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Abstract: Iris biometric detection provides contactless authentication, preventing the spread of
COVID-19-like contagious diseases. However, these systems are prone to spoofing attacks attempted
with the help of contact lenses, replayed video, and print attacks, making them vulnerable and unsafe.
This paper proposes the iris liveness detection (ILD) method to mitigate spoofing attacks, taking
global-level features of Thepade’s sorted block truncation coding (TSBTC) and local-level features of
the gray-level co-occurrence matrix (GLCM) of the iris image. Thepade’s SBTC extracts global color
texture content as features, and GLCM extracts local fine-texture details. The fusion of global and
local content presentation may help distinguish between live and non-live iris samples. The fusion
of Thepade’s SBTC with GLCM features is considered in experimental validations of the proposed
method. The features are used to train nine assorted machine learning classifiers, including naïve
Bayes (NB), decision tree (J48), support vector machine (SVM), random forest (RF), multilayer per-
ceptron (MLP), and ensembles (SVM + RF + NB, SVM + RF + RT, RF + SVM + MLP, J48 + RF + MLP)
for ILD. Accuracy, precision, recall, and F-measure are used to evaluate the performance of the
projected ILD variants. The experimentation was carried out on four standard benchmark datasets,
and our proposed model showed improved results with the feature fusion approach. The proposed
fusion approach gave 99.68% accuracy using the RF + J48 + MLP ensemble of classifiers, immediately
followed by the RF algorithm, which gave 95.57%. The better capability of iris liveness detection
will improve human–computer interaction and security in the cyber-physical space by improving
person validation.

Keywords: iris images; liveness detection; TSBTC; GLCM; machine learning; feature extraction;
feature fusion

1. Introduction

Automatic access to a system by a genuine person has become very simple in the
information era. For automated system access, validation of user identity is crucial. Bio-
metric authentication systems are computer-based systems that use biometric traits to
verify a user’s identity. The biometric authentication system has more advantages over
other password-based conventional authentication mechanisms [1]. The biometric system
eliminates the need to remember a password or pin or keep a card in possession. The
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conventional security system cannot differentiate between real persons and impostors,
those who can unethically access a program [2]. For security-critical cyber applications,
biometric authentication may also be considered an additional layer of authentication along
with existing conventional authentication modes [3]. As the iris has a complex texture
and unique features, it is widely used to identify and authenticate a person in most appli-
cations [2], e.g., in the Aadhaar card project to identify India’s citizens. The Amsterdam
airport and United States–Canadian border [4] use iris-based authentication. Compared
to fingerprints and facial recognition, iris-based authentication enables a more reliable
contactless detection of a user. The contactless approach helps to prevent the spread of
viruses and diseases such as COVID-19. Even though the iris has a unique textural pattern,
an impostor might counterfeit it.

People usually attack the biometric system to gain access to other people’s accounts or
to hide their true identity. The iris detection system can be easily spoofed by using different
types of spoofing attacks. Table 1 shows the iris presentation attacks used that are found in
the literature.

Table 1. Iris presentation attacks.

Iris Presentation Attacks Details

Print attacks The impostor offers a printed image of validated iris to the
biometric sensor [4].

Contact lens attacks The impostor wears contact lenses on which the pattern of the
genuine iris is printed [5].

Video attacks The impostor plays a video of a registered user in front of a
biometric system [6].

Cadaver attacks The impostor uses the eye of a dead person in front of a biometric
system [7].

Synthetic attacks The impostor embeds the iris region into the authentic images to
make the synthesized images more realistic [8].

Analyzing threat and vulnerability is crucial for securing the biometric system. The
challenging threat of spoofing a biometric authentication system is mitigated with liveness
detection of acquired biometric traits before authentication [9].

The critical contributions of the research work presented here are as follows:

• Development of Thepade’s sorted block truncation coding (TSBTC) and gray-level co-
occurrence matrix (GLCM) iris image data as features for the first time in iris liveness
detection (ILD).

• Implementation of the fusion of best TSBTC N-ary global features with GLCM local
features from an iris image, for the first time in ILD.

• Performance analysis of ML classifiers and ensembles to finalize the best classifier
for ILD.

• Validating the performance of the proposed ILD method across various existing
benchmark datasets and techniques.

The paper is organized as follows: Section 2 briefly reviews the related literature,
Section 3 presents an overview of existing methods, and Section 4 presents the proposed
ILD method. The experiment details, observed results, and inferences drawn from the
results are discussed in Section 5. The concluding remarks and future research directions
are discussed in Section 6.

2. Related Work

Many attempts have been made to detect the liveness of the sensed biometric traits
before they are authenticated. A few prominent approaches are discussed in this section.
Kaur et al. [10] used a rotation-invariant feature set consisting of Zernike moments and
polar harmonic transforms that extract local intensity variations to detect iris spoofing at-
tacks. The spoofing attacks on various sensors also have a considerable effect on the overall
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efficiency of a system. A system can detect only print and contact lens attacks. They used
Hough transform and GLCM to extract features from iris images. These extracted features
were passed for discriminant analysis (DA), used as a classification tool for differentiating
live images from spoofed ones.

Agarwal et al. [11] used fingerprints and iris identity for liveness detection. The
standard Haralick’s statistical features based on the GLCM and neighborhood gray-tone
difference matrix (NGTDM) generate a feature vector from the fingerprint. Texture features
from the iris are used to boost the performance of a system. They used a standard dataset
to test if the performance of this model is better than the existing model. In the existing
system, GLCM has a huge feature vector size.

In a recent paper, Jusman et al. (2020) [12] compared the proposed approach with
other existing approaches and proved that the proposed approach performs better, with
100% accuracy. The limitation of this study is that the authors followed a traditional
approach of segmentation, normalization, and feature extraction, which is a complex and
time-consuming task. Subsequently, Khuzani et al. [13] extracted the shape, density, FFT,
GLCM, GLDM, and wavelet features from iris images. In total, 2000 iris images from the
CASIA-Iris-Interval dataset are used for implementation. The highest accuracy of 99.64%
was achieved by using a multilayer neural network.

Agarwal et al. (2020) used a feature descriptor, i.e., local binary hexagonal extreme
pattern, for fake iris detection [14]. The proposed descriptor exploits the relationship
between the center pixel and its hexa neighbor. The hexagonal shape using the six-neighbor
approach is preferable to the rectangular structure due to its higher symmetry. This
approach’s limitation is that it covers only print and contact lens attacks and is highly
complex [14]. Thavalengal et al. (2016) [15] developed a smartphone system that captures
RGB and NIR images of the eye and the iris. Pupil localization techniques with distance
metrics are used for detection. For feature vector generation, 4096 elements are considered,
which are extensive. Even though the authors claimed a reasonable liveness detection rate,
they worked with a real-time database.

TSBTC has been used many times in the literature in other domains, but none of the
studies has identified iris liveness detection using TSBTC. Some of the studies from other
domains are discussed here. Dewan et al. (2021) used TSBTC to retrieve images from
datasets using the key points extraction method [16]. Chaudhari et al. (2021) used a fusion
of TSBTC and Sauvola thresholding features [17]. With the help of multiple classifiers,
including SVM, Kstar, J48, RF, RT, and ensembles, the authors achieved good accuracy. To
enhance image classification, Thepade et al. (2018) used TSBTC with feature-level fusion of
Niblack thresholding and SVM, RF, Bayes net, and ensembles of classifiers [18].

In their work, Fathy and Ali (2018) did not consider the segmentation and normaliza-
tion phases typically used in fake iris detection systems [8]. Wavelet packets (WPs) are used
to break down the original image into a wavelet. They claimed 100% accuracy, but it does
not work with all types of attacks, and it covered only limited spoofing attacks. Hu et al.
(2016) performed ILD using regional features [19]. Regional features are designed based
on the relationship of the features with the neighboring regions. During an experiment,
Hu used 144 relational measures based on regional features. Czajka (2015) designed a
liveness detection system using pupil dynamics [20]. In this system, pupil reaction is
measured with the help of sudden changes in light intensity. If the eye reacts to light
intensity changes, then the eye is live; otherwise, it is fake. Linear and non-linear support
vector machines are used to classify natural reactions and spontaneous oscillations in this
work. The limitation of the system measures diverse functions, which take time. The
data used in this analysis do not include any measurements from older people, so there is
inaccuracy in the observation [20].

Naqvi et al. (2020) developed a system to detect accurate ocular regions, such as
the iris and sclera [21]. This system is based on the convolutional neural network (CNN)
model with a lite-residual encoder–decoder network. Average segmentation error is used
to evaluate the segmentation results. Publicly available databases are considered for
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evaluating the system. Kimura et al. (2020) designed a liveness detection system using
CNN, which improves the model’s accuracy by tuning hyperparameters [22]. To measure
the performance of the system, attack presentation classification error rate (APCER) and
bonafide presentation classification error rate (BPCER) are used. The hyperparameters
considered in this paper are the number of epochs (max), batch size, learning rate, and
weight decay hyperparameters. This system works only for print and contact lens attacks.

Lin and Su (2019) developed a face anti-spoofing and liveness detection system using
CNN [23]. The image is resized to 256 * 256, and RGB and HSV color spaces are used. The
author claims better iris liveness prediction [23]. Long and Zeng (2019) identified ILD with
the help of the BNCNN architecture with 18 layers. The batch normalization technique
is used in BNCNN to avoid the problem of overfitting and gradient disappearing during
training [24].

Dronky et al. (2019) [25] observed from the literature that many researchers do not
identify all iris attacks. So, from the existing literature, it is observed that researchers have
worked on a few iris attacks, and a prominent feature vector size is considered. Table 2
summarizes the literature review in ascending order of the year of publication.

Table 2. Summary of literature review.

Paper Author/Year Feature Extraction Attacks
Identified Datasets Classifiers Performances

ID

[17] Thepade and
Chaudhari, 2021

TSBTC and Sauvola
thresholding NA NR SVM, Kstar, J48, RF,

RT and ensembles Accuracy, F-measures.

[16] Dewan and
Thepade, 2021 TSBTC NA NA NA ARA = 63.31%

[12] Jusman et al.,
2020

Hough transform,
GLCM NR CASIA-Iris Discriminant

analysis classifiers Accuracy = 100%

[11] Agarwal et al.,
2020

Texture feature,
GLCM Print

ATVs (iris)
LivDet2011 (finger)
IIITD CLI dataset
(iris)

SVM ACA = 96.3%

[14] Agarwal et al.,
2020

Local binary
hexagonal extrema
pattern

Contact Print IIITD CLI ATVS-FIr SVM AER = 1.8 %,

[13] Khuzani et al.,
2020

Shape, density, FFT,
GLCM, GLDM, and
wavelet

NR CASIA-Iris-Interval Multilayer neural
network Accuracy = 99.64%

[26] Kush- waha et al.,
2020 GLCM, HOG, LBP NA

Biometric 220X6
human footprint
dataset

KNN, SVM, LDA,
ensembles Accuracy = 97.9%

[22] Kimura et al.,
2020 CNN Print contact

Clarkson, Warsaw,
IIITD-WVU, Notre
Dame

APCER = 4.18%
BPCER= 0%

[21] Naqvi et al., 2020

CNN model with a
lite-residual
encoder–decoder
network

NA NICE-II dataset,
SBVPI CNN Average segmentation

error = 0.0061

[24] Long and Zeng,
2019 BNCNN Synthetic, contact

CASIA-Iris-Lamp,
CASIA-Iris-Syn,
ND contact

BNCNN Correct recognition
rate= 100%

[21] Asmara et al.,
2019 GLCM, Gabor filter CASIA v1 Iris Navies Bayes, SVM Accuracy = 95.24%

[3] Kaur et al., 2019

Orthogonal
rotation-invariant
feature set
comprising of ZMs
and PHTs

Print + scan, print
+ capture,
patterned contact
lenses

IIITD-CLI, IIS,
Clarkson
LivDet-Iris 2015,
Warsaw LivDet-Iris
2015

KNN

Accuracy = 98.49%
(given different
accuracy for different
datasets)

[8] Fathy and Ali,
2018

Wavelet packets
(WPs), local binary
pattern (LBP),
entropy

Print + synthetic ATVS-Fir
CASIA-Iris-Syn SVM ACA = 99.92% recall,

precision, F1

[18] Thepade et al.,
2018 TSBTC, Niblack NR NR

SVM, RF,
ensembles, Bayes
net

Accuracy = 68.56%
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Table 2. Cont.

Paper Author/Year Feature Extraction Attacks
Identified Datasets Classifiers Performances

ID

[15] Thavalen- gal
et al., 2016

Pupil localization
techniques with
distance metrics are
used for detection

Print Real-time datasets Binary tree classifier ACER = 0%

[19] Hu et al., 2016 LBP, histogram, SID Contact lenses,
print

Clarkson, Warsaw,
Notre Dame,
MobBIOfake

SVM

ER, Clarkson = 7.87%,
Warsaw = 6.15%
ND = 0.08%,
MobBIOfake = 1.50%

3. Proposed Iris Liveness Detection Using a Feature-Level Fusion of TSBTC and GLCM

Iris recognition system is susceptible to many security challenges. These vulnerabilities
make a system less reliable for highly secured applications [3]. This paper attempts ILD
using the feature-level fusion of GLCM and TSBTC features of iris images, which detect
whether the iris is live or fake. The proposed approach avoids any preprocessing, such
as segmentation, normalization, and localization, conventionally used by the methods
proposed in the literature, making the proposed approach swifter and relatively easier [15].
The only preprocessing done in the proposed approach is resizing the iris image to square
size. Figure 1 shows the block diagram of the ILD system. The proposed system is divided
into four phases: iris image resizing, feature formation, classification, and ILD.
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3.1. Resizing

Iris preprocessing plays a vital role in ILD. In the proposed algorithm, two iris pre-
processing approaches are followed. Images are acquired using four different standard
datasets, so each dataset uses a different size of images to be stored. During preprocessing,
the original images are normalized to the size 128 * 128, which maintains integrity through-
out the experiment. While images capture different datasets using different sensors, some
sensors (e.g., LG, Congent, Vista) capture images in the RGB format, and some (e.g., LG,
Dalsa) capture them in the grayscale format. To maintain uniqueness, images are converted
into the grayscale format.
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3.2. Feature Formation and Fusion

In the proposed method, feature fusion is attempted with the help of GLCM and
Thepade’s SBTC applied on iris images.

3.2.1. GLCM

The statistical distribution information of the gray-level value of an image is generated
by GLCM [27,28]. GLCM is applied to a resized iris image. Figure 2 shows feature formation
using GLCM. We computed four features: contrast, energy, entropy, and correlation using
GLCM. These are given by:
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Energy: Local gray-level consistency represents energy as expressed in Equation (1),
which is high in similar pixels.

Energy = ∑
i,j

P i, j 2 (1)

Entropy: The following image entropy equation is used to describe an image’s ran-
domness. The greater the entropy, the more difficult it is to arrive at any conclusion from
the data.

Entropy = −∑
i,j

P i, j log2 P i, j (2)

Contrast: As expressed in Equation (3), contrast is used to evaluate the intensity
difference between the reference pixel and its neighbor. The low-intensity value represents
the GLCM’s poor contrast.

Contrast = ∑
i,j
|i− j|2 Pi, j (3)
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Correlation: Equation (4) represents the linear dependency of gray-level values in the
co-occurrence matrix.

Correlation = ∑
i,j

(i− ui)
(

j− uj
)

Pi, j
σiσj

(4)

These four features for one image are taken into consideration. The 10 cross-validation
technique is used for the correct estimation of accuracy.

3.2.2. TSBTC

Let the iris image be I (r,c) of size r × c pixels, grayscale. The TSBTC [29,30] feature
vector of N-ary may be considered as [T1, T2, Tn]. Here, Ti indicates the ith cluster centroids
of the grayscale image using TSBTC N-ary. In TSBTC 2-ary, for iris image I (r,c) of size r × c
pixels, the grayscale image is converted into a one-dimensional array sorted as sortrows.
Using this one-dimensional sorted array, the TSBTC-2ary feature vector is computed as
[T1, T2], as shown in Equations (5) and (6). Figure 3 shows how features are extracted
using TSBTC.

T1 =
2

r× c

r×c

∑
p=1

Sort(p) (5)

T2 =
2

r× c

r×c

∑
p=1+ r×c

2

Sort(p) (6)
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Here is the proposed ILD. TSBTC has experimented with all 10 variations of TSBTC
2-ary, 3-ary, 4-ary, 5-ary, 6-ary, 7-ary, 8-ary, 9-ary, 10-ary, and 11-ary with a resized iris image.
These extracted features are passed to classifiers and ensembles of classifiers to train them.

3.2.3. Fusion of TSBTC and GLCM

The best performance from TSBTC N-ary and local-level GLCM features are concate-
nated to get the feature-level fusion for ILD. Here, both fusions are considered TSBTC
10-ary + GLCM and TSBTC 11-ary + GLCM. Let the grayscale iris image be I (r,c) of size
r × c pixels. The fusion of the feature vector of TSBTC N-ary and GLCM can be represented
as [T1, T2, Tn, G1, G2, G3, G4]. Figure 4 displays how feature vectors are formed by taking
the fusion of GLCM and TSBTC. Individual feature vector elements can be extracted using
the mathematical model elaborated in Sections 3.2.1 and 3.2.2
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3.3. Classification and Iris Liveness Detection

The proposed approach of ILD uses different ML classifiers with an ensemble com-
bination. The tenfold cross-validation approach is used for training these classifiers for
ILD. Tenfold cross-validation is one of the best approaches for training ML classifiers. It
provides all samples from the dataset a chance to be used as training or test data, resulting
in a trained classifier that is less biased. The ML classifiers employed here are support
vector machine (SVM), naïve Bayes (NB), random forest (RF), random tree, and J48, with
ensembles of a few of the ML classifiers. Majority of voting logic is used here for creating
the ensembles of ML classifiers.

SVM—Its main aim is that in an N (number of features)-dimensional space, it must
find a hyperplane that distinctly classifies the data points. The objective of an SVM is to
find a plane with the maximum distance between data points of classes [31].

J48—It is a classification algorithm. It is the decision tree-based classification algorithm
as that of the decision tree classifier [31].

Random Forest—It takes the mean prediction of the individual trees formed from
an ensemble of various decision trees. This algorithm makes sure that the decision tree
classifier’s drawback of overfitting the training data is overcome [31].

Random Tree—Random tree is a parameter-based supervised learning algorithm with
continuous data splitting. The random tree algorithm is similar to the decision tree algo-
rithm, which is made by selecting random features [32].

Naïve Bayes—This algorithm is based on the theorem of Bayes and is a collection
of classification algorithms. It is a family of algorithms, as all of them share a common
objective. It predicts probabilities belonging to a class for each data point [32]

Ensemble method—It is always better to use multiple models simultaneously on a
single set for classification rather than just a single model. This method is called ensemble
learning [17]. A model is trained by using different classifiers, and the final output is an
ensemble of those classifiers. Majority voting logic has been used for an ensemble of ML
classifiers in the proposed method.



Sensors 2021, 21, 7408 9 of 23

4. Experimental Set-Up

The experiments were performed using an Intel (R) Core (TM) i3-6006U CPU @ 2.0
GHz, 12 GB RAM, and 64-bit operating system with MATLAB R2015a as a programming
platform. The experimentation code is available on request. The datasets used for experi-
mental explorations of the proposed approach of ILD are Clarkson LiveDet2013, Clarkson
LiveDet2015, IIITD Contact Lens, and IIITD Combined Spoofing.

4.1. Description of the Dataset

The detailed description of the four standard and publicly available datasets is as follows.

• Clarkson LivDet2013—Clarkson LivDet2013 dataset has around 1536 iris images [33].
This dataset is separated into training and testing sets. To acquire images, the Dalsa
sensor is used. During this experiment, the training set images are used. Table 3
shows details related to the dataset, the sensors used to acquire images, and the
number of images used during this experiment. Figure 5 shows samples of images
from the dataset.

• Clarkson LivDet2015—Images used in this dataset are captured using Dalsa and LG
sensors [34]. Images are divided into three categories: live, pattern, and printed. In
total, 25 subjects are used for live images and patterns are printed; 15 subjects each are
used. The whole dataset is partitioned into training and testing.

• IIITD Combined Spoofing Database—Images used in this dataset are captured using
two iris sensors, Cogent and Vista [35]. The images are divided into three categories:
normal, print-scan attack, and print-capture attack.

• IIITD Contact Lens—Images used in this dataset are captured using two iris sensors,
Cogent dual iris sensor and Vista FA2E single iris sensor [36,37]. The images are
di-vided into three categories: normal, transparent, and colored. In total, 101 subjects
are used. Both left and right iris images of each subject are captured; therefore, there
are 202 iris classes.

Table 3. Several images were used for the experiment from each dataset.

Database Sensor Image Category No. of Images Used
for the Experiment

Clarkson 2013 Dalsa
Off (live) 350
Pattern (contact) 440

Clarkson 2015

Dalsa
Live 378
Pattern 356
Printed 1416

LG
Live 258
Pattern 433
Printed 844

IIITD Combined
Spoofing

Cogent
Normal 2024
Print-capture 1113
Print-scan 980

Vista
Normal 2024
Print-capture 1092
Print-scan 1196

IIITD Contact

Cogent
Normal 422
Transparent 1131
Textured 1150

Vista
Normal 1010
Transparent 1010
Textured 1010
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Figure 5. Sample iris images from an iris dataset.

4.2. Performance Measures

To compare the performance of all the investigated variations of the proposed ILD
method, accuracy, recall, F-measure, and precision are used as performance metrics.

Let TP, TN, FP, and FN, respectively, be the true positive, true negative, false positive,
and false negative of the ILD. TP indicates the data samples that are predicted as live iris
and are actually live samples. TN gives the data samples detected as spoofed iris and
actually spoofed iris samples. FP indicates the samples identified as live but are fake. FN
shows the data samples detected as spoofed but are live iris samples. The confusion matrix
is shown in Figure 6. Equations (7)–(13) were used to calculate the accuracy, precision, recall,
F-measure, attack presentation classification error rate (APCER) [38], normal presentation
classification error rate (NPCER), and average classification error rate (ACER), respectively.

Accuracy =
TP + TN

FP + FN + TP + TN
(7)

Precision =
TP

FP + TP
(8)

Recall =
TP

TP + TN
(9)

F−measures = 2∗ Precision ∗ Recall
Precision + Recall

(10)

APCER =
FP

FP + FN
(11)

NPCER =
FN

FN + TP
(12)

ACER =
APCER + NPCER

2
(13)
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Figure 6. Confusion matrix for iris liveness detection.

5. Results

This section is organized into three subsections. Section 5.1 presents the results and
graphs of the TSBTC approach. Section 5.2 presents the results of the GLCM technique.
The fusion of TSBTC and GLCM is discussed in Section 5.3.

5.1. TSBTC Results

The proposed approach of ILD experiments with four benchmark datasets. Accuracy,
recall, precision, and F-measure are used as performance metrics to evaluate the variants
of the proposed approach of ILD. With 128 ×128 iris images, TSBTC experiments with
all 10 varieties of the TSBTC 2-ary, 3-ary, 4-ary, 5-ary, 6-ary, 7-ary, 8-ary, 9-ary, 10-ary, and
11-ary. These extracted features are passed to classifiers and ensembles of classifiers to
train them.

The performance comparison of the TSBTC N-ary global features considered for
specific ML classifiers in the proposed approach of ILD tested on the Clarkson 2013 dataset
is shown in Figure 7. It can be observed that 10-ary TSBTC outperforms other N-ary TSBTC
approaches for all classifiers for the Clarkson 2013 dataset.
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Figure 7. Performance evaluation of TSBTC N-ary global feature variations for the specific ML classifiers in the proposed
approach of ILD for Clarkson 2013 dataset using percentage accuracy.

From Table 4, it is observed that the highest ILD accuracy comes to around 94.16% with
6-ary TSBTC using the RF classifier, immediately followed by an ensemble of RF + SVM + RT
classifiers. The underlined values indicate the highest obtained recognition rates.
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Table 4. Performance evaluation using accuracy for variants of the proposed approach of ILD with N-ary TSBTC and ML
classifiers used for the Clarkson 2013 dataset.

Classifiers/Ensembles
of Classifiers

Accuracy
2-ary 3-ary 4-ary 5-ary 6-ary 7-ary 8-ary 9-ary 10-ary 11-ary AVG

NB 83.52 83.67 83.52 83.96 84.11 84.11 84.11 84.25 84.4 84.4 83.96
J48 86.15 87.6 86.58 88.04 89.5 86.88 88.92 90.08 91.69 88.77 88.38
SVM 86.58 86.73 86.73 86.73 86.73 86.58 86.44 86.44 86.58 86.44 86.62
RF 89.06 93.29 93.14 93.87 94.16 93.29 93.14 93.29 93.87 93 93.01
MLP 86.44 86.58 86.44 86.29 86.58 87.9 87.9 87.9 87.6 88.33 87.07
SVM + RF + NB 86.44 86.88 87.17 87.17 87.17 87.46 86.73 86.88 87.17 86.88 87.01
SVM + RF + RT 88.77 93 92.12 92.41 92.56 92.12 91.54 92.12 92.71 92.56 91.93
RF + SVM + MLP 86.58 86.73 86.88 86.88 86.73 87.17 87.17 87.17 87.31 87.46 86.96
J48 + RF + MLP 87.17 89.5 88.62 89.94 90.08 90.08 90.37 91.39 92.27 91.25 89.94
AVG 86.746 88.22 87.91 88.37 88.62 88.4 88.48 88.84 89.29 88.79 ——

Bold values indicate the highest obtained recognition rates.

The performance comparison of the TSBTC N-ary global features considered for
specific ML classifiers in the proposed approach of the ILD tested on the Clarkson 2015
dataset is shown in Figure 8. As per comparison, 11-ary TSBTC outperforms other N-ary
TSBTC approaches for the Clarkson 2015 dataset for all classifiers.

Sensors 2021, 21, x FOR PEER REVIEW 13 of 25 
 

 

Table 4. Performance evaluation using accuracy for variants of the proposed approach of ILD with N-ary TSBTC and ML 

classifiers used for the Clarkson 2013 dataset. 

Classifiers/En-

sembles of Clas-

sifiers 

Accuracy  

2-ary 3-ary 4-ary 5-ary 6-ary 7-ary 8-ary 9-ary 10-ary 11-ary AVG 

NB 83.52 83.67 83.52 83.96 84.11 84.11 84.11 84.25 84.4 84.4 83.96 

J48 86.15 87.6 86.58 88.04 89.5 86.88 88.92 90.08 91.69 88.77 88.38 

SVM 86.58 86.73 86.73 86.73 86.73 86.58 86.44 86.44 86.58 86.44 86.62 

RF 89.06 93.29 93.14 93.87 94.16 93.29 93.14 93.29 93.87 93 93.01 

MLP 86.44 86.58 86.44 86.29 86.58 87.9 87.9 87.9 87.6 88.33 87.07 

SVM + RF + NB 86.44 86.88 87.17 87.17 87.17 87.46 86.73 86.88 87.17 86.88 87.01 

SVM + RF + RT 88.77 93 92.12 92.41 92.56 92.12 91.54 92.12 92.71 92.56 91.93 

RF + SVM + 

MLP 
86.58 86.73 86.88 86.88 86.73 87.17 87.17 87.17 87.31 87.46 86.96 

J48 + RF + MLP 87.17 89.5 88.62 89.94 90.08 90.08 90.37 91.39 92.27 91.25 89.94 

AVG 86.746 88.22 87.91 88.37 88.62 88.4 88.48 88.84 89.29 88.79 —— 

Bold values indicate the highest obtained recognition rates. 

The performance comparison of the TSBTC N-ary global features considered for 

specific ML classifiers in the proposed approach of the ILD tested on the Clarkson 

2015 dataset is shown in Figure 8. As per comparison, 11-ary TSBTC outperforms 

other N-ary TSBTC approaches for the Clarkson 2015 dataset for all classifiers. 

 

Figure 8. Performance evaluation of TSBTC N-ary global feature variations for the specific ML classifiers in the proposed 

approach of ILD for the Clarkson 2015 dataset using percentage accuracy. 

From Table 5, it is observed that the highest observed ILD accuracy comes to 

around 95.64% with 10-ary TSBTC using the RF classifier, immediately followed by an 

ensemble of RF + SVM + RT classifiers. 

  

60

65

70

75

80

85

90

95

NB J48 SVM Random

Forest

MLP (SVM + RF

+ NB)

(SVM + RF

+ RT)

(RF + SVM

+ MLP)

(J48 + RF +

MLP)

A
cc

u
ra

cy
 i

n
 %

 

Classifiers

2Ary 3Ary 4Ary 5Ary 6Ary 7Ary 8Ary 9Ary 10Ary 11Ary

Figure 8. Performance evaluation of TSBTC N-ary global feature variations for the specific ML classifiers in the proposed
approach of ILD for the Clarkson 2015 dataset using percentage accuracy.

From Table 5, it is observed that the highest observed ILD accuracy comes to around
95.64% with 10-ary TSBTC using the RF classifier, immediately followed by an ensemble of
RF + SVM + RT classifiers.

The performance comparison of the TSBTC N-ary global features considered for
specific ML classifiers in the proposed approach of ILD tested on the IIITD Contact dataset
is shown in Figure 9. It can be observed that 11-ary TSBTC outperforms other N-ary TSBTC
approaches for all classifiers for the IIITD Contact dataset.
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Table 5. Performance evaluation using accuracy for variants of the proposed approach of ILD with the N-ary TSBTC and
ML classifiers used for the Clarkson 2015 dataset.

Classifiers/Ensembles
of Classifiers

Accuracy
2-ary 3-ary 4-ary 5-ary 6-ary 7-ary 8-ary 9-ary 10-ary 11-ary AVG

NB 64.85 64.71 64.44 64.57 64.16 64.16 64.03 63.89 63.89 63.89 64.26
J48 75.61 80.79 82.15 85.96 87.87 89.1 90.05 90.32 91.41 91.28 86.45
SVM 57.08 58.17 59.4 61.17 60.49 60.62 60.89 61.3 61.44 61.98 60.25
Random Forest 83.78 89.64 91.96 94.27 94.68 95.5 94.95 95.5 95.64 95.23 93.12
MLP 77.11 78.61 78.47 74.25 80.24 76.02 88.82 89.1 89.23 91.14 82.3
SVM + RF + NB 66.07 68.39 70.7 73.56 73.29 74.65 73.97 75.61 76.15 76.15 72.85
SVM + RF + RT 83.78 88.14 90.73 92.23 92.77 92.5 93.46 93.73 91.96 93.86 91.32
RF + SVM + MLP 78.74 79.15 81.6 76.7 73.43 74.38 70.02 75.34 68.8 71.66 74.98
J48 + RF + MLP 82.28 85.83 87.32 88.96 90.05 92.09 91 92.91 94 94 89.84
AVG 74.367 77.048 78.53 79.07 79.66 79.89 80.8 81.97 81.39 82.13 ——

Bold values indicate the highest obtained recognition rates.
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Figure 9. Performance evaluation of TSBTC N-ary global feature variations for the specific ML classifiers in the proposed
approach of ILD for the IIITD Contact dataset using percentage accuracy.

From Table 6, it is observed that the highest observed ILD accuracy comes to around
76.73% with 11-ary TSBTC using the random forest classifier, immediately followed by an
ensemble of RF + SVM + RT classifiers.

Table 6. Performance evaluation using accuracy for variants of the proposed approach of ILD with the N-ary TSBTC and
ML classifiers used for the IIITD Contact dataset.

Classifiers/Ensembles
of Classifiers

Accuracy
2-ary 3-ary 4-ary 5-ary 6-ary 7-ary 8-ary 9-ary 10-ary 11-ary AVG

NB 46.41 45.82 44.32 43.88 43.73 44.02 44.47 63.91 63.82 64 50.438
J48 64.47 62.08 64.47 61.19 64.77 62.98 63.88 66.37 65.4 65.58 64.119
SVM 61.04 61.04 61.04 61.04 61.04 61.04 61.04 64.09 64.09 64.09 61.955
Random Forest 63.88 67.61 71.64 70.44 75.52 74.92 75.97 75.41 76.29 76.73 72.841
MLP 57.61 62.53 59.7 59.7 61.49 61.79 62.38 65.58 65.23 66.11 62.212
SVM + RF + NB 60.89 60.74 61.49 61.94 62.53 63.88 65.22 65.67 65.58 65.75 63.369
SVM + RF + RT 61.64 66.71 71.04 68.35 71.94 71.04 74.62 73.22 73.57 75.68 70.781
RF + SVM + MLP 61.04 62.08 61.79 61.64 62.08 61.64 61.94 66.28 66.19 66.37 63.087
J48 + RF + MLP 61.49 65.82 68.35 66.86 68.05 68.5 68.95 68.48 68.48 69.71 67.369
AVG 59.83 61.603 62.648 61.671 63.461 63.312 64.274 67.667 67.627 68.22 ——

Bold values indicate the highest obtained recognition rates.
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Figure 10 shows the performance comparison of the global features of TSBTC N-ary
considered for specific ML classifiers in the proposed approach of ILD tested on the IIITD
Combined Spoofing dataset. It can be observed that 10-ary TSBTC outperforms other N-ary
TSBTC approaches for all classifiers for the IIITD Combined Spoofing dataset.
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Figure 10. Performance evaluation of TSBTC N-ary global feature variations for the specific ML classifiers in the proposed
approach of ILD for the IIITD Combined Spoofing dataset using percentage accuracy.

From Table 7, it is observed that the highest observed ILD accuracy comes to around
99.57% with 7-ary TSBTC using an ensemble of J48 + RF + MLP classifiers, immediately
followed by RF classifiers.

Table 7. Performance evaluation using accuracy for variants of the proposed approach of ILD with N-ary TSBTC and the
ML classifiers used for IIITD Combined Spoofing dataset.

Classifiers Ensembles of
Classifiers

Accuracy
2-ary 3-ary 4-ary 5-ary 6-ary 7-ary 8-ary 9-ary 10-ary 11-ary AVG

NB 90.09 94.99 95.1 95.2 94.99 94.99 94.88 95.2 95.2 92.49 94.31
J48 98.08 98.29 98.61 98.61 98.08 99.25 99.04 98.93 99.14 98.8 98.68
SVM 96.48 96.59 96.8 97.01 97.01 97.12 97.12 97.44 97.55 97.74 97.08
Random Forest 97.97 98.61 98.82 99.25 99.14 99.46 99.36 99.36 99.25 99.18 99.04
MLP 98.93 99.14 99.25 99.14 99.14 99.14 99.04 99.04 99.04 98.78 99.06
SVM + RF + NB 96.27 96.59 96.91 97.01 97.01 97.23 97.23 97.55 97.65 98.19 97.16
SVM + RF + RT 97.87 98.4 98.5 99.04 99.04 99.25 99.14 99.25 99.04 99.17 98.87
RF + SVM + MLP 98.61 98.72 98.72 98.93 98.93 98.93 98.93 98.93 99.04 98.19 98.79
J48 + RF + MLP 98.4 98.72 98.82 99.04 99.04 99.57 99.36 99.25 99.36 99.15 99.07
AVG 96.96 97.78 97.94 98.13 98.04 98.32 98.23 98.32 98.36 97.96 ——

Bold values indicate the highest obtained recognition rates.

5.2. GLCM Results

In the proposed ILD, features are extracted using GLCM by using equations explained
in Section 3.2.1. These extracted features are passed to classifiers and ensembles of classifiers
to train them.

Figure 11 shows the performance comparison of the GLCM local features considered
for specific ML classifiers in the proposed approach of ILD tested across all datasets. Here,
it can be observed that random forest and ensembles of RF + SVM + MLP give the best
performance across all datasets.
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Figure 11. Performance evaluation of GLCM local features for the specific ML classifiers in the proposed approach of ILD
across all datasets using percentage accuracy.

The performance evaluation of GLCM local features across all datasets for specific
ML classifiers in the proposed approach of ILD using percentage accuracy is shown in
Figure 12. The graph shows that IIITD Combined Spoofing gives good performance across
all classifiers and ensembles of classifiers.
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Figure 12. Performance evaluation of GLCM local features across all datasets for the specific ML classifiers in the proposed
approach of ILD using percentage accuracy.

5.3. Fusion of TSBTC and GLCM Results

The best performance from TSBTC N-ary and GLCM local-level features are concate-
nated to get the feature-level fusion for ILD. Here, both fusions are considered, TSBTC
10-ary + GLCM and TSBTC 11-ary + GLCM.

Figures 13–16 show the performance comparison of TSBTC, GLCM, and the fusion of
the global features of TSBTC N-ary and local features of GLCM for specific ML classifiers
in the proposed approach of ILD tested on Clarkson 2013, Clarkson 2015, IIITD Contact,
and IIITD Combined Spoofing dataset, respectively. Here, an observed fusion of TSBTC
and GLCM gives the best performance across all datasets.
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Figure 13. Performance evaluation of TSBTC, GLCM, and fusion of TSBTC and GLCM local features for the specific ML
classifiers in the proposed approach of ILD for the Clarkson 2013 dataset using percentage accuracy.
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Figure 14. Performance evaluation of TSBTC, GLCM, and fusion of TSBTC and GLCM local features for the specific ML
classifiers in the proposed approach of ILD for the Clarkson 2015 dataset using percentage accuracy.



Sensors 2021, 21, 7408 17 of 23

Sensors 2021, 21, x FOR PEER REVIEW 18 of 25 
 

 

 

Figure 14. Performance evaluation of TSBTC, GLCM, and fusion of TSBTC and GLCM local features for the specific ML classifiers in the proposed approach of ILD for the Clarkson 
2015 dataset using percentage accuracy. 

 

55
60
65
70
75
80
85
90
95

A
cc

ur
ac

y 
In

 %
Classifiers

Avg TSBTC+GLCM GLCM Avg TSBTC

55

60

65

70

75

80

A
cc

ur
ac

y 
In

 %

Classifiers

Avg TSBTC+GLCM GLCM Avg TSBTC

Figure 15. Performance evaluation of TSBTC, GLCM, and fusion of TSBTC and GLCM local features for the specific ML
classifiers in the proposed approach of ILD for IIITD Contact.
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Figure 16. Performance evaluation of TSBTC, GLCM, and fusion of TSBTC and GLCM local features for the specific ML
classifiers in the proposed approach of ILD for IIITD Combined Spoofing dataset.

From Table 8, it is observed that the highest ILD accuracy comes to around 93.78%
with the fusion of TSBTC’s highest performance with GLCM features using the RF classifier
for the Clarkson 2013 dataset. The highest accuracy comes to around 95.57%, with the
fusion of TSBTC’s highest performance with GLCM features using the RF classifier for the
Clarkson 2015 dataset. For the IIITD Contact dataset, the highest accuracy comes to around
78.88%, with the fusion of TSBTC’s highest performance with GLCM features by using
the RF classifier. The highest observed ILD accuracy comes to around 99.68%, with the
fusion of TSBTC’s highest performance with GLCM features using RF and an ensemble of
J48 + RF + MLP classifiers for the IIITD Combined Spoofing dataset.
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Table 8. Performance comparison of GLCM, TSBTC, and fusion of TSBTC and GLCM across all classifiers using an average percentage of accuracy, precision, recall, and F-ratio values.

Classifiers/Ensembles
of Classifiers

Accuracy in Percentage (%)
Clarkson 2013 Clarkson 2015 IIITD Contact IIITD Combined Spoofing

TSBTC +
GLCM GLCM TSBTC TSBTC +

GLM GLCM TSBTC TSBTC +
GLCM GLCM TSBTC TSBTC +

GLCM GLCM TSBTC

NB 83.74 81.77 84.40 65.33 67.84 63.89 58.91 59.51 63.91 97.55 92.86 93.85
J48 91.54 83.23 90.23 91.34 73.97 91.35 69.31 72.94 65.49 99.04 96.43 98.97
SVM 86.73 82.21 86.51 61.99 59.94 61.71 64.09 73.20 64.09 98.99 95.51 97.65
Random Forest 93.78 82.79 93.44 95.57 82.01 95.44 78.88 75.36 76.51 99.57 96.73 99.22
MLP 88.26 83.81 87.97 90.30 77.11 90.19 64.13 73.01 65.67 99.57 98.06 98.91
SVM + RF + NB 86.88 83.38 87.03 79.43 64.98 76.15 69.18 73.64 65.67 99.20 96.63 97.92
SVM + RF + RT 91.84 82.50 92.64 94.34 81.33 92.91 76.42 74.79 74.63 99.57 97.04 99.11
RF + SVM + MLP 87.61 83.81 87.39 82.49 75.47 70.23 67.51 73.32 66.28 99.62 97.55 98.62
J48 + RF + MLP 92.63 83.81 91.76 94.00 79.70 94.00 76.07 74.72 69.10 99.68 97.34 99.26
AVG 89.22 83.03 89.04 83.86 73.59 81.76 69.39 72.28 67.93 99.20 96.46 98.16

Bold values indicate the highest obtained recognition rates.
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Figure 17 shows the performance comparison of the fusion of global features of TSBTC
N-ary and GLCM local features considered for specific ML classifiers in the proposed
approach of ILD tested on all datasets. Here, the fusion of TSBTC and GLCM gives the best
performance for all datasets used during the experiments. The highest accuracy achieved is
99.68% for the IIITD Combined Spoofing dataset, which shows that it outperforms others.
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It is observed from Table 9 that ensembles of J48 + RF + MLP classifiers give the
highest accuracy (99.68%) and lowest rate of ACER (0.48%) using the fusion of TSBTC
and GLCM local features in the proposed approach of ILD used with the IIITD Combined
Spoofing dataset.

Table 9. Performance evaluation using accuracy for the proposed approach of ILD for various datasets used during
implementation.

Datasets Classifiers Accuracy
in %

Precision
in %

Recall
in %

F-Measure
in %

APECR
in %

NPCER
in %

ACER
in %

Clarkson 2013 Random Forest 93.78 95.50 86.20 90.60 7.90 4.12 6.01
Clarkson 2015 Random Forest 95.57 96.50 95.50 96.00 4.72 3.47 4.09
IIITD_Contact Random Forest 78.88 79.30 79.40 78.60 21.56 20.28 20.92
IIITD_Spoofing J48 + RF + MLP 99.68 99.80 99.80 99.80 0.12 0.84 0.48

Bold values indicate the highest obtained recognition rates.

6. Discussions

Based on the current experiments, GLCM and TSBTC are the widely utilized image
feature extraction methods. Thepade’s sorted block truncation coding (TSBTC) has been
employed in various image classification applications. For the very first time, TSBTC
has been designed to assess iris presentation attacks. The feature vector generated by
the methods described in Section 3.2 is then supplied as an input to machine learning
and ensembles of classifiers described in Section 3.3 using the Weka tool. Groupings of
TSBTC and GLCM features are used to achieve feature-level fusion. For testing purposes,
four standard datasets are used: Clarkson 2013, Clarkson 2015, IIITD Contact, and IIITD
Combined Spoofing; additionally, databases such as Clarkson 2017 and CASIA can be
examined in the future.

GLCM, a local feature extraction approach that has delivered an excellent average
classification accuracy, as stated in Section 5.2, has been seen in investigations of iris
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presentation attack detection. As explained in Section 5.1, TSBTC has shown better accuracy
versus GLCM. A fusion of TSBTC with GLCM has provided the best iris presentation attack
detection accuracy as 93.78% for the Clarkson 2013 dataset, 95.57% for the Clarkson 2015
dataset, 78.88% for the IIITD Contact dataset, and 99.68% for the IIITD Combined Spoofing
datasets. A comparison of the performance of different machine learning classifiers such
as naïve Bayes, SVM, random forest, J48, and multilayer perceptron and ensembles of
SVM + RF + NB, SVM + RF + RT, RF + SVM + MLP, and J48 + RF + MLP are used for
classification accuracy of live and spoof iris detection. J48 + RF + MLP ensembles of
classifiers have given a maximum accuracy of 99.68%. Though TSBTC has shown promise
in the image classification of colored images for various applications such as land usage
identification, gender classification, and so on, it has also shown promising results for the
detection of iris presentation attacks. The experimental results showed that the proposed
approach efficiently identifies iris spoofing attacks using various sensors.

The feature-level fusion of local GLCM and global TSBTC can distinguish between
live and faked artifacts and offer improved outcomes compared to the latest state-of-the-
art approaches. The findings show that our proposed approach decreases classification
error and improves accuracy compared with the previous approaches used to detect
presentation attacks in an iris detection system. This has been tabulated in Table 10. The
proposed approach is compared to recent research done in this area, and it has already
been concluded that this approach outperforms other methods. Therefore, it works with
images of 128 × 128 pixels. Only 10 variations of TSBTC are used during implementation.

Table 10. The comparative analysis/study of the proposed approach and prevailing methods.

Author/Year Feature Extraction Dataset Performance Measure Classifiers Results (%)

P. Das et al., 2021
[39]

MSU PAD1
MSU PAD2
Notre Dame PAD

Clarkson University (CU),
University of Notre
Dame (ND), and Warsaw
University of Technology
(WUT)

APCER,
BPCER,
ACER

SVM, RF, MLP and
CNN.

ACER = 2.61
ACER = 2.18
ACER = 28.96

Arora et al., 2021 [40] CNN IIITD Accuracy
FAR

VGGNet Acc = 97.98

LeNet Acc = 89.38

ConvNet Acc = 98.99

Omran and
Alshemmary 2020
[41]

CNN, IRISNet IIITD

Sensitivity, accuracy,
specificity, precision
recall, G mean, and
F-measure

(SVM,
KNN, NB, DT Acc = 96.43

Zhao et al., 2019
[42] Mask R-CNN IIITD Accuracy R-CNN, CNN Acc = 98.9

Wang and Kumar
2019 [43]

CNN-SDH,
CNN-Joint Bayesian PolyU bi-spectra Accuracy CNN, SDH Acc = 90.71

Cheng et al., 2019 [44] CNN CASIA-Iris-L Accuracy Hadamard + CNN Acc = 97.41

Chatterjee et al., 2019
[45] DWT, ResNet ATVS Accuracy ResNet Acc = 92.57

Proposed Approach

TSBTC, GLCM,
Fusion of TSBTC and
GLCM

Clarkson 2013

Accuracy, precision,
recall, and F-measure

Random Forest Acc = 93.78

Clarkson 2015 Random Forest Acc= 95.57

IIITD Contact Random Forest Acc = 78.88

IIITD Combined
Spoofing J48 + RF + MLP Acc = 99.68

ACER = 0.48

7. Conclusions

This paper proposed the novel method of ILD to prevent iris spoofing through a
textured lens and print attacks. The proposed approach identified both kinds of print
attacks (capture/scan) and detected iris spoofing attempted using different sensors. Many
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approaches have been used in preprocessing as iris segmentation, normalization, and local-
ization, all of which are computationally based on the ILD method. In this research, TSBTC
and GLCM features are extracted directly from iris images to overcome this drawback.
Feature-level fusions are carried out using global TSBTC and local GLCM features. Various
ML algorithms and their ensemble combinations are trained using these fusion features of
iris images. The experimental validation of the proposed liveness detection approach is
done on four benchmark datasets.

The performance comparison of variants of the proposed approach is made using
ISO/IEC biometric performance evolution metrics, including APCER, NPCER, ACER,
accuracy precision, recall, and F-measures. For the Clarkson 2013 dataset, fake images are
identified with 93.78% accuracy, whereas for Clarkson 2015, the accuracy of the dataset
achieved is 95.57% with the RF model. The accuracy obtained for IIITD Contact is 78.88%,
and for IIITD Combined Spoofing it is 99.68%. Comparing the performances with Iris
Liveness Detection Competition (LivDet-Iris) 2020, the proposed approach got the lowest
ACER of 0.48%. The experimental results showed that the proposed approach efficiently
identifies iris spoofing attacks using various sensors. In future work, this framework
may be extended with the best performance features. Currently, the presented work
explored Thepade’s SBTC as a global representation of iris content. However, the local
content presentation of Thepade’s SBTC would be an exciting exploration in the future.
Moreover, the proposed fusion framework may be applied for the liveness detection of
other biometric traits.
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