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Abstract

:

Traditional supervised time series classification (TSC) tasks assume that all training data are labeled. However, in practice, manually labelling all unlabeled data could be very time-consuming and often requires the participation of skilled domain experts. In this paper, we concern with the positive unlabeled time series classification problem (PUTSC), which refers to automatically labelling the large unlabeled set U based on a small positive labeled set PL. The self-training (ST) is the most widely used method for solving the PUTSC problem and has attracted increased attention due to its simplicity and effectiveness. The existing ST methods simply employ the one-nearest-neighbor (1NN) formula to determine which unlabeled time-series should be labeled. Nevertheless, we note that the 1NN formula might not be optimal for PUTSC tasks because it may be sensitive to the initial labeled data located near the boundary between the positive and negative classes. To overcome this issue, in this paper we propose an exploratory methodology called ST-average. Unlike conventional ST-based approaches, ST-average utilizes the average sequence calculated by DTW barycenter averaging technique to label the data. Compared with any individuals in PL set, the average sequence is more representative. Our proposal is insensitive to the initial labeled data and is more reliable than existing ST-based methods. Besides, we demonstrate that ST-average can naturally be implemented along with many existing techniques used in original ST. Experimental results on public datasets show that ST-average performs better than related popular methods.
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1. Introduction


With the rapid development of the Internet of Things technology, a large number of time series generated by sensor devices have appeared in various fields, including PM2.5 sensing systems [1], activity tracking [2], real-time patient-specific ECG classification [3], and many more. Ubiquitous time-series have received a substantial research interest in clustering, classification, querying, prediction, and indexing of such data. Time-series classification (TSC) is the most widely used among all techniques applied to time-series data and has always attracted great attention [4].



Conventional supervised TSC tasks assume that all training data are labeled, and they train a high-quality classification model based on these labeled data. However, in practice, manually collecting and labelling all unlabeled training data could be very time-consuming and often requires the participation of skilled domain experts. On the other hand, with the popularity of various cheap sensors and the increase in storage capacity, a large number of unlabeled time-series data are being generated every day. Thus, the paradigm of supervised TSC is not practical in many real-life applications. Rather, the TSC tasks in real-life often involve positive unlabeled TSC (PUTSC) [5,6], which we study in this paper. Suppose that PL is a set containing only a small number of positive labeled time-series and U is a large set of unlabeled (positive and negative) time-series, the task of PUTSC is to automatically label the U set based on PL set. Figure 1 shows an example of PUTSC.



The PUTSC is a proper solution in the time-series data mining community when unlabeled time-series are easy to obtain but labelling them is difficult. In the past few years, numerous inspiring algorithms have been proposed to solve the PUTSC problem. The self-training based method (ST) [7] is the most popular PUTSC method and has been successfully used [5,8,9,10,11,12,13,14]. In this paper, we will particularly focus on ST technique due to its effectiveness and popularity. The idea behind ST method is straightforward: if an unlabeled time-series in U is very similar to a labeled time-series in PL, then this unlabeled one has a very high probability of being positive. Based on this idea, the ST labels the most similar time-series in U set to PL set as a positive one and adds this time-series to the PL. The process continues until a certain stopping criterion is met. The detailed description and illustration of the ST algorithm can be found in Section 2.



We note that all the ST based methods simply employ the one-nearest-neighbor (1NN) formula to determine which unlabeled time-series should be labeled and added to PL set. The 1NN formula is straightforward; however, it is challenging to explicitly recognize the class boundary and may be sensitive to the initial labeled time-series located near the boundary between the positive and negative classes. For example, in Figure 2a, the PL set has three initial positive labeled data (circle-1, 7 and 9). The conventional ST based methods will label square-17 as the positive one and add it to PL because it is the most similar data in U to PL. Nevertheless, it is obvious that square-17 is negative data; thus, it leads to an incorrect result. More seriously, a chain effect of wrongs will follow after adding square-17 to the PL set (the square-15 will be added to PL because it is now the most similar data in U to PL). Surprisingly, despite this extensive literature, we are not aware of any work overcoming the drawback presented in Figure 2a.



Facing the aforementioned drawback, inspired by [15] which uses the centroid of time series to improve TSC efficiency and accuracy, in this paper, we propose an exploratory methodology called self-training based on the average sequence of the time-series (ST-average). Our proposal, ST-average, is different from all the ST based works in that: ST-average labels the time-series in U which is the most similar to the average sequence of the PL set as a positive data. Figure 2b illustrates our idea. ST-average first calculates the average sequence of the PL set (circle-C in Figure 2b). Then, circle-2 is labeled as a positive one and added to PL set because it is the most similar time-series in U to circle-C. It can be seen from Figure 2b that our method is largely insensitive to the circle-1. Therefore, it is much more reliable than existing ST methods.



The ST-average is an apparent solution to PUTSC problem. Unfortunately, it is a challenging task to define the average sequence of the time-series. The simplest way is to compute mean value of all time-series using Euclidean Distance. However, this naive method is not feasible because time-series data are always shifted in time axis. Besides, this point-by-point averaging approach cannot capture actual shape of two time-series. For instance, Figure 3a presents two shifted time-series collected from the UCR archive [16]. Anyone could confirm that they are very similar to each other although they appear dephased in time. However, if we use Euclidean Distance averaging, the resultant undesired average sequence shown in Figure 3b will resemble none of the parent time-series. To obtain a reasonable average sequence, we compute average sequence of the time-series under the Dynamic Time Warping (DTW) [17] distance because DTW allows time-series to be locally shifted and stretched. Specifically, in this paper, we adopt a well-known technique, DTW barycenter averaging (DBA) [18], to compute average sequence of the time-series. Figure 3c shows the resultant average sequence when DBA is applied. Obviously, the result is correct and more natural when averaged using DBA technique.



To summarize, we make the following contributions.



	
We point out that traditional ST-based methods may be sensitive to the initial labeled time-series located near the boundary between the positive and negative classes. To overcome this issue, we propose a novel method ST-average to solve the PUTSC problem by using the average sequence of the PL set to decide which unlabeled time-series should be labeled and added into PL set.



	
It is not a trivial task to calculate the average sequence of the time-series set and we demonstrate the necessity of using DBA through experiments.



	
The ST-average method is orthogonal to some of the stopping criteria and similarity measures used in ST-based methods. We show how ST-average can naturally be implemented along with them and present an explicit implementation of ST-average.



	
We conduct experiments using public well-know time-series datasets to evaluate the performance of our proposal. Experimental results demonstrate that our method performs better than related competitors.






Our paper is organized as follows. Section 2 introduces the necessary background knowledge and related work of our research. Particularly, we focus on describing self-training technique for solving PUTSC problem. Our proposed method can be found in Section 3. Section 4 presents the experimental results on real-world datasets. The effectiveness and efficiency of the proposed method are reported in this part. We finally conclude this paper in Section 5.




2. Background and Related Work


Before formally elucidating the proposed ST-average algorithm, this section provides a brief overview of the background and related work.



2.1. Positive Unlabeled Time Series Classification


The deficit of labeled time-series data in the time-series data mining domain has motivated increasing research in the positive unlabeled TSC (PUTSC) topics. Given a PL set which contains only a small number of positive labeled time-series and a U set which is a large set of unlabeled (positive and negative) time-series, the task of PUTSC is to automatically label the U set based on PL set. For example, the PUTSC can be applied to classify ECG heartbeats as abnormal or normal based on some labeled abnormal ones.



The PUTSC can be regarded as a special case of semi-supervised learning (SSL) [19,20]. However, most existing SSL approaches cannot be used in PUTSC due to the specific characteristics of time-series data such as high dimension, noisy, different lengths and high feature correlation. In the specialized literature, as far as we know, only two main approaches have been proposed to tackle the PUTSC problem effectively. The first one is based on the clustering technique [6,21]. Representative methods include Learning from Common Local Clusters (LCLC) [6] and Ensemble based Learning from Common Local Clusters (En-LCLC) [21]. The second one is based on self-training technique [5,8,9,10,11,12,13,14]. We note that the majority of related works solving the PUTSC problem have used the self-training approach because its instance-based classifier best suits the particular features of time-series. Thus, in this paper, we follow this tendency.




2.2. Self-Training Technique for the PUTSC


In this subsection, we discuss how the ST algorithm works. The pseudo-code of the ST method for PUTSC can be found in Algorithm 1.






	Algorithm 1 The pseudo-code of the self-training method for PUTSC.



	Require:



	
  P L  : Original positive labeled data; U: Unlabeled data.   





	Ensure:



	
  P o s i t i v e  : The time-series set labeled as positive.





	
  N e g a t i v e  : The time-series set labeled as negative.





	
	1:

	
  l i s t =  { }  ; i = 1 ; i n f o =  { }  ; P  L ′  = P L ;  




	2:

	
while  U ≠ ∅  do




	3:

	
    x = arg  min  x ∈ U    min   x ′  ∈ P L   Distance  ( x ,  x ′  )   ;




	4:

	
    l i s t ( i ) = x ;  i n f o ( i ) = Information ( x , i ) ;  i = i + 1 ;  




	5:

	
    U = U ∖ { x } ;    P L = P L ∪ { x } ;  




	6:

	
end while




	7:

	
  s t o p = StoppingCriterion ( i n f o )  ;




	8:

	
  P o s i t i v e = P  L ′  ∪  { l i s t  ( 1 )  , l i s t  ( 2 )  , … , l i s t  ( s t o p )  }   ;




	9:

	
  N e g a t i v e = { l i s t ( s t o p + 1 ) , l i s t ( s t o p + 2 ) , … , l i s t ( i ) }  ;




	10:

	
return  P o s i t i v e , N e g a t i v e  ;














The ST is an iterative method and it iteratively labels all time-series in U (line 2–6). In each iteration, ST first finds the unlabeled time-series x in U which is closest to PL based on the one-nearest-neighbor (1NN) formula (line 3). The Distance() is a function to measure the similarity between two time-series. Then, ST records the x and Information(  x , i  ) in the map list and info in i-  t h   iteration, respectively (line 4). The Information() is a function to record the important information of x. Note that the Information() is related to the stopping criterion StoppingCriterion(). For example, later we will see that when the stopping criterion confidence [8] is used, the Information(  x , i  ) is the minimal distance between x and PL. Next, in line 5, the time-series x is removed from the U set and added into the PL set. After all time-series are labeled, the StoppingCriterion() estimates the number of positive time-series (line 7). The top stop time-series in list are labeled as positive (line 8) while the rest are labeled as negative (line 9). ST finally obtain the Positive set and Negative set which will be returned (line 10). We present a concrete example illustrated in Figure 4 to help reader gain an appreciation of the ST.



In Figure 4, at the initial state, the three red circles indicate the original PL set and all the blue instances indicate U set. In each iteration, the unlabeled instance which is closest to PL is labeled as positive and added to PL. For example, in iteration 1, the circle-1 is labeled because it is now closest to PL. We can observe that the labeled set PL is augmented gradually until all instances are labeled. After labelling all the instances in the set U (iteration 11), the stopping criterion calculates the stopping point to build the final positive set and negative set. Specifically, in our example, the value of stop is equal to 4 and at the stopping state, all red instances indicate the positive set while the rest are labeled as negative set.




2.3. Related Work for the Self-Training


From the Algorithm 1, we can observe that the similarity measure between two time-series (Distance) and the stopping criterion (StoppingCriterion) are two important parts of the ST method. The current researches for the ST method also focus on devising suitable similarity measures and stopping criteria. For similarity measure, representative similarity measures in the scope of ST include Euclidean Distance (ED) [7], Dynamic Time Warping (DTW) [8], DTW-D distance [13], and Maximum Diagonal Line of the Cross-Recurrence Quantification Analysis (MDL-CRQA) [14]. Note that the classic ED and DTW are two similarity measures that are widely used in the time-series mining community. As for stopping criterion, representative stopping methods include minimal nearest neighbor criterion [7], stopping criterion confidence (SCC) [8], Minimum Description Length principle based criterion [9,10,11], and Class Boundary Description by Graphic Analysis [12].



Our proposal is different from all the related works mentioned above in that: we focus on improving the performance of classic ST method by changing the one-nearest-neighbor selection formula (instruction 3 in Algorithm 1). We do not claim a contribution to the similarity measure or stop criterion used in ST method. Rather, we note that our proposal is orthogonal to the above works and can naturally be implemented along with state-of-the-art similarity measures or stop criteria (we will see an example in Section 3.4). In general, our contribution is an effective solution to the drawback of ST which may otherwise plague any attempt to ST.





3. Proposed Method


In this section, we first introduce the motivation behind our approach. Then, we describe two key techniques used in our method. We finally elaborate on our ST-average method and study the time complexity in detail.



3.1. Motivation


Despite the prevalence of the ST, we observe that it still has a drawback: the overall performance of ST may be sensitive to the initial labeled time-series. Usually, the probability to be mislabeled will be high when PL set includes the instances located near the boundary between the positive and negative classes. For example, in Figure 2a, we can see that ST incorrectly labels a negative data as positive class. This drawback motivates us to devise a more reliable and robust method.



In this paper, we propose the ST-average approach to overcome the drawback of conventional ST. Unlike ST, the proposed ST-average first calculates the average sequence of PL set and then finds the time-series x in U which is closest to average sequence. ST-average eliminates the effects of instances located near the negative and positive boundary by using the average sequence. Compared with any individuals in PL set, the average sequence may be more representative. A concrete example can be found in Figure 2b.



The key to ST-average algorithm is to calculate the average sequence of the PL set. However, it is not a trivial task to define the average sequence. The classical data can be averaged by their mean value using the traditional point-by-point averaging approach, but time-series cannot because they always vary in length and shifted in time axis (temporal aberrations) [22,23,24]. In the field of time-series data mining, the DTW distance is a well-established and widely used technique to address both issues, which can cope with shifted time-series of different lengths by looking for optimal alignment between two time-series. Thus, in ST-average, the average sequence is obtained in the DTW distance space. Since our method utilizes DTW technique and its averaging method, we first describe them in the next subsection.




3.2. Dynamic Time Warping


DTW [17,25] is the most popular distance in time-series, and performs well in similarity search because it allows time-flexible alignment and can find the best matching between two time-series by searching for optimal alignments; hence, it allows time-series to be locally shifted along the temporal axis and can handle time-series of unequal lengths. Figure 5 illustrates that compared with Euclidean Distance, DTW guarantees to obtain the optimal alignment between two time-series   A = ( 1 , 1 , 2 , 2.5 , 3 , 3 , 3 , 3 , 2.5 , 2.5 , 2 , 2 , 1 , 1 )   and   B = ( 1 , 1 , 1 , 2 , 2.5 , 3 , 3 , 3 , 2.5 , 2 , 2 , 2 , 1 , 1 )  .



In DTW, an alignment from time-series   A = (  a 1  ,  a 2  , … ,  a m  )   to time-series   B = (  b 1  ,  b 2  , … ,  b n  )   is described by a warping path:   W = (  w 1  ,  w 2  , … ,  w L  )  , where L is the length of the warping path. The   k  t h    element    w k  =  ( i , j )    represents the alignment from   a i   in A to   b j   in B. The warping path must satisfy the following constraints [26,27].



	
Boundary constraint:    w 1  =  ( 1 , 1 )    and    w L  =  ( m , n )   .



	
Continuity-monotonically constraint:    w k  −  w  k − 1   ∈  {  ( 1 , 1 )  ,  ( 0 , 1 )  ,  ( 1 , 0 )  }   .






Given a warping path W, the distance cost between A and B under W is calculated as follows:


  D i  s W   ( A , B )  =  ∑  i = 1  L  d  (  a   w i   [ 1 ]    ,  b   w i   [ 2 ]    )  ,  



(1)




where   d  ( x , y )  =   ( x − y )  2   . Suppose that   W ∗   denotes the set of all warping paths, then the DTW distance between A and B is defined as follows:


  DTW  ( A , B )  =  min  W ∈  W ∗    D i  s W   ( A , B )  .  



(2)




The optimal alignment from A to B is


   W  O P T    ( A , B )  = arg  min W  D i  s W   ( A , B )  .  



(3)







Note that brute-force examining all possible warping paths to calculate the DTW distance could be very expensive or even infeasible because there are exponentially many possible warping paths. Fortunately, the DTW can be calculated by dynamic programming. Specifically, we can calculate DTW distance between A and B as follows.


  D ( 0 , 0 ) = 0 ; D ( 0 , 1 : n ) = + ∞ ; D ( 1 : m , 0 ) = + ∞  



(4)






  D  ( i , j )  = d  (  a i  ,  b j  )  + m i n      D ( i , j − 1 )       D ( i − 1 , j )       D ( i − 1 , j − 1 )       



(5)






  DTW ( A , B ) = D ( m , n ) .  



(6)







The D is called the accumulated cost matrix and the optimal warping path can be found by back-tracking matrix D [24]. In this way, the time complexity of calculating DTW is   O ( m n )  .




3.3. Time-Series Averaging


Suppose   T = {  T 1  ,  T 2  , … ,  T N  }   is a set of N time-series. Generally, the time-series can have different lengths. The average sequence of T under the DTW distance can be formulated as follows [18,24].


   T ¯  = arg min  1 N   ∑  i = 1  N  DTW  (  T i  , A )  , ∀ A ∈  S l  , ∀ l ∈  [ 1 , + ∞ )  ,  



(7)




where   S l   indicates the space of all time-series of length l. We have to consider all possible values for length l because the information on the average sequence length is not available.



Many effective algorithms have been proposed to solve the time-series averaging problem [18,23,24,28,29]. Among these existing time-series averaging algorithms, the DTW barycenter averaging (DBA) [18] is the most cited solution up to date (more than 510 citations) and is widely used as the basis of many time-series applications such as clustering and classification [15]. Thus, in this paper, DBA is used as our averaging method and we briefly introduce how DBA works.



The DBA is an iterative method and it iteratively refines the initial selected randomly average sequence to obtain the final average sequence. In each iteration, the element    T ¯   ( k )    in average sequence   T ¯   is updated by averaging the elements in    T i   ( i = 1 , 2 , … , N )    which align with    T ¯   ( k )    based on DTW. We provide the pseudo-code of DBA (Algorithm 2) to help reader reproduce our proposed method.






	Algorithm 2 The pseudo-code of the DBA method for averaging time-series set.



	Require:



	
  T = {  T 1  ,  T 2  , … ,  T N  }  : the time-series set to average.





	
  T ¯  : initial average sequence (length l) selected from T randomly.





	
  I T  : number of iterations.   





	Ensure:



	
  T ¯  : the average sequence.





	
	1:

	
for  i = 1 : I T  do




	2:

	
    a l i g n e d S e t ( k ) = ∅ , k = 1 , … , l  ;




	3:

	
  for   j = 1 : N   do




	4:

	
    Using DTW to align   T ¯   and   T j  ;




	5:

	
    for   k = 1 : l  




	6:

	
      Identifying the elements   C k   in   T j   which align with element    T ¯   ( k )   ;




	7:

	
        a l i g n e d S e t  ( k )  = a l i g n e d S e t  ( k )  ∪  C k   ;




	8:

	
    end for




	9:

	
  end for




	10:

	
 for   k = 1 : l   do




	11:

	
       T ¯   ( k )  = m e a n  ( a l i g n e d S e t  ( k )  )   ;




	12:

	
 end for




	13:

	
end for




	14:

	
return   T ¯  ;















3.4. The ST-Average Method


In this subsection, we present a formal and detailed description of the ST-average method. The pseudo-code can be found in Algorithm 3. It can be seen from Algorithm 3 that ST-average is based on the similar process of ST but adds the DBA technique (line 3). Besides, the unlabeled time-series which is closest to the average sequence is labeled (line 4). Figure 6 visualizes ST-average.






	Algorithm 3 The pseudo-code of the ST-average method for PUTSC.



	Require:



	   P L  : Original positive labeled data; U: Unlabeled data.



	Ensure:



	   P o s i t i v e  : The time-series set labeled as positive.



	   N e g a t i v e  : The time-series set labeled as negative.



	
	1:

	
  l i s t =  { }  ; i = 1 ; i n f o =  { }  ; P  L ′  = P L ;  




	2:

	
while  U ≠ ∅  do




	3:

	
   c e n t e r = D B A ( P L )  ;




	4:

	
   x = arg  min  x ∈ U   Distance  ( x , c e n t e r )   ;




	5:

	
   l i s t ( i ) = x ;  i n f o ( i ) = Information ( x , i ) ;  i = i + 1 ;  




	6:

	
   U = U ∖ { x } ;    P L = P L ∪ { x } ;  




	7:

	
end while




	8:

	
  s t o p = StoppingCriterion ( i n f o )  ;




	9:

	
  P o s i t i v e = P  L ′  ∪  { l i s t  ( 1 )  , l i s t  ( 2 )  , … , l i s t  ( s t o p )  }   ;




	10:

	
  N e g a t i v e = { l i s t ( s t o p + 1 ) , l i s t ( s t o p + 2 ) , … , l i s t ( i ) }  ;




	11:

	
return  P o s i t i v e , N e g a t i v e  ;














Note that in Algorithm 3, the three functions Distance(), Information() and StoppingCriterion() are implicit. When using ST-average in practice, these three functions need to be implemented by explicit algorithms. For example, the Distance() can be simply implemented by DTW distance, Euclidean Distance or DTW-D distance and the StoppingCriterion() can be implemented by minimal nearest neighbor criterion [7], stopping criterion confidence [8] or Minimum Description Length principle based criterion [9,10,11].



For concreteness, in this part, we describe an explicit implementation of ST-average method which will be used in our experiments. Specifically, the function Distance() is implemented by DTW distance due to its effectiveness and popularity in the time-series domain. The StoppingCriterion() is implemented by stopping criterion confidence (SCC) [8], which is an improvement method of the seminal stopping criterion proposed in [7]. The SCC is defined as follows.


  S C C  ( i )  =   | i n f o ( i ) − i n f o ( i − 1 ) |   S t d ( i n f o ( 1 ) , … , i n f o ( i ) )   ×   | U | − ( i − 1 )   | U |   ,  



(8)




in which   | U |   is the number of initial unlabeled time-series,   S t d   is a standard deviation calculation function, and   i n f o ( i )   denotes the minimum DTW distance between the selected time-series x in iteration i and the closest time-series from   P L   set. That is,


  i n f o  ( i )  = Information  ( x , i )  =  min   x ′  ∈ P L   DTW  ( x ,  x ′  )  .  



(9)




When using SCC criterion, the value of stop (line 8 in Algorithm 3) is calculated as follows (In literature [8],   s t o p =   arg max   i ∈ [ 1 , | U | ]   S C C  ( i )  − 2 .   However, we find that when combined with our method,   s t o p =   arg max   i ∈ [ 1 , | U | ]   S C C  ( i )  − 1   can achieve better performance in our experiments.):


  s t o p = StoppingCriterion  ( i n f o )  =   arg max   i ∈ [ 1 , | U | ]   S C C  ( i )  − 1 .  



(10)




We here just simply use the SCC criterion and we direct the reader to [8] for a comprehensive survey of SCC.




3.5. Time Complexity Analysis


This subsection shows the time complexity of ST-average. The ST-average process can be divided into four parts: (1) Computing DBA; (2) Finding the selected time-series x in iteration i. (3) Recording the information of x. (4) Calculating the stopping point. In this part, we assume that the similarity measure between time-series is implemented by DTW distance and all time-series have the same length L; thus, the complexity of computing DTW is   O (  L 2  )  . Suppose that   | P L |   and   | U |   are the number of initial labeled time-series and unlabeled time-series, respectively, and N is the sum of   | P L |   and   | U |  , and I denotes the number of iterations in each DBA computation. From [18] we know that the DBA has a time complexity of   O ( I K  L 2  )   to compute the average sequence from the K time-series. Thus, we can obtain the computation of DBA in ST-average requires


     C ( D B A )     =  O ( I | P L |   L 2  + I  ( | P L | + 1 )   L 2  + ⋯ + I N  L 2   )           = O ( I  N 2   L 2  ) .     



(11)







In each iteration, ST-average must scan all the data in positive labeled set at that time to find the selected time-series x. Thus,


     C ( f i n d _ x )     =  O ( | P L |   L 2  +  ( | P L | + 1 )   L 2  + ⋯ + N  L 2   )           = O (  N 2   L 2  ) .     



(12)







The functions information() and StoppingCriterion() typically require time complexity that linearly with the L and   | U |  ; thus, they are relatively minor and can be ignored in our analysis. Therefore, the overall S-average requires


     C  S T − a v e r a g e      = C ( D B A ) + C ( f i n d _ x )          = O (  ( I + 1 )   N 2   L 2  ) .     



(13)







As for ST, to improve its efficiency, we can store a look-up table which contains all of the DTW distance between pairs of time-series. Then, the distance DTW   ( x ,  x ′  )   (line 3 in Algorithm 1) can be read from this look-up table. In this way,


   C  S T    ( f i n d _ x )  = O  (  N 2   L 2  )  .  



(14)




Like ST-average, the time complexity of information() and StoppingCriterion() in ST can also be ignored. Thus, the conventional ST requires


   C  S T   = O  (  N 2   L 2  )  .  



(15)




Therefore, the time complexity of ST is smaller than our method ST-average. The speedup obtained by ST is


  S p e e d u p =   C  S T − a v e r a g e    C  S T    = I + 1 .  



(16)









4. Experimental Evaluation


4.1. Experimental Setup


4.1.1. Algorithms


In this evaluation, four representative methods are used to illustrate the effectiveness of ST-average and we give a short introduction of each of them.



	
ST-SCC is proposed in [8], and is one of the state-of-the-art algorithms for PUTSC problem, which uses DTW distance as the similarity measure and SCC as the stopping criterion.



	
C-MDL is proposed in [9], which uses the constraint-based MDL principle for PUTSC problem. This method does not use any stopping criteria, but stops the self-training process when the number of time-series which does not satisfy the constraints exceeds the predefined threshold.



	
SCC-center-dtw is our proposed method presented in Section 3.4, which utilizes the idea of ST-average and is an explicit implementation of ST-average.



	
SCC-center-ed is similar to our SCC-center-dtw approach. The only difference is that SCC-center-ed uses the Euclidean Distance (ED) to calculate the average sequence while SCC-center-dtw uses DTW distance.






The above four algorithms are sufficient to show whether ST-average is effective. Specifically, from the comparison of ST-SCC and SCC-center-dtw, we can know whether the idea of ST-average can improve the performance of the original ST-SCC. From the comparison of SCC-center-dtw and SCC-center-ed, we can know whether it is necessary to calculate the average sequence under the DTW distance. Besides, the C-MDL and SCC-center-dtw can be regarded as two variants of ST technique, we are interested in which of these two variants performs better.




4.1.2. The Performance Metric


We focus on evaluating the performance of labelling the original unlabeled instances (U set). This is equivalent to classifying the U set. The F1-score is used in our experiments to evaluate the performance of the proposal and baseline methods. F1-score is the harmonic mean of the recall (r) and precision (p), and can be defined as follows:


  F 1 =   2 × p × r   p + r   ,  



(17)




in which


  p =   n u m b e r   o f   c o r r e c t   p o s i t i v e   p r e d i c t i o n s   n u m b e r   o f   p o s i t i v e   p r e d i c t i o n s    



(18)




and


  r =   n u m b e r   o f   c o r r e c t   p o s i t i v e   p r e d i c t i o n s   n u m b e r   o f   p o s i t i v e   i n s t a n c e s   .  



(19)







From Equation (17) we know that the F1-score can be large only when both r and p are excellent. Therefore, F1-score is suitable for our purpose of classifying positive and negative instances accurately. Too low p or too low r is unacceptable, and can be reflected by a small value of F1-score.



To provide a more intuitive comparison of the performances among different approaches, we sort the labelling results [30]. The best-performing method ranks 1. If multiple approaches have the same F1-score, we set their rankings as the average of their corresponding rankings. For example, if ST-SCC and SCC-center-ed have same labelling results on the ECG5000 dataset, their rankings are supposed to be 1 and 2, respectively; therefore, we set their rankings as   ( 1 + 2 ) / 2 = 1.5  . In addition, the standard deviation of the ranking is used to illustrate the performance difference of the method on different datasets.




4.1.3. Datasets


In this study, 10 time-series datasets collected from the UCR Archive are used to evaluate the performance of all algorithms. The selected datasets vary highly in their time-series length, classes, number of positive samples and application fields. Detailed information about these widely used datasets can be found in Table 1.



The reader should note that the goal of our experiments is to perform the classification only for U set provided by training data; thus, unlike traditional machine learning tasks, our experiments do not involve any testing data. We aim to label the data in U as positive or negative. However, some of the datasets have more than two classes. Therefore, we select the data whose class label = 1 as positive class, and all others as negative classes.




4.1.4. Implementation Details


We implemented all algorithms in MATLAB (version R2019b), and ran all the experiments using Windows 10 enterprise with 2.30 GHz CPU (i7-9750H) and 16GB memory. We set the size of initial PL set   | P L | = 3   and the number of iterations in DBA   I = 15  . In order to see the effects of the initial positive instances on the performance and eliminate the randomness, for each dataset, we repeat the experiments 20 times with various randomly selected initial positive instances.



In our implementation of DBA, the initial average sequence is selected randomly. We find that this will affect the F1 value. To eliminate the impact of randomness, we run each of the 20 sets of randomly selected initial positive instances 20 times and calculate the mean and standard deviation of these 400 F1 values. For other algorithms, since there is no uncertainty like DBA does, we only calculated the mean and standard deviation of the F1 values of 20 sets of initial positive instances for each data set.



As for C-MDL, we set the predefined threshold to 5 according to [9] and the cardinality used in the MDL principle to 16.





4.2. F1-Score


This part presents the performance of labelling the U set. Table 2 reports the mean and standard deviation of F1 values of each algorithm on different datasets. To compare the advantages and disadvantages of different algorithms more intuitively, we rank the mean of the F1 value among different algorithms on the same dataset, as Table 3 illustrates. SCC-center-dtw attains the highest average ranking in the labelling the U set tasks. It proves that SCC-center-dtw performs well overall. Under the smallest standard deviation of ranking, the ranking of SCC-center-dtw is quite stable compared with other methods. It demonstrates that SCC-center-dtw is more effective and robust on different datasets than other methods.



In Table 3, it is apparent that SCC-center-dtw performs better than ST-SCC except in the FiftyWords dataset. It demonstrates that our ST-average idea can improve the performance of original ST-SCC method. From Table 2, we can find that SCC-center-dtw and ST-SCC perform similarly on the FiftyWords dataset. The mean F1 value of ST-SCC is 0.780, while it is 0.759 of SCC-center-dtw. Table 3 also shows that there are eight datasets on which SCC-center-dtw outperforms SCC-center-ed, which illustrates the necessity of using the DTW distance to average time-series. Besides, we can find that SCC-center-dtw performs better than C-MDL except in the ItalyPowerDemand and ECG5000 dataset. The mean F1 value of SCC-center-dtw and C-MDL on the ECG5000 dataset are 0.758 and 0.796 separately, and they are 0.603 and 0.684 when these two algorithms run on the ItalyPowerDemand dataset. Their labelling performance on these datasets is similar.



Note that, in some rare cases, the SCC-center-dtw and SCC-center-ed have the similar mean F1 value. For example, in ECG5000 dataset, the average F1 value of SCC-center-dtw is 0.758 while is 0.891 for SCC-center-ed. It is because SCC-center-dtw and SCC-center-ed can obtain similar resultant average sequence. Figure 7a presents two average sequences calculated by Euclidean Distance and DTW distance in ECG5000 dataset, respectively. It is obvious that these two sequences have the similar shape. In such case, there is no significant different between Euclidean Distance and DTW in averaging time-series. Therefore, SCC-center-dtw and SCC-center-ed have the similar performance in ECG5000. However, in FiftyWords dataset, averaged sequences shown in Figure 7b are totally different. Figure 7c shows the actual time-series in FiftyWords dataset. Obviously, this actual time-series has a similar shape to the average sequence calculated by DTW. Therefore, in FiftyWords dataset, SCC-center-dtw performs better than SCC-center-ed.




4.3. Running Time


Efficiency is another criteria for assessing algorithms. In this subsection, we evaluate the running time of four approaches. The average time required to label each unlabeled time-series is recorded and the results can be found in Figure 8. The results show that SCC-center-dtw is significantly more time-consuming than ST-SCC, SCC-center-ed and C-MDL on all datasets as we expected. We note that ST-SCC is 9.3 to 15 faster than SCC-center-dtw. In our experiments, the number of iterations in DBA   I = 15  . Therefore, according to Equation (16), theoretically, the speedup obtained by ST-SCC is around 16. The results illustrated in Figure 8 generally confirm the time complexity analysis in Section 3.5.



Overall, compared to ST-SCC, SCC-center-ed and C-MDL, the SCC-center-dtw achieves better results with more running time. For some applications which are sensitive to the computational time, there exists some techniques to speed up SCC-center-dtw. First, the lower bound techniques [31] and the PrunedDTW [32] can be used to accelerate DTW computation. Second, the Sakoe-Chiba Band [33] or Itakura Parallelogram [34] can be utilized to speed up DBA procedure.





5. Conclusions and Future Work


In this paper, we propose the ST-average method to solve the PUTSC problem. Unlike traditional ST-based method, our proposal utilizes the average sequence of the PL set to decide which unlabeled time-series should be labeled and added into PL set. The average sequence is calculated by DBA technique, and we explain in detail the necessity of using DBA. We conduct extensive experiments on public datasets to demonstrate the efficiency and effectiveness of the proposed method. Experimental results show that our proposal achieves better results. The theoretical analysis and actual running time show that our method is slower than related approaches. We acknowledge this weakness and provide some feasible solutions.



It is worth noting that ST-average can possibly be combined with many similarity measures and stopping criteria used in classic ST-based method to provide even better results. In this paper, the SCC-center-dtw algorithm which utilizes DTW distance and SCC stopping criterion is presented. It is an interesting topic for future work to identify the best combination, and we might be able to use active learning technique to select the best combination, as literature [5] did. Another promising direction is examining another way to decide which unlabeled time-series should be labeled. For example, the time-series x which has the smallest sum of DTW distance from all instances in the PL can be labeled and added into PL set. It will be interesting to know what kind of selection method is the most effective.
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Figure 1. A simple example of PUTSC. Here we assume that the size of the PL set   | P L | = 1  . The task of PUTSC is to automatically label the large set of unlabeled time-series U based on PL set. 
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Figure 2. An illustration of the difference between ST based methods (a) and our ST-average method (b). ST labels the unlabeled data (square-17) which is closest to PL set while ST-average labels the unlabeled data (circle-2) which is closest to the average sequence of the PL set. 
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[image: Sensors 21 07414 g002]







[image: Sensors 21 07414 g003 550] 





Figure 3. (a) two shifted time-series collected from the UCR archive. (b) the resulting average sequence when averaged under the Euclidean Distance. (c) the resulting average sequence when averaged under the DTW distance using DBA technique. 
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Figure 4. An illustration of ST procedure. In this example, the initial PL set has three instances. 
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Figure 5. An optimal alignment generated by DTW (left), and a strictly time-rigid alignment generated by Euclidean Distance (right). 
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Figure 6. An illustration of the first four iterations of the ST-average. In each iteration, ST-average first computes average sequence C and then labels the time-series which is closest to C. 
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Figure 7. Average sequences obtained by Euclidean Distance and DTW distance in ECG5000 dataset (a) and FiftyWords dataset (b). (c) The actual time-series in the FiftyWords dataset. 






Figure 7. Average sequences obtained by Euclidean Distance and DTW distance in ECG5000 dataset (a) and FiftyWords dataset (b). (c) The actual time-series in the FiftyWords dataset.



[image: Sensors 21 07414 g007]







[image: Sensors 21 07414 g008 550] 





Figure 8. The efficiency of each method on different datasets. The ST-SCC, SCC-center-ed and C-MDL have similar performance. However, SCC-center-dtw is significantly more time-consuming than them. 
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Table 1. Datasets descriptions.
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	No.
	Dataset
	Size of Training Data
	Time-Series length
	Classes
	Number of Positive Samples
	Type





	1
	CBF
	30
	128
	3
	10
	Simulated



	2
	Meat
	60
	448
	3
	20
	Spectro



	3
	Coffee
	28
	286
	2
	14
	Spectro



	4
	FaceAll
	560
	131
	14
	40
	Image



	5
	ECG5000
	500
	140
	5
	292
	ECG



	6
	Strawberry
	370
	235
	2
	132
	Spectro



	7
	FiftyWords
	450
	270
	50
	52
	Image



	8
	TwoleadECG
	23
	82
	2
	12
	ECG



	9
	ItalyPowerDemand
	67
	24
	2
	34
	Sensor



	10
	FreezerRegularTrain
	150
	301
	2
	75
	Sensor
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Table 2. The mean( μ ) and standard deviation( σ ) of F1 value of four methods on various datasets.
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	Dataset
	ST-SCC

   μ ± σ   
	SCC-Center-dtw

   μ ± σ   
	SCC-Center-ed

   μ ± σ   
	C-MDL

   μ ± σ   





	CBF
	0.669 ± 0.123
	0.805 ± 0.101
	0.771 ± 0.103
	0.488 ± 0.175



	Meat
	0.550 ± 0.096
	0.561 ± 0.083
	0.580 ± 0.066
	0.460 ± 0



	Coffee
	0.608 ± 0.200
	0.814 ± 0.145
	0.735 ± 0.210
	0.611 ± 0



	FaceAll
	0.508 ± 0.144
	0.552 ± 0.201
	0.353 ± 0.073
	0.469 ± 0.192



	ECG5000
	0.551 ± 0.087
	0.758 ± 0.234
	0.891 ± 0.015
	0.796 ± 0.150



	Strawberry
	0.547 ± 0.088
	0.615 ± 0.118
	0.546 ± 0.129
	0.520 ± 0



	FiftyWords
	0.780 ± 0.140
	0.759 ± 0.135
	0.063 ± 0.020
	0.409 ± 0.206



	TwoleadECG
	0.563 ± 0.169
	0.657 ± 0.174
	0.464 ± 0.176
	0.628 ± 0.076



	ItalyPowerDemand
	0.431 ± 0.147
	0.603 ± 0.183
	0.469 ± 0.218
	0.684 ± 0.039



	FreezerRegularTrain
	0.285 ± 0.107
	0.708 ± 0.046
	0.702 ± 0.097
	0.591 ± 0.131










[image: Table] 





Table 3. Ranking of different methods for the labelling performance for U set.
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	Dataset
	ST-SCC
	SCC-Center-dtw
	SCC-Center-ed
	C-MDL





	CBF
	3
	1
	2
	4



	Meat
	3
	2
	1
	4



	Coffee
	4
	1
	2
	3



	FaceAll
	2
	1
	4
	3



	ECG5000
	4
	3
	1
	2



	Strawberry
	2
	1
	3
	4



	FiftyWords
	1
	2
	4
	3



	TwoleadECG
	3
	1
	4
	2



	ItalyPowerDemand
	4
	2
	3
	1



	FreezerRegularTrain
	4
	1
	2
	3



	Average ranking
	3.0 ± 1.0
	1.5 ± 0.67
	2.6 ± 1.11
	2.9 ± 0.94
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