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Abstract: With the emerging growth of digital data in information systems, technology faces the
challenge of knowledge prevention, ownership rights protection, security, and privacy measurement
of valuable and sensitive data. On-demand availability of various data as services in a shared and
automated environment has become a reality with the advent of cloud computing. The digital
fingerprinting technique has been adopted as an effective solution to protect the copyright and
privacy of digital properties from illegal distribution and identification of malicious traitors over
the cloud. Furthermore, it is used to trace the unauthorized distribution and the user of multimedia
content distributed through the cloud. In this paper, we propose a novel fingerprinting technique
for the cloud environment to protect numeric attributes in relational databases for digital privacy
management. The proposed solution with the novel fingerprinting scheme is robust and efficient. It
can address challenges such as embedding secure data over the cloud, essential to secure relational
databases. The proposed technique provides a decoding accuracy of 100%, 90%, and 40% for 10% to
30%, 40%, and 50% of deleted records.

Keywords: cloud environment; secure signature; data usability; minimum distortion; robust finger-
printing

1. Introduction

With the tremendous growth of digital content in recent decades, data sharing and
distribution of digital content over the Internet have become a frequent practice in this
digital age. On-demand availability of different services (i.e., hardware, software, and
network-based services) brought revaluation in the IT industry. It becomes possible with
the arrival of the concept of cloud computing. Cloud computing is an automated shared
environment of configurable computing resources and has gained popularity in the last two
decades [1]. It is an emerging paradigm of information processing storage and distribution
to various nodes. Cloud enables the client to access the resource pooling when successfully
executing the demand for services.

Cloud computing is revolutionizing the information technology industry by enabling
access to their infrastructure and application services on a subscription basis. However,
data copying and customizing data ability is like promoting intellectual property rights
violation. At the present time, data security in the cloud environment is a demanding area
of research. Different security measures enable the owner to secure his digital property,
such as copyright protection, which is a form of intellectual property law that protects
the original work of the author [2]. The technology faces the challenge of knowledge
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prevention, ownership right protection, security, privacy measurement of valuable and
sensitive data because illegal copying, violation of ownership, and data burgled become a
security issue. The data breach instance is caused by the inside thread, in which confidential
and sensitive data has been viewed, stolen, and illegally distributed by a distinct individual
by any organization. Data breaches may encompass professional secrets, health information
(HI), personally identifiable information (PII), and other intellectual property. Unique
customer identification marks are embedded in the data to detect illegitimate documents.

The identification of unique customer identification in terms of watermark data is
known as fingerprinting (F ). This technique aims to protect the copyright and piracy
of digital property from illegal distribution. It ensures effectiveness, particularly while
passing out the process from attacker channels. Fingerprinting covers a wide variety of
data formats used in various application areas [2–9]. This includes images audio [10,11]
video [12], software [13,14], XML documents [9,15], geographic information system, rela-
tional database [8,16–18] etc. Fingerprinting ensures a security check to track the guilty
traitor by embedding different fingerprints in each user relational database. Despite the
growing popularity of cloud computing, security, privacy, and portability issues commonly
exist in a relational database and other multimedia contents on the cloud environment.
Security concerns are too demanding issues that create hurdles in the fast acceptance of the
cloud for a relational database with a secure and shareable environment for on-demand
service at the demand level of individual interests.

Digital fingerprinting is also called a digital signature. Digital signatures are used to
demonstrate that a specific entity submits or approves specific data. Digital fingerprints
are used to confirm that the data provided is correct. However, each copy of the document
assigns a unique signature. It provides the highest security as a digital signature provides
and is also useful in finding the guilty traitor.

This paper provides a concise analysis of the challenges facing the cloud community.
These are affected online with the on-demand availability of the relational database. More-
over, it will show an effective approach to meet the existing challenges. In this paper, we
proposed a novel fingerprinting technique for the cloud environment to protect numeric
attributes in the relational database for digital privacy measurement. This fingerprinting
scheme is capable of addressing security challenges for numerical data over the cloud. We
presented a robust and efficient fingerprint scheme for a relational database capable of
protecting and operating the database in real-time.

The rest of the paper is organized in the following sections. Section 2 discusses the
existing fingerprinting techniques and their shortcomings. Section 3 discusses the research
methodology, and Section 4 provides a systematic analysis of the proposed technique.
Section 5 describes the attacker channel and the discussion, and Section 6 explains the
comparison and analysis. Finally, Section 7 presents the experiments and the results with
the overall conclusion in Section 8.

2. Related Work

With the rapid trend of cyber space usage, online accessibility of the relational database
has become very common over the cloud environment. In [19], cloud base securities issues
and vulnerabilities concerning cloud models were presented. The challenges to preventing
sensitive data privacy issues are designed to ensure false insurance claims are handled
in a manner authorized. Digital data may be in various formats like image, video, audio,
natural language text, software, and relational database. These data types may expose
to various types of attacks [8,18,20,21]. Agrawal [22] presented a classical algorithm of a
watermarking primitive for relational data and proposed the bit-resetting algorithm. The
proposed data scheme of the rightful owner is modified by embedding the selected bit in
the least significant bit (LSB) ξ of the nominated attribute of the particular selected tuples.
The selection of tuples is determined by computing some mathematical formulation with
secret parameters. These secret parameters are only known to the true data owner. Secret
parameters are encompassed using the candidate of attributes ν, least significant bits of
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nominated attribute ξ, a number of selected tuples γ, and fix length hexadecimal secret
key Ks, respectively. The H-hash function is used to decide the least significant bit (LSB),
mark a given numeric nominated attribute of the selected tuples and be based on message
authentication codes (MAC).

An abstract model of a QoS aware provider framework based on queuing theory is
given [23]. Regarding the service rate, the model provides an optimal solution achieved by
the optimization method. In [24], the layered architecture of the IoT network is presented,
as well as comparisons of the cloud-computing and edge-computing paradigms. By
altering the framework of the IoT (internet of things) network, network attacks can be
carried out without contacting network systems. Various distributed cloud computing
frameworks offer apparent advantages for computing big data in real-time or offline, and
cloud computing is fault-tolerant and dependent on high YARN cluster management. The
goal of availability is to prevent the node from going down. As a result, cloud computing
plays a critical role in gathering energy data [25]. Task scheduling methods [26] are used
to manage resources and provide the best possible quality of service (QoS). Any network
architecture, such as the virtual IT data center, must have security as the top priority.
Somewhere on the edge, security is focused on protecting data center endpoints from
external threats and ensuring a secure gateway to the Internet [27]. Additionally, the Secure
Data Transfer Scheme (S-DTS) can handle the transmission of scattered data across many
clouds [28]. Blockchain technology is used to enable trust in various clouds and is also
used for secure data [29]. The proper and secure data transmission in the mobile cloud is
used to overload traffic and improve security [30].

MAC [31] is designed as a specific type of hash function. It is used to verify the
authenticity and integrity of the given data. It depended on a key based on the hexadecimal
system with a selected tuple, a primary key, and a secret key, respectively. Data hiding in
the least significant bit is an efficient system. However, an attacker may simply remove
the fingerprint bits by rounding off the numeric attribute values very quickly. Note that
an interesting fact about our proposed method is based on updating of bit values for
each iteration performed. This approach successfully decodes the fingerprint system by
updating the attribute values. In the paper [15], the authors proposed the usability for
preserving the algorithms of query optimization and generating collusion secure fingerprint
codes that support the usability constraints against several attacks. The collusion is secure
for secret codes to choose from a precise codebook. However, it does not use the existing
work against noise tolerance (several attacks), limited availability of anti-collusion codes,
inadequate for large datasets, and external memory usage.

Cryptographic functions are used to generate secure fingerprint codes. Boneh and
Shaw [20,32], Guth [33,34], and in [21], adopted the composition of codes using fingerprint
The construction of collusion randomized secure codes in a restricted way [20,32]. First, they
constructed a code matrix and performed some random permutations on the columns of
this matrix to generate unique cubic length codes. The shortcoming of the listed technique
created the collusion-secure codes. Meanwhile, our proposed approach generated fixed-
length secure codes with MD5 hash function for multiple users in the cloud environment.
We will generate a fingerprint string in real time for each client to generate a request.
In [35,36], develop a reversible data technique is developed to hide in audio using a
statically computed histogram and hidden key.

In [37], authors presented cloud base securities issues and vulnerabilities concerning
cloud models. In [38], the researchers anticipated the investigation for security uncertainty
in a relational database watermark tuple. Two security models of watermarking were
demonstrated regarding the leakage of secret watermarking, which contents are single-key
multiple databases (SKMD) and multiple-key single databases (MKSD). Clouds are an
emerging paradigm of shared and automated environment, where data is stored on remote
servers and available to Internet users [39]. Cloud computing aims to provide various
computing resource applications as a service on demand, hardware infrastructure, software
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applications, and network services. Everything from data centers to demands on user
applications can be consumed on a pay-per-use basis [40].

In [41], presented the fingerprinting framework is presented in a cloud environment
to identify the guilty agent, to protect digital content from illegal distribution. When
successfully logged in to their cloud account, an authentic and verified user generates the
request query to access the protected data. An automated system invokes the fingerprint
manager two modules, and the parameters manager performs the fingerprinting generation
and embedding. When a request is submitted to access, this computerized system initiates
the fingerprinting process and invokes the fingerprint manager to generate a string of
fingerprint bits. Each client uses their private information and passes it to the parameter
manager, where all necessary parameters are stored. The integrity of the users is verified
by the manager module and checks the user authenticity. If the authentic user is found and
requested to access the digital content, the fingerprint process will proceed; otherwise, the
system will deny it. The secret signature from a fingerprinted relational database of the
majority voting scheme is applied.

The proposed technique is really on the original database and parameter module due
to relying on original data. This technique is not blind and always requires the original
dataset for the authenticity of the user. Furthermore, our proposed technique is semi-blind.
The authors in [15] proposed the algorithm for usability preservation of collusion-secure
fingerprinting that supports several attack usability constraints against several attacks.
Therefore, fewer watermark bits have been discovered. In [10], it is not space-efficient
and increases the complexity of scalability enhancement. It does not work against noise
tolerance. Limited anti-collusion codes are available and it is inefficacious for large datasets.

3. Proposed Methodology

We considered a relational database represented byR∆ =
(

PK, A0, A1, . . . , A(n−1)

)
in terms of the scheme data. Here, PK is named as a primary key and ϑPK attribute (in
the absence of a primary key, an attribute is added to act as the unique attribute and
auto-increment with the increment of new tuples) and Ai(i = 0, . . . , n− 1) are the numeric
attribute to nominate the required candidate for fingerprinting. Let there be n tuples in
R∆, a fraction 1/r of which will be used for the encoding of the fingerprint, F , where “r”
is a user-defined parameter that is computed through the threshold formula given below.
Since a robust watermarking scheme inevitably introduces small distortions to the data, it
is assumed that each attribute value can tolerate modifications of at least least-significant
bits (LSB) denoted with ξ. Table 1 describes all the parameters and notation.

Table 1. Parameters and notation.

Symbol Description

R∆ Relational Database
F∆ Fingerprinted Data
ϑ The primary Key value for tuple r

rAi The numeric attributes Ai of tuple r, where i = 0 to n− 1
r Tuples
F The fingerprint, represent as a string of length l
F̃ Decoded Fingerprint
r̂ The fraction of tuples that are selected for fingerprinting
H Hash function
H̃ Cryptographic hash function Message Digest (MD5)
kS Secret key
λ Number of Buyers
L Length of fingerprint
∆i Subset
β Buyer ID
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Table 1. Cont.

Symbol Description

η Number of partitions
ξ Least significant bit (LSB)
Γ Threshold
JA Login account
{ Similar constraints
ψ Different constraints
τ Login time (UTC)
A IP and MAC address
µ Mean (Avg)
σ Standard deviation
m Number of partitions
m′ M = 0 or m = 1
K K bit
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Figure 1. An overview of the proposed security model.

Figure 2. The sequential workflow of the approach.
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3.1. Cloud Computing Data Sharing Platform

Cloud computing is an automated shared environment. It provides a secure entrance
for acquiring the restricted content with high authenticity. Private content is contained
genuine information to access the desired digital information for secure purchasing to
prohibit the distribution of the illegal copy of the digital information

This sensitive information may include important business documents. For example,
a students’ result card, coupon numbers for a lottery, sales profit, income tax information,
patient medical history, etc. This restricted content is used for those users who successfully
cross the security and payment barrier, called a data-as-a-service. Moreover, data as a
service provides on-demand and support to both data users and data providers at once.
Microsoft Azure [42], Infochimps [43], Amazon [44], Oracle [45] are categorized as the
most famous service provider to facilities the client at a low cost with 24/7 available and
sustainability. Every service provider has its terms and conditions to provide access to
needy users to obtain private content.

3.2. Security Model

Figure 3 shows the proposed security model. The proposed security model has thread
and traitor identification.

Figure 3. The security model.

3.2.1. Attacks on Relational Database

A fingerprint/watermark can quickly destroy or remove from the marked databases.
Some of the common attacks that Mallory can make on these threads in the cloud envi-
ronment are shown in Figure 3. The Mallory has various attack vectors, such as insertion,
deletion, modification, and Collusion Attacks. Mallory gets multiple copies and compares
them with false claim ownership attacks and brute-force attacks. When these attacks are
applied to the fingerprinted database, the attacks change the fingerprinted database to
a fragile database. Then, Mallory tries to claim that this database is his database. After
that, we take this fragile database, pass it from the attacker channel, decode the embedded
fingerprint, and apply majority voting. Finally, we identify the guilty traitor.
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3.2.2. Collusion Attack

In this attack, Mallory may access various copies of the fingerprinted relational
database, compare the differences among these copies, and remove all the signature values.
The attacker applies the strategy of mix and match or majority counting to explode the
fingerprint signals. This attack is specific to the fingerprint; all other attacks are related
to both watermark and fingerprinting. Our proposed technique relies on this mix and
match because some values do not change after embedding the fingerprint in selected
rows. Mallory may skip these rows and be unable to perform the Collusion Attack. Our
technique overcomes Collusion Attacks without losing the data quality.

3.2.3. False Claim of Ownership

In this attack, the traitor seeks to provide fake evidence to claim the owners to pirate
the false evidence. Mallory adds his new fingerprint/watermark signature and attempts to
claim wrong ownership in this kind of attack. Inveracity attack occurs when the attacker
randomly changes some fingerprinted bits value and discovers values are guessing suc-
cessfully. Ours proposed technique is also resilient against this type of thread because we
apply fingerprints to selected tuples. The selection of these tuples is made with a calculated
formula. Mallory adds fake fingerprints to a database to claim ownership. However, when
we pass this database from the thread model and decode fingerprints from the fragile
database, we can identify the theft.

3.2.4. Insertion Attack

In this insertion/additive attack, an attacker adds extra tuples into the datasets, assum-
ing that the inserted signature is bothered, resulting in synchronization error. Moreover,
Mallory considers the degradation of data quality and condition. However, it does not
make any changes to the embedded fingerprint value in the relational database. We can
decode the fingerprint with 100% decode accuracy and quickly identify the traitor.

3.2.5. Deletion Attack

First, Mallory aims to delete a subset of data from the relational database. Then,
he tries to remove the fingerprint from the embedded data to destroy the data quality
and conditions. When we pass this fragile database from the threat layer, our decoding
identifies a traitor if Mallory removes 95% subsets of data. However, our technique is still
robust even against 95% record deletion attacks.

3.2.6. Begin Updates

In this type of attack, some relational database processing performs unintentionally
on fingerprinted/watermarked data. Therefore, Mallory adds some marked data deleted,
inserted, alternated that may cause the fully or partially destroy the embedded watermark
string. In our proposed scheme, a security key with secret parameters generates a combi-
nation of static and dynamic parameters. These parameters are IP/MAC addresses, UTC,
login ID, and buyer ID. In addition, these parameters create different scenarios in real
life. Therefore, Mallory does not guess the secret key and finds the exact tuple where the
fingerprint has been embedded. However, our proposed technique is resilient against all
kinds of modification and updates up to 95% of fingerprinted data.

3.2.7. Brute Force Attack

In this attack, Mallory tries every possible combination to guess the security signature
and think about the secret parameters such as the secret key. The attack is prevented
by assuming that the size of the secret parameters is long enough. For generating secret
keys, static and dynamic combinations of parameters are used and generated in real-time.
Whenever the user logins to generate the fingerprint, some parameters change according
to the situation. Eight real-time situations can occur while the user is generating the
fingerprint. These parameters are the IP address of the user, MAC address of the systems,
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UTC the Coordinated Universal Time, Buyer id that generated at the time of buying request,
and the login id that is unique for every user on the cloud. We generate unique fingerprint
strings with a user-specific parameter when a customer generates a request to access the
dataset. We get fix 35-bits unique identification signature as the string for each customer.
Signature generation, through our proposed mechanism, has the ability that an attacker
cannot generate and crack the existing signature. We have a 35-bit string length with the
possibility of a 34,359,738,368 combination. It takes too much time for Mallory to guess
exact bits or run the burst-force attack. Another strong motivation for robustness is that we
have embedded the whole signature string into each nominated attribute.

3.3. Real-Time Scenarios for Fingerprint Bits Generation

Different scenarios are observed on real-time usage of a cloud environment for a
signature generation with multiple parameters to specify the user authentication. These
parameters include some private and public parameters. The private parameters have only
legitimate users, and public parameters are accounted for any other user’s knowledge,
like an email address for a login account on the cloud environment. Login account JA
Password, IP/MAC addresses A, UTC τ, and buyer id β or (order ID ψ) assigns at the
time, successfully placing the order. Different schemes could happen in real life when we
consider the parameters mentioned above. Secure and private parameters are used that are
only known to the data owner. These are a hexadecimal security key kS , and cryptographic
hash functionH.

Framework for Fingerprint Bits Generation

Figure 4 shows the generation of a framework for the fingerprint bit generation.

Figure 4. Framework for fingerprint bit generation.

Signature generation with multiple parameters to specify the user’s authentication is
observed on a cloud environment real-time usage. These parameters include some private
and public parameters. The private parameters are the constraints that the only legitimate
user knows. Public parameters account for the knowledge of any other users or attackers,
such as an email address for a login account on the cloud environment. Login account
JA Password, IP/MAC addresses A, UTC τ, and buyer id β or (order ID ψ) assigns at the
time, successfully placing the order. Different schemes could happen in real life when we
consider the parameters mentioned above. The secure and private parameters are used
that are only known to the data owner. These are a hexadecimal security key kS , and
cryptographic hash function H. Table 2 lists the parameter variations for generations of
fingerprints.
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Table 2. Variations in parameters for fingerprint generation.

Parameter 1 2 3 4 5 6 7 8

Buyer ID D S D D S S D D
IP Address S S D D D D S S
MAC Address S S D D D D S S
UTC D D S D S D S S
Login ID S S S S D D S D

D = Different, S = Same.

As listed in Table 2, various parameters participate in the generation of the fingerprint.
On the left side of the table, five parameters directly belong to the cloud user. These
parameters have two necessary states. Either they are unique S or different O in their
function.

Scenario 1: When a client has used a unique buyer id, same IP and MAC address but
logs in at a different time and login ID are used, which can be formatted as follows:

G β[S(A(Z) ∧ O(JA(X)) ∧ O(τ(Y)) ) ]

Scenario 2: A user can access a cloud environment through their unique cloud login
account JA with unique MAC and static IP address A of his system, and then may order to
get specific information (database) from this cloud. An individual buyer ID β is assigned
against each request generated by using to acquire the database. This scenario can be
formulated as follows:

G β[S(A(Z) ∧ S(JA(X)) ∧ O(τ(Y)) ) ]

Scenario 3: There is a buyer ID with a different IP/MAC address but the same login
time and login ID. It can be formulated as follows:

G β[O(A(Z) ∧ S(JA(X)) ∧ S(τ(Y)) ) ]

Scenario 4: Some buyer id has a different IP, MAC address, and login ID and but a
diverse period, which can be formulated as follows:

G β[O(A(Z) ∧ O(JA(X)) ∧ S(τ(Y)) ) ]

Scenario 5: There is some buyer id, which opens with different IP, MAC address, and
login ID but logs in simultaneously, which can be formulated as follows:

G β[O(A(Z) ∧ O(JA3b[D(add(Z) ∧ D(A(X)) ∧ S(T(Y)))]

Scenario 6: There is some buyer id, which has different IP and different MAC address,
login ID, and login time, which can be formulated as follows:

G β[O(A(Z) ∧ O(JA(X)) ∧ O(τ(Y)) ) ]

Scenario 7: There is some buyer id that has the same IP and MAC address, login ID,
and same login time, which can be formulated as follows:

G β[S(A(Z) ∧S(JA(X)) ∧S(τ(Y)) ) ]

Scenario 8: Some buyer id has the same IP and MAC address and login time but
different login ID, which can be formulated as follows:

G β[S(A(Z) ∧ O(JA(X)) ∧ S(τ(Y)))]
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3.4. Logical Data Partition

Dataset D is divided into “m” nonoverlapping partition. This data partition does
not change the data physical location; nevertheless, this data partition is based on logical
grouping. Initially, the total numbers of subgroups are equal to the value of m and kept
secret and only know the owner of the data to make the partition approach secure and
resilient to the attacks. Finally, the subgroups are categorized into two major portioning
bins, named even and odd partitioning bins. Even the m′ partition contains only those can-
didates whom zero remainders. Finally, the odd partitioning bin contains those nominated
candidates who attribute to partition number one remainder.

3.5. Threshold Computation

The threshold value is computed to select the candidate attributes from the selected
usability constrained as an attribute. The threshold is calculated to shortlist the candidate
attributes for marking the digital signature. The noise in the data is reduced and provides
high security to the end-user. It made it more difficult for an attacker to guess the nominated
attribute value. Moreover, an important advantage of using an appropriate threshold is
that it minimizes the desired distortion in the data, and the authenticity of the data remains.
We consider that there is a minor capability in that we can make a few minor data changes
that do not affect the originality of the data. Only those tuples whose candidate attribute
value is greater than the threshold value are selected to insert into the shortlisted subdata
set as the original sub-data set. This partitioning is used as logical, not physical. All tuples
are inserted into this database when the candidate attributes value satisfies the threshold
value.

3.6. Fingerprint Embedding

Our fingerprinting technique embeds a robust multi-bit fingerprint string identifier for
each client in the numeric attributes of the relational database nominated tuples. The robust
fingerprinting scheme aims to protect the database from illegal distribution, ownership
proofing, and resilience against a wide range of attacks with 100% decoding accuracy. At
that time, there is only one fingerprint tuple left after the attack. Fingerprinting is used
to insert unique bit code for each buyer, which creates the smallest distortion or noise in
relational data. There is an assumption that database clients can endure a small amount
of noise. The Fingerprinting database is delivered multiple copies to multiple buyers. We
present a scheme that overcomes the resultant minimum distortion technique.

3.7. Fingerprint Decoding

Fingerprint decoding is used to decode the embedded fingerprint bits F̃P String from
the suspicious data. Fingerprint detection is raised in a possible scenario when Alice (data
owner) accused that some data sets are illegitimately copied, redistributed, or tampered
from her relation datasetR∆. Alice or a third party verifies the ownership of the suspicious
database through a fingerprint detection algorithm. The fingerprint decoding efficiency
of a fingerprinting algorithm usually depends on the small bandwidth; the larger the
bandwidth, the better the decoding accuracy. In other words, more fingerprint techniques
are required against multiple attacks and vice versa.

3.8. Majority Voting

The majority voting procedure is performed. It aims to improve security and decoding
accuracy against a wide range of malicious attacks.

3.9. Robust Analysis for Fingerprinting Scheme

Robust fingerprinting schemes aim to preserve digital contents from illegal copy
detection, ownership proof, or copyright. Figure 5 shows the architecture of the proposed
system.
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Figure 5. Aspect system architecture.

A robust fingerprint identifies and validates the buyer information embedded into a
numeric attribute of the relational database. It carries the guilty traitor by matching the
decoding string to an array of embedding strings. A bit string embedded as a fingerprint is
a meaningful sequence generated through the proper sequence. A meaningful pattern is an
image, owner information, or an audio signal. The meaningless sequence can be a random
bit or computed through the client information at run time with some private attributes
such as secret key kS and cryptographic hash functionsMD5. These meaningless string
sequences are robust and provide to strengthen the property of the desired fingerprint.
The Meaningless bit string is unpredictable and robust against a wide range of malicious
attacks such as insertion, deletion, and updating attacks. The main objective of malicious
attacks is to remove, make undetectable, untraceable, tampering the relational database.
When a fingerprint is embedded in digital content, it may make some noise and data
distortion in the original content. It produces an overall change in relational databases
compute using mean µ and standard deviation σ before embedding the fingerprint bits
and after completing the signature embedding procedure to the database.

Our proposed fingerprinting technique focuses on minimizing the noise produced by
embedding the fingerprinting and overall data distortion. It is assumed that the relational
database can tolerate a small amount of noise, which causes data distortion. In [8], the
robust watermarking technique is presented to change the nominated attribute with some
percentage change of the actual original data value. However, this may produce more
distortion in the original value.

On the other hand, our proposed robust fingerprinting technique can minimize the
distortion generated by embedding the fingerprint bits into the relational database numeric
attribute. Another drawback of the existing technique relies on the original content value
of the selected attribute of original data. Our proposed approach introduces an array
containing some values independent of the original data and only known to the data owner
or data protection rights authority. This file observed size is extremely small compared
to the original database. Another aspect related to the robustness of the fingerprinting
technique is the total bandwidth size available to mark the fingerprinting. A larger band-
width means that it has more possibilities and spaces to embed the fingerprint string. The
least bandwidth means that there are limited choices for the insertion of fingerprint, and
it is not much more robust against malicious attacks by the attacker. A high degree of
robustness is achieved by increasing usability constraints and the size of the relational
database bandwidth.
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4. Systematic Analysis of the Proposed Approach

A robust fingerprint algorithm is used to embed fingerprint bits into the dataset. The
fingerprint embedding algorithm takes a secret key kS and the fingerprint bits FP as an
input and converts a dataset D into fingerprint dataset DFP. The modifications (distortions)
made by watermarking are bounded by the usability constraints matrix χ. Our technique is
defined only once for every possible type of application that will eventually use the dataset.
The fingerprint encoding process can be summarized in the following steps:

4.1. Data Partition

To initialize the embedding process, we first divide our relational dataset into a num-
ber of subgroups. Where m is a private constraint number known to the data owner,
these partitions are nonoverlapping, and division is performed logically. The physical
data position [33] remains similar, and it does not affect the appearance of the original
dataset. This dataset is divided into m (e.g., m = 100) number of partitions, namely as
Pi = {P0, P1, . . . , Pm−1,}. This logical division fulfills sets theory fundamental operations
(e.g., union, intersection, and empty set). The intersection of different sets is observed
empty because no common element lies in each partition. Each tuple belongs to only
one partition as Si ∩ Sj = Φ. It is also satisfied that the property of unions in which each
partition is exhausted into the original dataset as P0 ∪ P1 ∪ P2 ∪ P3∪ . . . ∪Pm−1 = D. This
logical data partition holds the property that every sub-group contains at least one tuple in
it. No data partition group can be empty as Pi = Φ. Several tuples in each partition are not
necessary to be equal. Data partitioning was completed into two-level partitions. Data is
partitioned formulated to categorize data into an “m” number of subcategories in level one.
The final partition was then performed and every subgroup was categorized into two main
categories for m′ = 0 and m′ = 1. In the relational database, the primary key of every tuple
is concatenated with the secret key kS and a cryptographic hash function. The secret key is
the private parameter and is only known to the data owner. Generates the hexadecimal
string depending upon the hash function type. We use theMD5 (Message Digest 5) hash
algorithm to provide extensive security and generate a 1a 28-bit hash value. After getting
the hexadecimal value, the method value of m is considered. The value of m is also kept
secret. It is categorized every row into m number of sub-groups. After completing the first
level sub-grouping, divide every sub-group element into two levels of further partitioning.
Algorithm 1 shows the data partition.

Algorithm 1. Data Partition

Input: R∆, kS , P
Output: Data partitions Pi=1...m
1: for each r ∈ R∆ do
2: Calculate tuple subset r∆(r)← (H (r · ϑ|kS )) mod m
3: Insert r into P∆(r)
4: end for
5: return Pi

4.2. Selection of Subset Data

To minimize the distortion and noise in the original data, only selected tuples are
nominated for fingerprint. The selection of attributes is based on usability constraints
that the data owner defines. Usability constraints are used to control the usability of data
loss, define by the merchants, and identify within the available bandwidth for fingerprint
embedding. Bandwidth is the maximum capacity of a relational database where the data is
located. The fingerprint decoding efficiency of a fingerprinting algorithm usually depends
on this bandwidth; the larger the bandwidth, the better the decoding accuracy. In other
words, the more fingerprint technique is more robust against multiple attacks and vice
versa. The data recipient wants authentic and original data without any anomaly with
minimum distortions. The merchant defines usability constraints to bind the alterations.
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To preserve the information, merchants define usability constraints in a relational database.
Selected attribute constraints pick up based on the values that they contained. The resultant
values perform increment or decrement operations on constrained attribute values. The
mean and standard deviation of the final values did not change.

We compute the data selection threshold by the formula given in Equation (1) for
attribute selection for selecting data for fingerprinting.

Γ =
µi × µi (ρ%)

σi × (c)
(1)

Data partitions (P0, P1, . . . ,Pm−1,) are given as input for data selection and database
R̃∆ as the resultant output. Database R̃∆ contains only tuples whose value satisfied the
threshold limit. For the fingerprint encoding process, only those tuples will insert into the
database R̃∆, whose attribute Ai is above threshold Γ. For each partition tuple in P0, P1, . . . ,
Pm−1, mean (σ), some percentage value that is selected by choice of the user ρ% standard
deviation (µ) and the percentage value of the standard deviation µiρ%. The percentage
value lies 0 to 100 and is defined by the data owner. The c is the confidence factor with a
value between 0 to 1. The percentage value of the standard deviation µiρ% and c are kept
secret. Enhance security mechanisms make it very difficult for an attacker to guess the
selected tuples in which the fingerprint is inserted. These values are randomly defined by
the data owner. The purpose of using two secret parameters is unable to guess the values of
both parameters percentage value of the standard deviation µi(ρ%) and confidence factor
c correctly. It becomes impossible in every aspect for the attacker to calculate the threshold.
The standard deviation performs threshold computation µi multiply with the percentage of
standard deviation µiρ% and divides with the resultant mean (σ) multiply with the value
of confidence factor c. Threshold value obtained from equation two and all attribute values
greater than threshold Γ are saving into the database R̃∆.

R̃∆ ← rAi > Γ (2)

Fingerprint embedding is performed on these nominated attributes of selected tuples
in the database R̃∆ and rAi are attributes for selected tuples. There is a presentation of the
nominated attributes of selected tuples. They contain the attribute values from Ai, 0 to
n − 1 tuples and attributes columns and v referred to the value of these attributes R0 as
described in Equation (3).

As A0 = v00, v10, . . . , v(n−1)0

A1 = v01, v11, . . . , v(n−1)1 . . .

A(n−1) = v0(n−1), v1(n−1), . . . , v(n−1)(n−1)

The selected tuples Ri as follows:

R0 = v00, v01, . . . , v0(n−1) R1 = v10, v11, . . . , v(n−1)1 . . . R(n−1)

R0 = v00, v01, . . . , v0(n−1) R1 = v(n−1)0, v(n−1)1 . . . , v(n−1)(n−1) (3)

Algorithm 2 depicts the different steps of this phase.

4.3. Fingerprint Bits Generation

In this step, the F fingerprint bits are generated for each client when access requests
are submitted in the cloud environment. Binary fingerprint strings are generated from
client indication information based on IP address, MAC address A, date-time stamp UTC
(Coordinated Universal Time) τ, login ID JA, and buyer ID β. These constraints are
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obtained in real time. Thus, Fingerprint string generation is calculated with the lowing
function given below:

FP ← (kS , β,A, τ,JA) = FP
where “|” specifies the concatenation operation perform among buyer ID βi, IP MAC
address, UTC date-time stamp τ, login ID JA with secret key kS and a cryptographic
MD5 hash function to generate the fingerprint bits

{
f
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as shown in

Equation (4).
FP = f
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Algorithm 2. Data selection

Input: R̃∆ Data partitions P0, P1, . . . , Pm−1,
1: for i = 0 to m − 1 do
2: for each rAi ∈ Pi , do
3: Compute µ and σ on A
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4: Compute (ρ%) value of µ

5: Calculate Γ using Equation (1)
6: end for
7: end for
8: return R̃∆←rAi > Γ
Output: R̃∆

These bits are given as input to the fingerprint encoding function. The length of the
fingerprint is L, where L is the fixed-length 128-bit has to value FP generated by the MD5
hash function.

F =
L−1

∑

Sensors 2021, 21, x FOR PEER REVIEW 15 of 27 
 

 

Algorithm 2. Data selection. 

Input: ℛ෨∆ Data partitions P଴,  Pଵ, … ,  P୫ିଵ,  
1: for i = 0 to m − 1 do 
2:      for each 𝑟𝐴௜  ∈  𝑃௜ , do 
3: Compute 𝜇 and 𝜎 on 𝒜𝒾 
4:         Compute (𝜌%) value of 𝜇 
5:         Calculate 𝛤 using eq (1) 
6:      end for 
7: end for 
8: return ℛ෨ ∆←rA୧ > Γ 
Output: ℛ෨∆ 

4.3. Fingerprint Bits Generation 
In this step, the F fingerprint bits are generated for each client when access requests 

are submitted in the cloud environment. Binary fingerprint strings are generated from 
client indication information based on IP address, MAC address 𝔄, date-time stamp UTC 
(Coordinated Universal Time) 𝜏, login ID 𝒥𝒜 , and buyer ID 𝛽 . These constraints are 
obtained in real time. Thus, Fingerprint string generation is calculated with the lowing 
function given below: ℱ𝒫 ← (𝑘𝒮, 𝛽, 𝔄, 𝜏, 𝒥𝒜) = ℱ𝒫    
where “|” specifies the concatenation operation perform among buyer ID 𝛽௜ , IP MAC address, UTC  date-time stamp τ , login ID 𝒥𝒜  with secret key k𝒮  and a 
cryptographic MD5 hash function to generate the fingerprint bits ൛𝔣𝓅଴𝔣𝓅ଵ𝔣𝓅ଶ … 𝔣𝓅(ℒିଵ)ൟ as 
shown in Equation (4). ℱ𝒫  =  𝔣𝓅଴ 𝔣𝓅ଵ  𝔣𝓅ଶ  … … 𝔣𝓅(ℒିଵ)    (4)

These bits are given as input to the fingerprint encoding function. The length of the 
fingerprint is ℒ, where ℒ is the fixed-length 128-bit has to value ℱ𝒫  generated by the 
MD5 hash function. 

ℱ = ෍ 𝔣𝓅(𝒾)ℒିଵ
𝒾ୀ଴   

Fingerprint generating function ℷ transform the hexadecimal (alphanumeric) string 
into a binary bit string ൛𝔣𝓅଴𝔣𝓅ଵ𝔣𝓅ଶ … 𝔣𝓅(ℒିଵ)ൟ. ℷ𝛬:   𝔣𝓅(𝒾) →  ℱ𝒫 

However, ℷ𝛬 this entails keeping all buyer-fingerprint codeword string 𝔣𝓅(𝒾) in a 
database ℱ𝒫  for decoding persistence. It leads to security overhead by keeping the 
fingerprint codes database secret to ruin a collision attack. Some security measures are 
essential to be enforced thus as to protect the database access control, password 
protection, and encryption. To overcome the security issues, the data owner generates a 
unique buyer’s fingerprint ℱ𝒫 from the merchant’s secret key 𝑘𝒮 and the buyer’s series 
number 𝛽௜  (which can be public/private) using a cryptographic hash function ℋ.  A 
function ℋ maps the data of arbitrary size string “𝒮” to data of fixed size string “𝒽” and 
the values returned by the hash function are called the hashes. Algorithm 3 shows the 
fingerprint generation. ℋ: 𝒮 → 𝒽 

=0
f

Sensors 2021, 21, x FOR PEER REVIEW 5 of 27 
 

 

𝜆 Number of Buyers ℒ Length of fingerprint ∆௜  Subset 𝛽 Buyer ID 
η Number of partitions 𝜉 Least significant bit (LSB) 𝛤 Threshold 𝒥𝒜 Login account ∁ Similar constraints  𝜓 Different constraints 𝜏 Login time (UTC) 𝔄 IP and MAC address 𝜇 Mean (Avg) 𝜎 Standard deviation 𝑚 Number of partitions 𝑚′ M = 0 or m = 1 𝒦 K bit 
 𝓅  

Partition 𝒟෩  Slash Dataset 

Figure 1 demonstrates the proposed security model, and the block diagram 
summarizes all the core components of the fingerprinting technique. The ξ is a constant 
number and is independently used for an attribute value. Therefore, it depends on the 
number of binary digits of the attribute value. Figure 2 demonstrates the Sequential 
Workflow of the scheme in which fingerprint signatures are generated, embedded into 
the relational database. The proposed approach is used in a relational database for 
standalone systems, as well as in a relational database in the cloud. The traitor attack and 
decoding of fingerprints from the given database were used to identify the traitor. This 
block diagram summarizes all core components of the fingerprinting sequence of 
encoding decoding and traitor attack. 

 
Figure 1. An overview of the proposed security model. 

(

Sensors 2021, 21, x FOR PEER REVIEW 15 of 27 
 

 

Algorithm 2. Data selection. 

Input: ℛ෨∆ Data partitions P଴,  Pଵ, … ,  P୫ିଵ,  
1: for i = 0 to m − 1 do 
2:      for each 𝑟𝐴௜  ∈  𝑃௜ , do 
3: Compute 𝜇 and 𝜎 on 𝒜𝒾 
4:         Compute (𝜌%) value of 𝜇 
5:         Calculate 𝛤 using eq (1) 
6:      end for 
7: end for 
8: return ℛ෨ ∆←rA୧ > Γ 
Output: ℛ෨∆ 

4.3. Fingerprint Bits Generation 
In this step, the F fingerprint bits are generated for each client when access requests 

are submitted in the cloud environment. Binary fingerprint strings are generated from 
client indication information based on IP address, MAC address 𝔄, date-time stamp UTC 
(Coordinated Universal Time) 𝜏, login ID 𝒥𝒜 , and buyer ID 𝛽 . These constraints are 
obtained in real time. Thus, Fingerprint string generation is calculated with the lowing 
function given below: ℱ𝒫 ← (𝑘𝒮, 𝛽, 𝔄, 𝜏, 𝒥𝒜) = ℱ𝒫    
where “|” specifies the concatenation operation perform among buyer ID 𝛽௜ , IP MAC address, UTC  date-time stamp τ , login ID 𝒥𝒜  with secret key k𝒮  and a 
cryptographic MD5 hash function to generate the fingerprint bits ൛𝔣𝓅଴𝔣𝓅ଵ𝔣𝓅ଶ … 𝔣𝓅(ℒିଵ)ൟ as 
shown in Equation (4). ℱ𝒫  =  𝔣𝓅଴ 𝔣𝓅ଵ  𝔣𝓅ଶ  … … 𝔣𝓅(ℒିଵ)    (4)

These bits are given as input to the fingerprint encoding function. The length of the 
fingerprint is ℒ, where ℒ is the fixed-length 128-bit has to value ℱ𝒫  generated by the 
MD5 hash function. 

ℱ = ෍ 𝔣𝓅(𝒾)ℒିଵ
𝒾ୀ଴   

Fingerprint generating function ℷ transform the hexadecimal (alphanumeric) string 
into a binary bit string ൛𝔣𝓅଴𝔣𝓅ଵ𝔣𝓅ଶ … 𝔣𝓅(ℒିଵ)ൟ. ℷ𝛬:   𝔣𝓅(𝒾) →  ℱ𝒫 

However, ℷ𝛬 this entails keeping all buyer-fingerprint codeword string 𝔣𝓅(𝒾) in a 
database ℱ𝒫  for decoding persistence. It leads to security overhead by keeping the 
fingerprint codes database secret to ruin a collision attack. Some security measures are 
essential to be enforced thus as to protect the database access control, password 
protection, and encryption. To overcome the security issues, the data owner generates a 
unique buyer’s fingerprint ℱ𝒫 from the merchant’s secret key 𝑘𝒮 and the buyer’s series 
number 𝛽௜  (which can be public/private) using a cryptographic hash function ℋ.  A 
function ℋ maps the data of arbitrary size string “𝒮” to data of fixed size string “𝒽” and 
the values returned by the hash function are called the hashes. Algorithm 3 shows the 
fingerprint generation. ℋ: 𝒮 → 𝒽 

)
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{
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) in a
database FP for decoding persistence. It leads to security overhead by keeping the finger-
print codes database secret to ruin a collision attack. Some security measures are essential
to be enforced thus as to protect the database access control, password protection, and
encryption. To overcome the security issues, the data owner generates a unique buyer’s
fingerprint FP from the merchant’s secret key kS and the buyer’s series number βi (which
can be public/private) using a cryptographic hash functionH. A functionHmaps the data
of arbitrary size string “S” to data of fixed size string “

Sensors 2021, 21, x FOR PEER REVIEW 15 of 27 
 

 

Algorithm 2. Data selection. 

Input: ℛ෨∆ Data partitions P଴,  Pଵ, … ,  P୫ିଵ,  
1: for i = 0 to m − 1 do 
2:      for each 𝑟𝐴௜  ∈  𝑃௜ , do 
3: Compute 𝜇 and 𝜎 on 𝒜𝒾 
4:         Compute (𝜌%) value of 𝜇 
5:         Calculate 𝛤 using eq (1) 
6:      end for 
7: end for 
8: return ℛ෨ ∆←rA୧ > Γ 
Output: ℛ෨∆ 

4.3. Fingerprint Bits Generation 
In this step, the F fingerprint bits are generated for each client when access requests 

are submitted in the cloud environment. Binary fingerprint strings are generated from 
client indication information based on IP address, MAC address 𝔄, date-time stamp UTC 
(Coordinated Universal Time) 𝜏, login ID 𝒥𝒜 , and buyer ID 𝛽 . These constraints are 
obtained in real time. Thus, Fingerprint string generation is calculated with the lowing 
function given below: ℱ𝒫 ← (𝑘𝒮, 𝛽, 𝔄, 𝜏, 𝒥𝒜) = ℱ𝒫    
where “|” specifies the concatenation operation perform among buyer ID 𝛽௜ , IP MAC address, UTC  date-time stamp τ , login ID 𝒥𝒜  with secret key k𝒮  and a 
cryptographic MD5 hash function to generate the fingerprint bits ൛𝔣𝓅଴𝔣𝓅ଵ𝔣𝓅ଶ … 𝔣𝓅(ℒିଵ)ൟ as 
shown in Equation (4). ℱ𝒫  =  𝔣𝓅଴ 𝔣𝓅ଵ  𝔣𝓅ଶ  … … 𝔣𝓅(ℒିଵ)    (4)

These bits are given as input to the fingerprint encoding function. The length of the 
fingerprint is ℒ, where ℒ is the fixed-length 128-bit has to value ℱ𝒫  generated by the 
MD5 hash function. 

ℱ = ෍ 𝔣𝓅(𝒾)ℒିଵ
𝒾ୀ଴   

Fingerprint generating function ℷ transform the hexadecimal (alphanumeric) string 
into a binary bit string ൛𝔣𝓅଴𝔣𝓅ଵ𝔣𝓅ଶ … 𝔣𝓅(ℒିଵ)ൟ. ℷ𝛬:   𝔣𝓅(𝒾) →  ℱ𝒫 

However, ℷ𝛬 this entails keeping all buyer-fingerprint codeword string 𝔣𝓅(𝒾) in a 
database ℱ𝒫  for decoding persistence. It leads to security overhead by keeping the 
fingerprint codes database secret to ruin a collision attack. Some security measures are 
essential to be enforced thus as to protect the database access control, password 
protection, and encryption. To overcome the security issues, the data owner generates a 
unique buyer’s fingerprint ℱ𝒫 from the merchant’s secret key 𝑘𝒮 and the buyer’s series 
number 𝛽௜  (which can be public/private) using a cryptographic hash function ℋ.  A 
function ℋ maps the data of arbitrary size string “𝒮” to data of fixed size string “𝒽” and 
the values returned by the hash function are called the hashes. Algorithm 3 shows the 
fingerprint generation. ℋ: 𝒮 → 𝒽 ” and the values returned by the

hash function are called the hashes. Algorithm 3 shows the fingerprint generation.

H : S →
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Algorithm 3. Fingerprint generation

Input: kS , β, IP, A, τ, and JA
Output: F
1: for i = i to \ do
2: f
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) = H(τ||[H(kS |(A)||(H(kS |β ))] )
3: Insert f
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) into F
4: end for
5: return F
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4.4. Fingerprint Embedding

The Fingerprinting algorithm uses the multi-bit algorithm. Multibit means that for
each client, the length of the fingerprint is 0 to L-1 and embeds this bit string in the
selected tuples of the nominated attributes of a database R̃∆. For the sake of simplicity,
we are assuming that partition set Pi in database R̃∆ contains signal attribute vi ∈ Pi. Our
fingerprinting technique embeds a robust multibit fingerprint signature identifier for each
client in the numeric attributes of the nominated tuples of the relational database. For
signature embedding XOR (⊕) Operation is performed between the fingerprint signature
string and m. The fingerprint signature string is generated through algorithm two, and
m is the logical partition number of level two. It computes the resultant bit. The result
will be one of the sign bits, and the m bits are the same; otherwise, it will be zero. This
step executes for L-1 several times, which is the actual length of the fingerprint signature.
All collective bits are combined and stored in a resultant array F̂ . The length of this array
is also equivalent to the fingerprint signature string. The resultant array preserves bits
string for each buyer in it, and this array is kept by data owner or copyright monitoring
authorities.

f : (D, FP)→ F∆

The general encoding rule is defined in Equation (5).

fi= ui + vi f bi (5)

Here, fi represents the fingerprinting coefficient equivalent to the original coefficient
ui, vi denotes the fingerprinting strength, and f bi denotes the portion of the fingerprint
signature.

Total data distortion that makes throughout the fingerprinting procedure, as

∆←
(
R̃∆ −R∆

)
Suppose the resultant array is the same as the least significant bit LSB of the nominated

attribute for multi-bit fingerprint embedding. In that case, LSB ξ keeps remaining the
same otherwise flip. Eliminate the least significant bit (LSB) after encoding and recheck
the remaining bits in the fingerprint signature string. When there is zero left and halt
embedding. Repeat this step for L-1 times and update the attribute value. Multibit
fingerprint signature length is 0 to L-1 and computed collusion-free fixed-length signature
string in a real-time scenario using Algorithm 2. Bit m will remain the same for a full
fingerprint signature, as it is generated for the nominated attribute based on the primary
key of the selected attribute. An identical fingerprint signature is applied to all nominated
attributes of the selected tuple. Repeat the same applied procedure for all data partitions
Pi. It improved the protection level if an attacker successfully deleted or updated the
fingerprinted attribute value and left only one fingerprinted attribute. Our proposed
approach provides 100% decoding accuracy. Sometimes, it is critical in real life that data
statistics do not contain anomalies. It may also require sensitive data that statistics such as
mean and standard deviation resultant should equal or approximately, before and after the
fingerprint signature embedding. Algorithm 4 explains fingerprint embedding.

µ(R∆) ∼= µ
(
F̂
)

σ(R∆) ∼= σ
(
F̂
)

4.5. Fingerprint Decoding

Fingerprint decoding decodes the embedded fingerprint bits string from suspicious
data sets that are illegitimately copied. The data partitions are generated using the same
steps to perform fingerprint encoding to generate a data partition algorithm as in the
fingerprint encoding phase.
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Algorithm 4. Fingerprint embedding

Input: kS ,R∆, R̃∆, β, F , Length of fingerprint L
Output: F∆, F̂
1: for each row r in P
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do
2: Calculate Γ using Equation (1)
3: R̃∆ ← rAi > Γ
4: Generate f
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) → F using Equation (2)
5: for each r in R̃∆
6: compute m′ bit
7: m′ = 0 if
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) %2 = 0
8: otherwise m′=1
9: K
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(Coordinated Universal Time) 𝜏, login ID 𝒥𝒜 , and buyer ID 𝛽 . These constraints are 
obtained in real time. Thus, Fingerprint string generation is calculated with the lowing 
function given below: ℱ𝒫 ← (𝑘𝒮, 𝛽, 𝔄, 𝜏, 𝒥𝒜) = ℱ𝒫    
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MD5 hash function. 

ℱ = ෍ 𝔣𝓅(𝒾)ℒିଵ
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Fingerprint generating function ℷ transform the hexadecimal (alphanumeric) string 
into a binary bit string ൛𝔣𝓅଴𝔣𝓅ଵ𝔣𝓅ଶ … 𝔣𝓅(ℒିଵ)ൟ. ℷ𝛬:   𝔣𝓅(𝒾) →  ℱ𝒫 
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essential to be enforced thus as to protect the database access control, password 
protection, and encryption. To overcome the security issues, the data owner generates a 
unique buyer’s fingerprint ℱ𝒫 from the merchant’s secret key 𝑘𝒮 and the buyer’s series 
number 𝛽௜  (which can be public/private) using a cryptographic hash function ℋ.  A 
function ℋ maps the data of arbitrary size string “𝒮” to data of fixed size string “𝒽” and 
the values returned by the hash function are called the hashes. Algorithm 3 shows the 
fingerprint generation. ℋ: 𝒮 → 𝒽 

= m′ ⊕ f
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)

10: compute F̂←K
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= L
13. end for
14. Return F∆, F̂

4.5.1. Decoding Strategies

Fingerprint decoding can be public or private, depending on security requirements.
A blind decoding algorithm does not require an embedded fingerprint or any part of the
original data. The marked attribute(s) and tuple(s) are identified, and this submodule
decodes fingerprint bits. The fingerprint decoding phase detects fingerprint string from
a suspicious database to identify the traitor user. For detecting, the same preprocessing
step and formulations are performed to start the decoding process. These prepossessing
steps are the same as a repeat in embedding phase, logical data partitioning, threshold
computation, selection of nominated attribute, calculate the value of m two-way partition,
selection of string from the resultant array, and length of the resultant array FP . XOR
function is performed between the resultant array and m and computes fingerprint bits.
Fingerprint bits are generated the same as the length 0 to L-1 and this step is repeated L
times. Suppose that the resultant bit and m bit are the same and the generated fingerprint
bit is equal to the least significant bit of the attribute value. In that case, there is no change
in the least significant value of the nominated attribute. Otherwise, flip the least significant
bit of the nominated attribute. Store fingerprint bit

Sensors 2021, 21, x FOR PEER REVIEW 17 of 27 
 

 

𝜇(ℛ∆)  ≅  𝜇൫ℱ෠൯   
𝜎(ℛ∆)  ≅  𝜎൫ℱ෠൯   

 

Algorithm 4. Fingerprint embedding. 
Input: k𝒮, ℛ∆, ℛ෨∆, β, ℱ, Length of fingerprint ℒ 
Output: ℱ∆, ℱ෠  
1: for each row 𝑟 in 𝑃𝒾 do 
2: Calculate 𝛤 using eq (1) 
4: ℛ෨ ∆  ←  rA୧ > Γ  
3: Generate 𝔣𝓅(𝒾) →  ℱ using eq (2) 
4: for each 𝑟 in ℛ෨∆ 
5: compute m′ bit  
6: mᇱ= 0 if 𝓅(𝒾) %2 = 0 
7: otherwise m′=1  
8: 𝒦𝒾 = 𝑚′ ⊕  𝔣𝓅(𝒾) 
9: compute ℱ෠←𝒦𝒾 
10: end for 
11: SET 𝒦𝒾 to LSB 𝜉 of  𝑟𝐴௜, where 𝒦𝒾 = ℒ 
12. end for 
13. Return ℱ∆, ℱ෠   

4.5. Fingerprint Decoding 
Fingerprint decoding decodes the embedded fingerprint bits string from suspicious 

data sets that are illegitimately copied. The data partitions are generated using the same 
steps to perform fingerprint encoding to generate a data partition algorithm as in the 
fingerprint encoding phase. 

4.5.1. Decoding Strategies 
Fingerprint decoding can be public or private, depending on security requirements. 

A blind decoding algorithm does not require an embedded fingerprint or any part of the 
original data. The marked attribute(s) and tuple(s) are identified, and this submodule 
decodes fingerprint bits. The fingerprint decoding phase detects fingerprint string from a 
suspicious database to identify the traitor user. For detecting, the same preprocessing step 
and formulations are performed to start the decoding process. These prepossessing steps 
are the same as a repeat in embedding phase, logical data partitioning, threshold 
computation, selection of nominated attribute, calculate the value of m two-way partition, 
selection of string from the resultant array, and length of the resultant array ℱ𝒫. XOR 
function is performed between the resultant array and m and computes fingerprint bits. 
Fingerprint bits are generated the same as the length 0 to L-1 and this step is repeated L 
times. Suppose that the resultant bit and m bit are the same and the generated fingerprint 
bit is equal to the least significant bit of the attribute value. In that case, there is no change 
in the least significant value of the nominated attribute. Otherwise, flip the least significant 
bit of the nominated attribute. Store fingerprint bit 𝒻     𝓅(𝒾) in an array ℱ෨𝒫௜. When 𝒻𝓅(𝒾) 
value is 0, make increment in the figure of zero else one. 
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fingerprint encoding phase. 
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and formulations are performed to start the decoding process. These prepossessing steps 
are the same as a repeat in embedding phase, logical data partitioning, threshold 
computation, selection of nominated attribute, calculate the value of m two-way partition, 
selection of string from the resultant array, and length of the resultant array ℱ𝒫. XOR 
function is performed between the resultant array and m and computes fingerprint bits. 
Fingerprint bits are generated the same as the length 0 to L-1 and this step is repeated L 
times. Suppose that the resultant bit and m bit are the same and the generated fingerprint 
bit is equal to the least significant bit of the attribute value. In that case, there is no change 
in the least significant value of the nominated attribute. Otherwise, flip the least significant 
bit of the nominated attribute. Store fingerprint bit 𝒻     𝓅(𝒾) in an array ℱ෨𝒫௜. When 𝒻𝓅(𝒾) 
value is 0, make increment in the figure of zero else one. 

  

Sensors 2021, 21, x FOR PEER REVIEW 5 of 27 
 

 

𝜆 Number of Buyers ℒ Length of fingerprint ∆௜  Subset 𝛽 Buyer ID 
η Number of partitions 𝜉 Least significant bit (LSB) 𝛤 Threshold 𝒥𝒜 Login account ∁ Similar constraints  𝜓 Different constraints 𝜏 Login time (UTC) 𝔄 IP and MAC address 𝜇 Mean (Avg) 𝜎 Standard deviation 𝑚 Number of partitions 𝑚′ M = 0 or m = 1 𝒦 K bit 
 𝓅  

Partition 𝒟෩  Slash Dataset 

Figure 1 demonstrates the proposed security model, and the block diagram 
summarizes all the core components of the fingerprinting technique. The ξ is a constant 
number and is independently used for an attribute value. Therefore, it depends on the 
number of binary digits of the attribute value. Figure 2 demonstrates the Sequential 
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value is 0, make increment in the figure of zero else one.

4.5.2. Majority Voting

To decode the final embedded fingerprint information appropriately and efficiently
majority voting mechanism is performed. It aims to make better security and decoding
accuracy against a wide range of malicious attacks. In the end, majority voting is performed
and that the number of zero in the array F̃P i are greater than one was verified, then set F̃P i
a value equal to 0; otherwise, one. Match the detected fingerprint string with the stored
fingerprint and return the traitor information, the guilty user, and distribute illegal copies
of the database. Fingerprint decoding is used to decode the embedded fingerprint bits
string from the suspicious data. Fingerprint detection is raised in a possible scenario when
the data owner is accused that some datasets are illegitimately copied, redistributed, or
tampered from her relation data R. The fingerprint decoding efficiency of a fingerprinting
algorithm usually depends on this bandwidth. The larger the bandwidth, the better the
decoding accuracy. In other words, more fingerprint techniques make them more robust
against multiple attacks. Algorithm 5 describes fingerprint decoding.
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Algorithm 5. Fingerprint decoding

Input: Fingerprinted Database DFP, Secret Key kS , Resultant array FP
Output: Decoded Fingerprint F̃
1: Ones = 0, Zeros = 0
2: for each partition
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, do
3: R̃∆ ← Calculate Γ
4: compute m′ bit for each rAi
5: for
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= 0 to L− 1
6: for each row r in D̃, do
7:
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obtained in real time. Thus, Fingerprint string generation is calculated with the lowing 
function given below: ℱ𝒫 ← (𝑘𝒮, 𝛽, 𝔄, 𝜏, 𝒥𝒜) = ℱ𝒫    
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fingerprint is ℒ, where ℒ is the fixed-length 128-bit has to value ℱ𝒫  generated by the 
MD5 hash function. 
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number 𝛽௜  (which can be public/private) using a cryptographic hash function ℋ.  A 
function ℋ maps the data of arbitrary size string “𝒮” to data of fixed size string “𝒽” and 
the values returned by the hash function are called the hashes. Algorithm 3 shows the 
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Fingerprint decoding decodes the embedded fingerprint bits string from suspicious 

data sets that are illegitimately copied. The data partitions are generated using the same 
steps to perform fingerprint encoding to generate a data partition algorithm as in the 
fingerprint encoding phase. 

4.5.1. Decoding Strategies 
Fingerprint decoding can be public or private, depending on security requirements. 

A blind decoding algorithm does not require an embedded fingerprint or any part of the 
original data. The marked attribute(s) and tuple(s) are identified, and this submodule 
decodes fingerprint bits. The fingerprint decoding phase detects fingerprint string from a 
suspicious database to identify the traitor user. For detecting, the same preprocessing step 
and formulations are performed to start the decoding process. These prepossessing steps 
are the same as a repeat in embedding phase, logical data partitioning, threshold 
computation, selection of nominated attribute, calculate the value of m two-way partition, 
selection of string from the resultant array, and length of the resultant array ℱ𝒫. XOR 
function is performed between the resultant array and m and computes fingerprint bits. 
Fingerprint bits are generated the same as the length 0 to L-1 and this step is repeated L 
times. Suppose that the resultant bit and m bit are the same and the generated fingerprint 
bit is equal to the least significant bit of the attribute value. In that case, there is no change 
in the least significant value of the nominated attribute. Otherwise, flip the least significant 
bit of the nominated attribute. Store fingerprint bit 𝒻     𝓅(𝒾) in an array ℱ෨𝒫௜. When 𝒻𝓅(𝒾) 
value is 0, make increment in the figure of zero else one. 
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))
10: No change
11: else
12: Flip ξ bit
13: F̃P i ←
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)

14: If F̃P i = 0
15: Zeros = Zeros + 1
16: Else Ones = Ones + 1
17: end for
18: I f (Zeros > Ones)
19: F̃
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(Coordinated Universal Time) 𝜏, login ID 𝒥𝒜 , and buyer ID 𝛽 . These constraints are 
obtained in real time. Thus, Fingerprint string generation is calculated with the lowing 
function given below: ℱ𝒫 ← (𝑘𝒮, 𝛽, 𝔄, 𝜏, 𝒥𝒜) = ℱ𝒫    
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F̃P i = 0
20: else
21: F̃P iF̃
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= 1
22: F̃ ← Fi F̃P i
23: end for
24: Return F̃

5. Attacker Channel and Discussion

A fingerprinting technique must have the capability that it is unable to locate by the
intruder and significantly degrade the quality of data if the intruder tries to corrupt the
fingerprint. Our scheme’s fingerprints are detectable and robust against different types of
attacks generated on the fingerprinted data, including Collusion Attacks. We demonstrate
the robustness of our scheme under a wide range of descriptive attacks. Among those
attacks, some are common to fingerprinting and watermarking, while Collusion Attacks are
unique to fingerprinting. Our proposed solution is vulnerable to a collision attack in which
buyers collaboratively compare their data copies, disrupt the underlying fingerprints,
identify differences of embedded marks, and modify their fingerprints. Our proposed
scheme is resilient against various attacks, especially Collusion Attacks and minimum
distortions in the original dataset. As shown in [22], the embedded marks may be ruined by
making significant modifications to marked data. Therefore, the robustness of our scheme
is considered relative to the data modifications made by attacks and updates. We analyze
our fingerprinting scheme using the following robustness measures. We say that a binary
string is a valid fingerprint if it is of the form F(Ks|βi) (0 ≤ n < βi). A detected fingerprint
is incorrect if it is not the one that was used in the insertion of the fingerprint.

Now, we judge the effectiveness of our proposed scheme against a wide variety of
attacks. Many attacks are common in watermarking and fingerprinting, such as intersection,
deletion, and updating, and some are only related to the fingerprinting as a Collusion
Attack.

The attacker inserts some new tuples at any place in a relational database to affect the
existing fingerprint mark in the relation databaseR∆, also called blind insertion. Inserting
new tuples is used to disturb the sequence of embedded fingerprint bits that produce a
synchronization error. We overwhelmed this synchronization error by using the primary
key. Whenever new tuples are inserted, the auto-numbers series is followed throughout the
relational record. Our fingerprint embedding scheme is implemented through partitioning
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of primary keys and logical data based on secret parameters such as secret key ks and the
number of partitions m. A primary key cannot contain a repeating value and cannot be null.
Therefore, it ensures that the order of tuples does not disturb the embedded fingerprint and
the insertion of new tuples based on the primary key. The addition of new tuples increases
the probability of false-positive rates. Insertion of non-fingerprinted new tuples can result
in an increasing amount of false-positive rate. The insertion attack is also attacked to break
the fingerprint structure of the embedded fingerprint. However, our proposed approach
is resilient to the insertion attack. We embedded a full string in every partition. If only
one tuple is left, our proposal can decode efficiently. Every tuple must have the primary
key. So, the insertion of new records does not affect our fingerprinted data. The decoding
accuracy remains 100% after inserting some new tuples.

Collusion Attacks belong to fingerprinting and consider an active attack. Malicious
purchasers may collude to compare their fingerprinted versions. When multiple finger-
printed copies are distributed, Fingerprinting schemes are exposed to Collusion Attacks.
In which attacker colitis, several fingerprinted copies of the document with a different
signature. The associate peoples of a coalition may create a good data copy that does not
implicate any coalition member. During fingerprint detection, either the copy may yield
an innocent buyer fingerprint, or it may not yield a valid fingerprint. The collision attack
is specific to fingerprinting, and there is no Collusion Attack in the watermarking setting.
Resistance to Collusion Attacks can be critical in a fingerprinting application

By locating the positions where the documents differ, one can discover where the
fingerprint bits are inserted. Modifying documents on these positions may obtain a new
version without a readable fingerprinted document, escaping detection. For example, an
attacker can open copies in the cloud environment to obtain any number of differently
fingerprinted copies. Our proposed scheme uses multiple constraints for the generation of
fingerprints and inserts through the hash function. The hash function is used to identify the
attribute for each row where it inserts a fingerprint mark. We use bit generation Algorithm
2 to generate the attribute sequence to be marked for each buyer. As a result, the insertion
pattern is randomized for each buyer. Hence, the fingerprint copies for different buyers of
the same databases are so different that they cannot collude to find the insertion places of
fingerprint marks.

Sometimes this attack is called a subset attack. This attack adversary aims to destroy
the embedded fingerprint by selecting and deleting some tuples, either randomly or
selected based on some statistical operations of attribute values, from the fingerprinted
dataset DFP. The decoding algorithm task is to recover the fingerprint from the remaining
tuples in each partition. Suppose adversary drops N tuples from Alice’s fingerprinted
dataset [22]. We are assuming that the attacker does not know the portioning position of
the tuples where the fingerprint was embedded, and also has not accessed the embedding
secret key Ks.

In such an attack, the modification value of the data destroys the embedded finger-
printed marks. Attackers modify the value by flipping bits, rounding off the value, and
alternating subset and superset. Attackers can modify the value by flipping bits and round-
ing off the value, subset, and superset alterations. Modification of values is performed the
same as the usual data modification of data. However, more modifications mean more
distortion in data. In crucial and other sensitive data, there is not much flexibility to accept
the changes. Otherwise, the data will be useless. Modifying the selected fingerprint data
increases the chances that attackers achieve their goal and successfully destroy the finger-
printed information. However, in our proposed technique, we use some secret parameters
that make it difficult for an attacker to guess the exact nominated attribute. Bit attacker is
based on a random selection of tuple attributes to change the bit value. There is also the
possibility that the attacker changes the randomly selected bits to zero, also called zero-out
the attack. Round-off the numeric data to remove the embedded signature is a kind of
attack. The attacker seems to remove the signature bit with whole data and round-off
the value. To make this attack effective, the attacker must estimate the correct figure of
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how many bits are involved. Data become useless and destroy data usability when the
attacker overestimates the value. Underestimated has no significant effect on data and the
embedded signatures.

6. Comparison and Analysis

This section shows the resilience against different types of attacks discussed in this
research. In a deletion attack, the fingerprint attackers destroy the inserted fingerprint from
the provided dataset by deleting some records. A fingerprint architecture protects relational
data against duplication and transmission [41]. It guarantees that a user can only access
data that contains their unique identifier. When a user accesses a database, the fingerprint
process is activated, according to the technique. An administrator module performs
fingerprinting activities using multiple fingerprinting functions, but these functions are
vulnerable and change data values, making it difficult to identify a complicit agent because
the administration component also verifies the authentication using these specifications.
In [19] implies that if a change is made to the database for the insertion of messages,
the normal interpretation of the data will not be interrupted. However, to account for
distortion-based methods of watermark interpretability, consider distortion constraints.

The proposed technique results are higher against Zhou [41] and Gue [19] on resilience
to this attack. The 95% of the tuples are deleted, and the fingerprint is ultimately detected.
The attacker erases the embedded fingerprints and deletes more than 95% of the finger-
printed relation, which means he will lose almost the whole association. We conclude that
this attack is not sufficient for the attacker. Suppose that the attacker examines each tuple
independently and selects it with a probability pd for inclusion from the pirated relation.
For the attack to be successful, it must delete all embedded bits for at least one fingerprint
bit. We know that each fingerprint bit is embedded multiple times, so the probability that
all the embedded bits for fingerprint(fp) are deleted. Figure 6 shows the result of decoding
accuracy from the fingerprinted relation obtained by randomly selecting and deleting
different ratios of tuples for the simulation of this attack.

Figure 6. Decoding accuracy versus deletion of tuples.

Figure 7 shows the decoding accuracy of the fingerprinted relation obtained by ran-
domly selecting different ratios of the fingerprinted relation and toggling the least signif-
icant bits (LSB) for all their attributes and modifying LSB with other closest values with
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some increment or decrement. The 95% of the tuples are randomly altered, the fingerprint
can be detected completely. It shows that for the attacker to erase the embedded finger-
prints, they should alter more than 95% of the fingerprinted relation, causing a perceptible
change to the pirated relation. In the majority voting, fingerprint detection does not detect
fingerprint bit (fp). Therefore, the probability of the fingerprint bit is not recovered.

Figure 7. Decoding accuracy vs. tuples modification.

A fingerprinting scheme should be robust against malicious attacks. However, the
effect of these updates on the fingerprint detection process is limited to the minimum.
It should be made hard for the attacker to modify the embedded fingerprint so that the
innocent owner will not need to claim his ownership rights of relation, nor will they be
considered a pirate. Figure 8 shows the decoding accuracy of the fingerprinted relation
obtained by randomly selecting different ratios of the fingerprinted relation, mixing them
with tuples from other sources, and inserting them into a relational database. We can
see that the detection rate is approximately 90% when the attacker modifies 50% of the
embedded fingerprints.

7. Experiments and Results

This section performed some experiments and analyzed the results to validate the
robustness of our proposed technique. All experiments are performed on the SQL server
10.0 on Windows 10 PC with Intel (R) Core (TM) i3-2310M CPU 2.10 GH, 10 GB of RAM,
and 500 GB hard drive. The C# is used as a programming language, and Dropbox as a
cloud environment. The proposed approach is easily utilized for any relational database.
Our approach does not depend on the size and nature of the database because the database
is logically divided and its size does not matter. We obtained a dataset of liver disorders
from the UCI directory [46]. We selected 10,000 numbers of tuples and seven attributes.
We shortlisted the fingerprinting length of 35 bits binary string from a variable-length
string. Another total number of partitions m = 100. The percentage change of value
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Figure 1. An overview of the proposed security model. 

%
is 37% (1 to 100), and c is the confidence factor is 0.004 (0 to 1). Moreover, the threshold
value is calculated through the threshold formula, and only the optimal value selects that
value is greater than the calculated threshold. Our proposed technique is resilient against
various attacks and demonstrates through experiments and malicious databases the ability
to identify guilty traitors.
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Figure 8. Decoding accuracy vs. tuples insertion.

7.1. Analysis of Attacks
7.1.1. Deletion Attack

In this attack, the adversary drops some tuples intending to disturb the structure and
sequence of embedded fingerprints in the relational dataset. The attacker accomplishes the
tuple deletion mission to remove the fingerprint bits. It depends either on some statistical
calculation or randomly picked attributes. For example, suppose the attacker drops a
ℵ number of tuples from the Alice dataset and change ℵ number of values every time
to analyze the effect on decoding accuracy. Figure 9 shows the decoding accuracy with
the threshold base [1] fingerprinting technique. Our technique provides 100% decoding
accuracy when the attacker drops more than 95% of the tuples. Moreover, when only
one marked tuple is left in any partition of the relational database. Figure 9 shows the
modification deletion attack and circle represent the accuracy percentage.

Furthermore, our approach is not dependent on any mark value of tuple. We had
presented the selection and picking of tuples on logical partitioning, and all those values
are selected whose value is greater than the computed value of the threshold. This value
selection and shortlisting mechanism for tuple make it more effective and resilient against
synchronization error. Furthermore, we utilized the primary key to overwhelming this
kind of errors. Our finding analysis for robustness is observed when the attacker dispels an
extremely high tuple drop attack that affects the value of mean µ and standard deviation
σ. Our technique protects against such a scenario, as our proposed technique decoding
accuracy is independent of usability constraints.

7.1.2. Collusion Attack

In this attack, the attacker obtains multiple copies of the fingerprinted document
and tracks the difference between these documents. The attacker attempts to prove his
ownership by destroying the embedded fingerprint and inserting his signature to claim
ownership. However, our fingerprint signature generation mechanism is secure and robust
against Collusion Attacks. This attack is specific to fingerprinting. We generate unique
fingerprint strings with a user-specific parameter when a customer generates a request to
access the dataset. We obtained a 35-bit unique identification signature for each customer’s
string. Signature generation, through our proposed mechanism, has the ability that an
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attacker cannot generate and creak the existing signature. We obtained 35-bits string length
34,359,738,368 combination. The attacker does not guess the exact bits or run the burst-force
attack. Another strong motivation again is robustness, that we have embedded the whole
signature string into each nominated attribute.

Figure 9. Modification deletion attack.

7.1.3. Modification Attack

The traitor modified the attribute value to destroy the embedded fingerprint signa-
ture. Our technique can decode these signatures with 100% decoding accuracy because
our approach does not depend on the attribute value. Meanwhile, the techniques [19]
depend on attribute values and decoding accuracy offended when the attacker achieves
the goal of finding and updating all the fingerprinted attributes in the fingerprinted docu-
ment. Figure 10 shows the modification attack and small circle showing the percentage of
accuracy.

7.1.4. Insertion Attack

The attacker inserts new tuples to make the data distorted and noisy. There are several
ways in which an attacker inserts the new tuple into the fingerprinted document. For
example, there is a possibility that he inserts a new tuple at the end of the document. He
might also insert a few tuples in random locations and duplicate the existing tuple in the
relational database. Figure 11 shows the modification insertion attacks. These small circles
represent the percentage accuracy. Our proposed technique is resilient for each type of
insertion. We embedded the fingerprint signature based on the primary key and logical
partitioning of the relational database. When an attacker inserts a new tuple with any
insertion mechanism he used, a unique primary key will be assigned to each tuple. It is
the properties of a primary key that cannot be duplicated or contain a null value. Our
proposed approach decodes the signature with 100% accuracy when the attacker doubles
the volume of the dataset.
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Figure 10. Modification attack.

Figure 11. Modification insertion attack.

8. Conclusions

This paper proposed an effective, reliable, and automated solution to protect precious
numeric relational data in the cloud for illegal duplications, traitor identification, and re-
distributions. We presented a robust fingerprinting technique for relational databases with
minimum distortion in the original database and bandwidth-independent decoding accu-
racy. We provided a unique signature generation mechanism for each buyer in real-time.
The fingerprint embedding process is used to embed an arbitrary bit string as a fingerprint
pattern using the secret key and the cryptographic hash function. The fingerprint decoding
algorithm extracts the embedded bit string of the fingerprint. Our Proposed fingerprint-
ing algorithm is highly resilient against various attacks; Insertion, Deletion, Alteration,
Bit-flipping attack, and Collusion Attack, and presents a blind reversible scheme. The
proposed scheme provides the database owner ownership authorization and attains full
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recovery of the original database relation once the fingerprint is detected and authenti-
cated. We can tackle the combination of multibit fingerprints with collusion-resistant code
generated through the buyer’s ID. Our fingerprinting scheme’s nature is asymmetric and
provides a unique on-demand copy of data to requested buyers. Merchant uses the same
identification marks for the detection process; to prove to a third party that the data is
pirated and that the pirated data is sold to a specific buyer.

Further research should also investigate categorical, alphanumeric attributes, and
non-numeric encoding domains, a logical extension of this research.
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