN, A-Couple-Net, and DF-SSD on the GPU platform, with lower
FPS. The MFR-CNN projected to combine the multi-scale features and the global features
improved the accuracy, but the lowest FPS was only 6.9. The DF-SSD tried to combine the
shallow and deep characteristics to solve the SSD problem. The DF-SSD model achieved
good accuracy for small objects, but the FPS was still low because of the lack of relation
between shallow and deep features. The MSA-DNN proposed to combine MSA-DNN and
MSAM and extract more features, which improved the accuracy and the FPS value, but
those models cannot achieve real-time operation in edge AI. For the Real-Time application,
the GPU performance of the SSD and YOLOv4 model’s FPS is high than others for various
vehicle detections, but it is hard to achieve real-time operation on an edge AI platform.

Table 1. Various Object Detection Model Performance.

Model Platform FPS Real-Time

ME R-CNN GPU 13.3 No
MFR-CNN GPU 6.9 No

A-Couple-Net GPU 9.5 No
DF-SSD GPU 11.6 No
YOLOv4 Edge AI 13.6 No

SSD Edge AI 16.9 No

The SSD model adds several feature layers at the end of a base network which
predicts offsets in default boxes of different scales and aspect ratios and their associated
confidences. The SSD model has multi-scale feature map technology for object detection,
whereas the YOLO model has a single-scale feature map. In addition, the YOLO model has
been developed by intermediate fully connected layers, whereas the SSD model employs
coevolutionary filters for each feature map location. The SSD model detects objects using
convolutional default boxes from multiple feature maps and matching strategies. In our
study, we adopted the SSD model and extended this idea by applying the FGSC block
architecture with the fuzzy sigmoid function to significantly increase the quality of the
prediction and performance with an even smaller number of parameters.

3. Proposed Vehicle Detection and Class Counting System

The vehicle detection and class counting intelligent technique flow chart diagram in
Figure 1 shows the working process in three phases. At first, the ROI setup can locate the
position of the forward passing and backward passing objects through the object detection
window from the road video as an input. The second step is the proposed FGSC-SSD
deep neural network model to identify the vehicles from the current frame. The objects
are categories as cars, buses, and trucks. Lastly, the vehicle class is counted based on
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ROI windows setup and working principle. If the input video does not end, the process
becomes repeated, following the vehicle detection and class counting flow chart. If it ends,
the steps reach the end and show the result.
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3.1. ROI Setup

Figure 2 shows the ROI set up for the object detection window. The red and pink color
frames represent the forward passing detection line and class counting window. Similarly,
lime and dark green color frames are the backward passing detection line and the class
counting window, correspondingly. Research [33] on automatic traffic counting systems
showed the two-lane road has good performance on vehicle class counting.
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The passing detection lines are responsible for checking whether the vehicles pass
through on the detection lines or not. Consistently, the class counting windows are ac-
countable for vehicle class counting. In both cases, an object passing and the class counting
windows are placed behind the passing detection line.

3.2. FGSC-SSD Model Architecture

The continuous convolution operations of deep neural networks can approach the
weight values to become zero, which causes many parameters to be invalid and inefficient
for the operations. Therefore, the authors proposed the FGSC-SSD model architecture.
Figure 3 demonstrated the proposed FGSC-SSD deep neural network model’s architecture.
The model belongs to eleven convolutional layers (Conv1 to Conv11), five FGSC blocks
(FGSC1 to FGSC5), and six convolutional blocks (Conv12 to Conv17). Each layer and block
consist of a different number of channels from input to output levels.
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Figure 3. The proposed FGSC-SSD model architecture.

The five FGSC blocks have been incorporated into the convolutional layers of Conv3 to
Conv9 in the FGSC-SSD model to reduce the performance loss by segmenting the essential
characteristics. However, we did not integrate any FGSC blocks in between the input layer
and Conv3 layer because shallow features belong to these layers. All initial features are
significant for the experiment. Therefore, we cannot skip any characteristics during the
initial operation for the first three convolutional layers. These FGSC blocks ignore the
insignificant elements from the process and increase the detection speed at the test phase.
Alternatively, the Conv9 to Conv11 layers are the deep convolutional layers and have fewer
features that are important for the performance. Therefore, we have not added any FGSC
blocks in the deep convolutional layers. The operational function of FGSC blocks depends
on the global average pooling, fully connected, fuzzy sigmoid function, and scale choice
layer. The design of the FGSC block enhances the convolutional operations and reduces
the computational complexity.

We used another six convolutional blocks (Conv12–Convo17) for extracting the default
boxes which predict the objects in the detection layer. Hard Negative Mining (HNM) was
employed to control the positive and negative sample ratios at 3:1 and avoid the weights
being biased toward negative samples with the features varying input sizes. The default
box is used with the Ground Truth (GT) box to form the Intersection over Union (IoU). The
IoU value for positive samples is less than 0.5, and the background probability is less than
0.3, indicating that the sample is a negative sample that can suppress the circumstance of
the negative instances. The object location loss function combines convolutional network
prediction and default frame prediction to calculate the object location loss of the GT frame
corresponding to the positive sample. The combination of x and y coordinates, width, and
height are shown in the results at the detection line.
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3.3. FGSC Block Operation Function

The FGSC block architecture consists of the global intensity, fuzzy guided, and scale
choice; the authors propose the global intensity function by the global average pooling [34],
and the fuzzy guided function with the fully connected and fuzzy sigmoid. The fully
connected layer combines global average pooling and fuzzy sigmoid function, which is
shown in Figure 4. Therein, I denotes the block input and H, W, and C depict the input
feature maps’ height, width, and channel, respectively. The input feature maps I pass
through the fuzzy guided scale functions. The fuzzy guided is fully connected with global
intensity and the results of the fuzzy guided function, and I pass through the scale choice
layer. The scale choice layer ensures optimized Y output selection for the blocks. The input
channel number C changes into the C* channel of the output feature map.
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3.3.1. Global Intensity Function

The global average pooling extracts features for the global intensity function and is
calculated through the following Equation (1). The global average pooling output features
represent by Z = {z1, z2, . . . , zc}. The FGSC block input feature I = {Ic (i,j), c = 1, . . . , C}
where C is the channel number, H is the height, and W is the width of Ic feature maps. The
summation of input channel features Ic divided by the product of height and width values,
then achieved as the result of the global average value.

zc =
1

H ×W

H

∑
i

W

∑
j

Ic(i, j). c = 1, 2, . . . , C (1)

3.3.2. Fuzzy Guided

The fuzzy guide response to achieve the scale values is S. The fully connected and
fuzzy sigmoid functions are proposed by the authors to obtain the output value of S. These
scale values execute the important and unimportant features from block input I. The fuzzy
sigmoid function depicts the fuzzy guide result, and we calculated the fuzzy guide scale
value by the following Equation (2).

S = F_Sigmoid( f c(W1, Z)) (2)

• Fully Connected

Each channel of the global intensity and fuzzy sigmoid function combined by fully
connected in the fuzzy guide operation for learning the average value of Z. The weights
and biases of the fully connected Equation (3) are W1 ∈ R

C
r ×C, r; to control the memory

size and calculation quantity, r is set to 2 in this study and bias ∈ RC.

K = f c(W1, Z) = Z ∗W1 + bias (3)

• Fuzzy Sigmoid Function

We incorporated the α parameter into the fuzzy sigmoid function that is shown in
Equation (4), where K = {Kmin, k2, k3 . . . . Kmax} is the output value of the fully connect.
The fully connected output’s maximum and minimum values represent the α parameters.
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The fuzzy range is defined by the highest and lowest fully connect output values. Each
FGSC block achieved output values differently [35]. The fuzzy logic has better adaptability
especially suitable for nonlinear function, so the authors announced the fuzzy logic to
determine the α parameter of the fuzzy sigmoid function.

S = F_Sigmoid(K) = 1/
(

1 + e−αK
)

(4)

In addition, the fuzzy sigmoid function represents classification decisions explicitly in
the form of fuzzy rules. This research has developed a new dimension of object detection
with the support of the fuzzy sigmoid function. The fuzzy sigmoid function depicts the
simple technology and the shortcomings to control the activation interval in the sigmoid
function and uses fuzzy logic to select the best parameter.

In this part, we explained why to add α parameters into the fuzzy sigmoid function.
The FGSC blocks training algorithm automatically deprives the fuzzy set parameters for
the “fuzzy rules” in the fuzzy sigmoid function. The FGSC-SSD deep neural network-
based object detection and class counting rules obtained, in symbolic form, facilitate the
understanding. The maximum and minimum values are 20.539 and −20.310 for the FGSC
block no. 2. Figure 5a shows the sigmoid function for α = 1, and the upper and lower
limits are 6 and −6;alternatively, Figure 5b represents the fuzzy sigmoid function set the α
parameter to 0.09 so its upper and lower limits become 60 and −60. Then the active area is
between 20.539 and−20.310 will be in the saturation zone, so the gradient does not become
‘0′, and it can effectively update the weight values. The fuzzy sigmoid function uses the α

value to control the activation interval and used fuzzy logic to find the appropriate α for
effectively activating the parameters to improve performance.
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1. The Fuzzy Sets for α

The F_Sigmoid function has an asymmetric relationship between Ki
max and Ki

min
values. To define the fuzzy sets, the maximum and minimum values of fuzzy sigmoid
are obtained by fully connected output in the FGSC block. The Ki

max and Ki
min values

are substitute into the following Equations (5)–(7) to get the non-isometric triangular
fuzzy sets [36]. The ‘Ãi

αmid
’, ‘Ãi

αtop ’, and ‘Ãi
αbottom

’ are defined by the center, maximum, and
minimum values which are obtained through a fuzzy set. After training the PASCAL
VOC data set [37], the F_Sigmoid function obtained 13 non-isometric triangular fuzzy sets
Ãα =

{
Ãi

α, i = 1, . . . , 13
}

that are shown in Figure 6.

Ãi
αmid

= ln
(

1
4

)
/

(∣∣Ki
max
∣∣+ ∣∣Ki

min

∣∣
2

)
(5)

Ãi
αtop = ln

(
1
9

)
/

(∣∣Ki
max
∣∣+ ∣∣Ki

min

∣∣
2

)
(6)
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Ãi
αbottom

= ln
(

3
7

)
/

(∣∣Ki
max
∣∣+ ∣∣Ki

min

∣∣
2

)
(7)
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For example, after training the FGSC, block 1 has Ki=1
max = 48.4701, Ki=1

min =−62.0113.
Those values are placed into Equations (5)–(7) and obtain the fuzzy set ‘fzy2′ mentioned in
Figure 6, where Ãi=1

αmid
= 0.0251, Ãi=1

αtop = 0.0398 and Ãi=1
αb.tom

= 0.0153.

2. The Fuzzy Sets for Kmax and Kmin

The following Figures 7 and 8 are the non-isometric triangular maximum and mini-
mum fuzzy sets ÃKmax =

{
Ãi

Kmax
, i = 1, . . . , 13

}
and ÃKmin =

{
Ãi

Kmin
, i = 1, . . . , 13

}
for the

Kmax and, Kmin values, respectively. According to the previous Ãi
αmid

value, the authors
attempted to construct the Kmax and, Kmin fuzzy sets based on the F_Sigmoid function. The
‘Ãi

Kmax_mid
’ is the absolute average value for Ki

max and Ki
min that is achieved by the following

Equation (8). The ‘Ãi
Kmax_top

’ is the top value of fuzzy set for ‘ÃKmax ’ which is calculated

by the Equation (9). The ‘Ãi
Kmax_b.tom

’ is the bottom value for the fuzzy set of ‘ÃKmax ’ that is
calculated through Equation (10).

Ã
i
Kmax_mid

=

∣∣Ki
max
∣∣+ ∣∣Ki

min

∣∣
2

(8)

Ã
i
Kmax_top = − ln

(
1
9

)
/αi

mid (9)

Ãi
Kmax_bottom

= − ln
(

3
7

)
/αi

mid (10)
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Similarly, in the FGSC block 1, the Ki=1
max and Ki=1

min values were substituted into
Equations (8)–(10) and obtained a maximum fuzzy set “b12” which is mentioned in Figure 7.

The fuzzy set center value is ‘Ãi
Kmax_mid

’ = 55.2407, the top value ‘ Ã
i
Kmax_top ’ = 87.5388, and

the bottom value ‘Ãi
Kmax_b.tom

’ = 33.7568, respectively.
Next, using Equations (11)–(13), a minimum fuzzy set ‘s12′ was obtained which is men-

tioned in Figure 8, where the fuzzy set-top value is ‘ Ã
i
Kmin_top

’ = −33.7568, the bottom value

‘Ãi
Kmin_b.tom

’ = −87.5388 and the center absolute value ‘Ãi
Kmin_mid

’ = 55.2407, respectively.
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The symmetric relationship between maximum and minimum fuzzy sets of F_Sigmoid
function is shown through Equations (11)–(13). The ‘Ãi

Kmin_mid
’ is the center position of the

fuzzy set ‘ÃKmin ’, ‘Ãi
Kmin_top

’ is the top position of the fuzzy set, and ‘ÃKmin ’ and ‘Ãi
Kmin_b.tom

’

is the bottom position for the fuzzy set of ‘ÃKmin ’, respectively.

Ãi
Kmin_mid

= −Ãi
Kmax_mid

(11)

Ãi
Kmin_top

= −Ãi
Kmax_b.tom

(12)

Ãi
Kmin_b.tom

= −Ãi
Kmax_top

(13)

3. The Fuzzy Logic Processing

A fuzzy set assigns a membership grade, which selects an integer number from the
interval of (0, 1). From the context of fuzzy sets framework emerges fuzzy logic which
may address computational perception and cognition-related information: information
that is unclear, imprecise, incomplete, or without sharp boundaries. In the development of
intelligence, decision-making, identification, pattern recognition, optimization, and control
systems, approaches based on fuzzy logic are available [38]. We have utilized fuzzy logic
to select the best parameters during the controlling fuzzy sigmoid function activation
interval. The fuzzy logic inference block diagram is shown in Figure 9, which consists of
Fuzzification, Rulesets, Inference, and Defuzzification. The non-isometric triangular fuzzy
sets are used to signify the relationship between input and output of fuzzy logic inference.
Fuzzification, Inference, Rulesets, and Defuzzification are the four separate functions of the
inference process, where the Kmax and Kmin are the inputs of fuzzification. The fuzzification
mainly classifies the input values for corresponding fuzzy sets. The rule sets store all the
regulations that are obtained by experiment. The inference combines the fuzzy sets and
rules from Table 2 to determine the fuzzy α value. Then, defuzzification converts the fuzzy
α value to the crisp α value (αcrisp) for the fuzzy sigmoid function.
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Table 2. Rulesets. The diagonal symmetric relationship is highlighted in bold.

~
A

b
Kmax b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13~

A
s
Kmin

s1 fzy13 fzy12 fzy11 fzy10 fzy9 fzy8 fzy7 fzy6 fzy5 fzy4 fzy3 fzy2 fzy1
s2 fzy12 fzy12 fzy11 fzy10 fzy9 fzy8 fzy7 fzy6 fzy5 fzy4 fzy3 fzy2 fzy1
s3 fzy11 fzy11 fzy11 fzy10 fzy9 fzy8 fzy7 fzy6 fzy5 fzy4 fzy3 fzy2 fzy1
s4 fzy10 fzy10 fzy10 fzy10 fzy9 fzy8 fzy7 fzy6 fzy5 fzy4 fzy3 fzy2 fzy1
s5 fzy9 fzy9 fzy9 fzy9 fzy9 fzy8 fzy7 fzy6 fzy5 fzy4 fzy3 fzy2 fzy1
s6 fzy8 fzy8 fzy8 fzy8 fzy8 fzy8 fzy7 fzy6 fzy5 fzy4 fzy3 fzy2 fzy1
s7 fzy7 fzy7 fzy7 fzy7 fzy7 fzy7 fzy7 fzy6 fzy5 fzy4 fzy3 fzy2 fzy1
s8 fzy6 fzy6 fzy6 fzy6 fzy6 fzy6 fzy6 fzy6 fzy5 fzy4 fzy3 fzy2 fzy1
s9 fzy5 fzy5 fzy5 fzy5 fzy5 fzy5 fzy5 fzy5 fzy5 fzy4 fzy3 fzy2 fzy1

s10 fzy4 fzy4 fzy4 fzy4 fzy4 fzy4 fzy4 fzy4 fzy4 fzy4 fzy3 fzy2 fzy1
s11 fzy3 fzy3 fzy3 fzy3 fzy3 fzy3 fzy3 fzy3 fzy3 fzy3 fzy3 fzy2 fzy1
s12 fzy2 fzy2 fzy2 fzy2 fzy2 fzy2 fzy2 fzy2 fzy2 fzy2 fzy2 fzy2 fzy1
s13 fzy1 fzy1 fzy1 fzy1 fzy1 fzy1 fzy1 fzy1 fzy1 fzy1 fzy1 fzy1 fzy1
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4. Fuzzification

The fuzzification mainly processes fuzzy information. Firstly, the fuzzy sets are
defined for the inputs of Kmax and Kmin. The fuzzy information is calculated through
membership grade [39], and the membership grade of x is denoted by µ(x). In addition,
the membership grade for Kmax and Kmin in fuzzy logic which can be calculated by the
functional Equations of (14) and (15). The membership grade of fuzzy sets for the Kmax
is denoted by the µÃi

Kmax
(Kmax) and Kmin is denoted by µÃi

Kmin
(Kmin). Ã = Fuzzy set, and

µÃ(x) = Membership grade.

µÃi
Kmax

(Kmax)=

{ Ãi
Kmax_top

−Kmax

Ãi
Kmax_top

−Ãi
Kmax_mid

Ãi
Kmax_mid

< Kmax ≤ Ãi
Kmax_top

1 Ãi
Kmax_mid

= Kmax
Kmax−Ãi

Kmax_b.tom
Ãi

Kmax_mid
−Ãi

Kmax_b.tom

Ãi
Kmax_b.tom

≤ Kmax < Ãi
Kmax_mid

(14)

µÃi
Kmin

(Kmin)=

{ Kmin−Ãi
Kmin_top

Ãi
Kmin_mid

−Ãi
Kmin_top

Ãi
Kmin_mid

< Kmin ≤ Ãi
Kmin_top

1 Ãi
Kmin_mid

= Kmin
Ãi

Kmin_b.tom
−Kmin

Ãi
Kmin_b.tom

−Ãi
Kmin_mid

Ãi
Kmin_b.tom

≤ Kmin < Ãi
Kmin_mid

(15)

If the maximum fully connected value of Kmax = 15.108 and minimum fully connected
value of Kmin = −12.153, then Figure 10 depicts the membership grade calculation.
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5. Rulesets

The rules of fuzzy sets in Equation (16) have been customized by the experimental
results then stored at inference. For the proceeding, “If” expresses antecedent and “Then”
represents the consequent, whereas ‘bi’ and ‘sj’ are the sequences of maximum and the
minimum fuzzy sets. The ‘Ãbi

Kmax
’ are the 13 maximum fuzzy sets represented by ‘b1 to b13′

and ‘Ãsi
Kmin

’ are the 13 minimum fuzzy sets demonstrated by ‘s1 to s13′, which represent a
total of 169 rules that are shown in Table 2. The fuzzy set column ‘b13′ and the row ‘s13′

belongs to all ‘fzy1′ fuzzy logic rules. On the contrary, the fuzzy set ‘b1′ and ‘s1′ only belong
to ‘fzy13′ logic. The rules table expresses a diagonal symmetric relationship between ‘Ãbi

Kmax
’

maximum fuzzy sets and ‘Ãsj
Kmin

’ minimum fuzzy sets.

Rule: If Kmax belongs to Ãbi
Kmax

and Kmin belongs to Ãsj
Kmin

then α_crips belong to Ãbi,sj
α .

i, j = 1, 2, . . . . . . , 13 (16)

6. Inference Process

The Inference combines the fuzzification outputs and rules to find the fuzzy α value.
The Momani inference method [39] has been followed to obtain the antecedent and mem-
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bership grade by the following Equations (17) and (18). The maximum and minimum
membership grades are denoted by (µbi

AKmax
(Kmax) and µ

sj
AKmin

(Kmin)). The two inputs do

‘min’ value to obtain the result of the antecedent (C̃bi, si), then C̃bi,sj do min with µ
bi,sj
α (α)

to get the membership grade of the Ãi
α on the ith rule. Finally, process the max value

with membership grade of the Ãbi,sj
α of all rules to obtain µÃa

(α). Figure 11 illustrates the
inference process and rules calculation.
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Rule 1 : I f Kmax is b10 and Kmin is s10 then α is fzy4
Rule 2 : I f Kmax is b 11 and Kmin is s10 then α is fzy3

C̃b,s = min[µÃs
Kmax

(Kmax), µÃb
Kmin

(Kmin)] (17)

µÃa
(α) = max[min(C̃s,b, µÃs,b

α
(α))] (18)

7. Defuzzification

Defuzzification is the conversion procedure of a fuzzy set to transform a fuzzy output
into a single crisp value. The defuzzification value in the fuzzy logic controller takes action
to control the process. This approach offers a crisp value based on the center of gravity for
the fuzzy set. There are several sub-areas inside of the total membership function employed
for the combined control operation. The area and center of gravity or center of each sub-
area are computed, and all these sub-areas are summed to identify the defuzzification
value of a discrete fuzzy set. The inference comes with fuzzy sets that need to find the
usable value through defuzzification. We have employed the method of the center of
gravity for defuzzification by using Equation (19) where α_crisp is placed into α value
for the fuzzy sigmoid function. αcrisp is the fuzzy sigmoid parameter, and µAα(α) is the
total membership grades of αcrisp. The defuzzification process and calculation shown in
Figure 12.

αcrisp = ∑ α·µÃa
(α)/ ∑ µÃa

(α) (19)
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3.3.3. Scale Choice

We proposed a Scale Choice (SC) layer that has training and testing labels, such as the
training label shown in Figure 13. The I = {Ic, c= 1, . . . . . . ., C} is the inputs of the FGSC block,
S = {Sc, c = 1, . . . ., C} is the outputs of F_Sigmoid and W = {Wc, c = 1, . . . , C, 0 ≤Wc ≤ 1} is
the weights of the scale choice. The SC is responsible for recognizing the important channel
feature of IC. The main operation of SC layers is the input feature IC of each layer which
is multiplied by the scale value, and then multiplied by the weight value WC. The WC
learned the importance of each channel for the entire data set. If the WC = 1, it means this
channel feature is most important for the entire data set. When the WC = 0, it means this
channel feature is unimportant for the operation. These operations imposed important
channel features through weights learning. The authors distinguished the importance of
the operation choice mechanism that can skip the unimportant features on the test stage.
The output of the scale choice layer is Y = {Yc*, c* = 1, . . . ., C*}. The C* is the remaining
channel after the operation choice mechanism.
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• Operation Choice Mechanism

The scale choice recognizes the significant channel characteristics from the input
channel to acquire the activation function scale values. If the WC value is larger than the
Jump-threshold (thr) value after training the Scale Choice layer, the feature values are
multiplied by SC and WC. The ‘thr’ level was set at 0.2 for this study. The following is the
Algorithm 1 for the Scale Choice layer operation mechanism.

Otherwise, the small WC stands for a lower feature value that has little effect on the
following up to skip convolution.



Sensors 2021, 21, 7399 13 of 21

Algorithm 1 Operation choice mechanism.

Input : SAC Block input I = {Ic, c = 1, . . . , C},
F_Sigmoid output S = {sc, c = 1, . . . , C},

Scale Choice layer weights W = {wc, c = 1, . . . , C, 0 ≤ wC ≤ 1}
Output: bth SAC Block output Yc∗b
1 Set thr = 0.2
2 Set c*

b = 0
3 for c = 1: C do
4 if wc > thr do
5 Yc*

b
= Ic × sc ×wc

6 c*
b++

7 end
end

• Effects of Different Jump-threshold

Table 3 shows the test results of the various Jump-thresholds for PASCAL VOC
datasets. The results are varying on the different jump thresholds. The result depicts that
the FPS is low when the Jump-threshold is 0.08, and the accuracy is inadequate when
the Jump-threshold is 0.3, so an appropriate threshold must look for better performance.
Contrary to Jump-threshold 0.1 and 0.3, if the speed increases, the accuracy decreases,
and vice versa. If the accuracy increases, the speed decreases. In this situation, the jump-
threshold 0.2 has good speed and accuracy. Because we tend to increase the speed, the
FGSC-SSD jump threshold is 0.2.

Table 3. The Result of the Different Jump-threshold. Better results are highlighted in Bold.

Model Trainset Jump-Threshold mAP FPS (PC) FPS (Xavier)

FGSC-SSD

07 + 12 0.08 74.0 60.6 19.1
07 + 12 0.1 74.1 63.4 19.6
07 + 12 0.2 74.8 64.9 21.7
07 + 12 0.3 73.2 65.2 20.4

• FGSC Block Weights distribution

We analyzed the weights of each FGSC block at the different scale choice layers for
the PASCAL VOC datasets. Figures 14–18 represents the training weights distribution
diagram. The weight values for FGSC1- Scale Choice rarely approached the 0, so the
features of the FGSC1 block are most important. To have a clear understanding of the
weight distribution of different layers, we set the jump threshold as 0.2 and make the
figures on the percentage of skipping weight parameters in different scale choice layers.
Table 4 shows the information of average weights and eliminating parameters for all FGSC
blocks. The FGSC block 1 leaped 6.2% parameters, and the value of the average weight is
0.49. The FGSC block 5 skipped the 54% parameter, and the average weight value is 0.30.
According to test results, the deep block leaps the higher percentage of the parameters and
the lower percentage of the average weight value.
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Figure 15. FGSC2-Scale choice layer weight.

Figure 16. FGSC3-Scale choice layer weight.

Figure 17. FGSC4-Scale choice layer weight.
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Table 4. The Information of FGSC Block Parameters.

Block The Ratio of Skipped Parameters

FGSC1 16/256 (6.2%)
FGSC2 258/512 (50.4%)
FGSC3 294/512 (57.4%)
FGSC4 541/1024 (53%)
FGSC5 276/512 (54%)

4. Vehicle Detection and Class Counting Process
4.1. Vehicle Detection Process

The operational function of vehicle detection and class counting overall process is
illustrated in Figure 19. We set up passing detection lines and class counting windows
separately for smooth and quick operation. The passing detection line detects whether
the vehicle passes the line or not. If it passes the detection lines and reaches the center
point of the class counting window, then the vehicle will be counted in a specific class.
The passing detection lines were developed by a Gaussian Mixture Model (GMM) [40],
which identifies whether the vehicle arrived and passed the detection line or not. We used
background GMM color to build the passing detection line background pixels. When the
car passed through the detection line, the pixel’s color changed to the foreground GMM
color. In addition, the background pixels set are 0 and the foreground pixels set are 1 so
when the detection line GMM color pixels become 1 then the model considered the vehicle
as passing the line. After passing the detection lines, when the vehicle reached the center
of the class counting window then the algorithm counted the vehicles in particular classes.
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In Figure 19, the forward passing detection line’s color is still black because there is no
vehicle, but the backward passing detection line’s color has changed to the foreground
pixels’ color while a vehicle arrived at the detection line and vehicle class was counted.
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4.2. Detection Result at Different Weather Condition

To ensure safety issues and robust accurate object detection, the ability to recognize
the object in different weather conditions is crucial for the deep learning algorithm. Under
challenging weather, particularly rainy days, the performance of object detection algorithms
might be reduced considerably. The FGSC-SSD deep neural network model can perform
under various weather conditions. For example, in rainy weather, the visual conditions
for vehicle detection and class counting experimental result are shown in Figure 20. The
prediction accuracy for vehicle detection and class counting process is somewhat changed
because of the effect of glare on visibility. Weather conditions include the meteorological
changes of the environment due to precipitation including clear weather, rainwater, as
well as cloudy weather. The performance of vision-based object detection methods drops
significantly under rainy conditions because the camera sensors usually suffer from lowered
gradient sizes, which cause the bounding boxes to vary their location and size throughout
the detection process. In addition, the categorization values can be reduced, which indicates
the increasing uncertainty that can, however, be neglected in near distances. In addition,
it could be overcome by collecting a dataset with vehicles in rain scenes and training a
state-of-the-art deep learning model using this dataset.
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Extreme weather conditions have a significant impact on our everyday lives in a
variety of ways. The object visibility is one of them, which is very limited in adverse
weather conditions such as fog, ice, snow, and dust. In cold weather conditions, ice,
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fog, dust, and light snow typically affect visibility. The grayscale image reflects color
information to a large context and indirectly shows the feature information. We analyzed
the influence of visibility in foggy weather on the accuracy of computer vision obstacles
and detection. In this study, we considered visual conditions as the significant changes in
the appearance of the experiment during the nighttime effect of brightness on perceptibility.
However, the weather conditions are the barometric changes of the environment due to
precipitation, including clear and cloudy weather at night. The experimental results during
the nighttime with foggy weather show in Figure 21. We have trained the dataset with
vehicles in foggy scenes and are training the deep learning model using this dataset.
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Machine learning vision technology has an impact on weather conditions. To perform
a comparison at different weather conditions, the detection result shows that the nighttime
with foggy weather has the lowest accuracy. Whereas the detection result during the
rainy day achieved good performance. At the normal weather condition, our proposed
FGSC-SSD deep neural network model reached the highest detection accuracy.

5. Experiment and Results Comparison

We utilized the PASCAL VOC datasets and the Benchmark BIT Vehicle dataset [41] to
evaluate the performance of our proposed FGSC-SSD deep neural network model, trained
on the “Caffe” [42] environment. The initial setup for the experiment: learning rate at
0.0001, the momentum as 0.9, and the batch size as 8. For weight initialization, we used
a weight initialize strategy and stochastic gradient descent to optimize network weight
parameters. To evaluate the performance of proposed FGSC-SSD deep network model in
terms of detection, we considered mAP for accuracy and FPS for speed measurement.

Performance of the Test Datasets

Table 5 displays the performance of various deep neural network models for the
PASCAL VOC (07 + 12) datasets. We have considered different GPU platforms to examine
the efficiency of those models. On the Nvidia Titan Xp and Titan X platforms, the SSD
model has 31.5 and 46 FPS which are better than other ME R-CNN, MSA-DNN, MFR-CNN,
DF-SSD, and ACoupleNet approaches. Next, we replaced the platforms with 1080 Ti and
Xavier, and the video base framework [43] SSD speed changed to 56 and 16.9, respectively.
At the same stages, the YOLOv4 [44] has better precision of 78.9 and YOLOv3 s-highest
FPS on 1080 Ti, but the proposed FGSC-SSD achieved the highest inference speed of 64.9
and 21.7 on those platforms, which is higher than the YOLOv3, YOLOv4, and SSD models.
Compare to the SSD model, the proposed FGSC-SSD model has the highest accuracy and
inference speed which approximates real-time processing speed for edge AI platforms.
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Table 5. PASCAL VOC (07 + 12) Dataset Test Performance. The best FPS results of FGSC-SSD are
highlighted in Bold.

Method Platform mAP FPS

ME R-CNN Titan Xp 72.2 13.3
MSA-DNN Titan Xp 81.5 31.2

SSD Titan Xp 81.7 31.5
MFR-CNN Titan X 82.6 9.5

DF-SSD Titan X 78.9 11.6
ACoupleNet Titan X 83.1 6.9

SSD Titan X 74.3 46
YOLOv3 1080 Ti 73.0 64.2
YOLOv4 1080 Ti 78.9 55.7

SSD 1080 Ti 73.7 56
FGSC-SSD 1080 Ti 73.8 64.9

YOLOv3 Xavier 73.0 19.3
YOLOv4 Xavier 78.9 13.6

SSD Xavier 73.7 16.9
FGSC-SSD Xavier 73.8 21.7

For the benchmark BIT-Vehicle datasets, Table 6 shows the test results of vehicle
detection accuracy and inference speed for the YOLOv3, YOLOv4, SSD, and proposed
FGSC-SSD deep neural network models on the platform of 1080 Ti and Xavier. Among
those models, the YOLOv3 has the highest accuracy (96.3%), whereas the inference speed
is second position on both platforms. However, the YOLOv4 and SSD models exhibit an
accuracy 95.1 percent and 91.4 percent, respectively, and inference speed is 25.3 and 23.9
on the 1080 Ti platforms. In addition to Xavier platform, the YOLOv4 and SSD models
achieved accuracy 95.1 percent and 91.4 percent same as the previous platform, but the
FPS is 17.6 and 15.4, respectively. However, the proposed FGSC-SSD deep neural network
model has reached highest inference proceeding speed of 26.8 and 21.7 on both platforms
with high accuracy (95.5%), which is the second highest position for both platforms. In
comparison to the baseline network SSD model, the proposed FGSC-SSD deep neural
network model has achieved better accuracy and FPS on both platforms for the benchmark
BIT-Vehicle datasets. Considering to the speed, the proposed FGSC-SSD deep neural
network model reached the highest inference speed among those models.

Table 6. Benchmark BIT Vehicle dataset Test Performance. The best FPS results of FGSC-SSD are
highlighted in Bold.

Method Platform mAP FPS

YOLOv3 1080 Ti 96.3 26.2
YOLOv4 1080 Ti 95.1 25.3

SSD 1080 Ti 91.4 23.9
FGSC-SSD 1080 Ti 95.5 26.8

YOLOv3 Xavier 96.3 20.2
YOLOv4 Xavier 95.1 17.6

SSD Xavier 91.4 15.4
FGSC-SSD Xavier 95.5 21.7

Table 7 illustrated the accuracy performance for SSD and FGSC-SSD test results for
specific vehicles for both models. Table 8 shows the result for video processing result on
Nvidia Xavier. The FGSC-SSD model achieved an FPS of 38.4 which is faster than the
backbone SSD model.
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Table 7. Test Data Accuracy Results.

Method Car Bus Truck mAP

SSD 86.8 85.3 85.1 85.7%
FGSC-SSD 96.7 95.5 94.5 95.5%

Table 8. Practical Application Average FPS Results.

Method Platform FPS (Video 640 × 480)

SSD Xavier 33.6
FGSC-SSD Xavier 38.4

6. System Implementation

Figure 22 shows vehicle detection and class counting system implementation. We
have utilized the edge AI platform for system implementation. In this experiment, the
authors used actual mountain road videos for one day as test data. Table 9 depicts the
result of vehicle detection and class counting. The detection and class counting accuracy
for the car, bus, and truck are 96.7%, 95.5%, and 94.5%, respectively.
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Table 9. The Vehicle Class Counting Result from Actual video.

Vehicle
Types

Vehicle
Numbers

Correctly
Counting

Error
Counting

Correctly
Counted

Car 61 59 2 96.7%
Bus 44 42 2 95.5%

Truck 36 34 2 94.5%

The actual results for vehicle detection and class counting from video are shown in
Table 9. In total, 61 cars, 44 buses, and 36 trucks went through the vehicle detection lines,
with 59 sedans, 42 buses, and 34 trucks properly counted, respectively, with 96.7 percent,
95.5 percent, and 94.5 percent accuracy. However, we noticed some errors in the class
counting and reviewed the input data and results again. We found the causes of erroneous
counting when two sedans of very old models passed the windows, but their images
did not belong to the datasets. In addition, two recondition pickup vans went through
detection lines that did not look like trucks. Furthermore, the two buses that crossed both
detection lines that made an error for the class counting window.
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7. Discussion

For considering the higher speed and real-time AIoT applications, we proposed the
FGSC-SSD deep neural network model for performing an Edge AI platform. The proposed
FGSC-SSD model can accomplish on edge computing for Real-Time IoT applications for
vehicle detections. The fuzzy guided algorithm has reduced the errors and improved the
vehicle detection rate and class counting. We have utilized a CPU Intel Core i7 8700k,
GPU is Nvidia GTX 1080 Ti, CUDA version is 9.0, and cuDNN version is 7.0 to measure
the performance by mAP and FPS. For the test experiment, we captured a real video
from a mountain road in Taiwan. For future work, we intend to prepare more small-size
vehicle images as training datasets to improve the performance capability and accuracy.
Additionally, vehicle images datasets from different angles and various weather conditions
can boost the performance of the proposed FGSC-SSD deep neural network model for
vehicle detection and class counting system for all sorts of vehicles.

8. Conclusions

In this paper, the authors proposed an FGSC-SSD deep neural network model for
vehicle detection and class counting with passing detection lines and class counting win-
dows. The FGSC blocks comprise the global intensity, fully connected layers, fuzzy sigmoid
function, and the scale choice layer. Hence, the fuzzy sigmoid function controls the ac-
tivation interval and avoids unnecessary features falling into the saturation zone. The
weight value is particularly significant for the scale choice layer, as it supports in learn-
ing the dataset’s essential feature map and determining how to accomplish the counting
optimization impact.

For performance, compared to the baseline network, the proposed FGSC-SSD has
achieved higher proceeding speed and accuracy than the SSD model. For the authentic
road video tests, vehicle detection and class counting accuracy of cars, busses, and trucks
achieved 96.7%, 95.5%, and 94.5% accuracy, respectively. Moreover, the proceeding speed
of the proposed FGSC-SSD model achieved 38.4 FPS, which is real-time proceeding speed
on the Edge AI platform.
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