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Abstract: Deep convolutional neural networks have shown remarkable performance in the image
classification domain. However, Deep Learning models are vulnerable to noise and redundant infor-
mation encapsulated into the high-dimensional raw input images, leading to unstable and unreliable
predictions. Autoencoders constitute an unsupervised dimensionality reduction technique, proven
to filter out noise and redundant information and create robust and stable feature representations. In
this work, in order to resolve the problem of DL models’ vulnerability, we propose a convolutional
autoencoder topological model for compressing and filtering out noise and redundant information
from initial high dimensionality input images and then feeding this compressed output into convo-
lutional neural networks. Our results reveal the efficiency of the proposed approach, leading to a
significant performance improvement compared to Deep Learning models trained with the initial
raw images.

Keywords: convolutional autoencoders; dimensionality reduction; deep learning; convolutional
neural networks; computer vision; image classification

1. Introduction

Nowadays, convolutional neural networks (CNNs) have considerably flourished
mainly because they have shown noticeable classification performance in image classifica-
tion and computer vision tasks [1,2]. However, robustness and stability are some major
problems in which Deep Learning (DL) models are prone, since it is proved that they can be
fooled even by a tiny amount of perturbation, exhibiting poor and unreliable performance
in these cases [3,4].

Moreover, in Machine Learning (ML) image classification tasks when dealing with
high-dimensional data, which usually contain a lot of redundant information and noise,
the reliable knowledge feature extraction procedure deteriorates [5]. The extraction of only
the most important features compresses the initial feature space, leading to a stable and
robust latent image representation [2,5,6]. Thus, it is necessary to capture only the most
relevant information.

Training a supervised DL model with high dimensionality and low-quality image data
can lead to overfitting and/or unstable behavior, especially when the training instances
are limited or unbalanced. In other words, small pixel changes can lead the model to
change its predictions, which implies that it has not exploited the information in the
training data, and it exhibits poor and inefficient performance [7]. Additionally, it is
worth highlighting that another significant problem is that the higher the dimension of
the input images, the more the network is affected by the presence of noise, even if the
amount of noise is small. By taking into consideration these difficulties and constraints,
the application of a preproccessing step, which will attempt to reduce the noise in the image
data while simultaneously reduce their dimension is considered essential for improving
the performance of the DL model.
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A traditional approach for image denoising is the transformation of the image from
pixel intensities into another representation in order to capture the image’s statistical regu-
larities more easily and effectively [8]. In the literature, a variety of approaches have been
proposed for image denoising such as Gaussian scale mixture (GSM) models [9,10] and
the more elegant Markov random fields (MRF)-based methodologies [11,12]. Neverthe-
less, the main disadvantage of these approaches is the considerable computational cost
for parameter estimation and the fact that their values significantly affect the denoising
performance quality. For example, naive methods of learning MRF-based models require
the calculation of the partition function as well as a normalization factor which is generally
intractable for high image dimensions [8]. To this end, a significant amount of research has
been devoted to approximate MRF learning and inference techniques, which are usually
computationally inefficient; thus, the parameters estimation is a significantly hard task.
In addition, even if a traditional method is successfully applied, the noise in the images will
be considerably reduced in the best-case scenario, but not totally removed. This implies
that the high dimension of the input images, together with any amount of noise, will
probably lead to unsatisfying performance, although the amount of noise may be small.

Convolutional autoencoder (CAE) [7] models constitute neural-network-based mod-
els, which have been proposed for dimensionality reduction and representation learning in
a variety of tasks [13–15]. These models avoid the computational cost drawback of image
denoising by posing the task within the statistical framework of regression, which consti-
tutes a more tractable computation; thus, it permits greater representational power than
density estimation [8]. More specifically, the process of image denoising with a CAE model
can be formulated as a learning problem of training the model; therefore, the parameter es-
timation is performed by a modification of the well-known backpropagation algorithm [16].
The novelty in CAE for image processing is the utilization of convolutional layers which
are able to create more abstract representations of the initial inputs by removing noise and
redundant information. Therefore, these layers have been characterized as one of the major
frontiers in deep learning and image analysis [7].

The utilization of convolutional layers allows CAEs to filter out noise and create robust
and stable feature representations [5,17] while simultaneously reducing the input dimen-
sion size, making them suitable for dealing with high-dimensional noisy images. It is worth
mentioning that an attractive property of CAEs over traditional dense autoencoders for
image processing is that generally a huge loss of information is noticed when stacking and
slicing the data. Instead of stacking the data as in classical autoencoders, the convolutional
layers of CAEs are able to efficiently retain the spatial information of the input image data
and gently extract information. In other words, CAEs can learn compressed image latent
representations [5,17,18], therefore preserving the spatial locality of the input in a manner
similar to other CNNs [19].

In this work, we propose an ML topology for performing efficient and robust classi-
fication in high-dimensional and noisy input data images. As a first preprocessing step,
we utilize a CAE model in order to compress and filter out noise and redundant informa-
tion, maintaining also the spatial feature characteristics from the initial image data and
capturing only the most relevant and useful feature information. As a result, the initial
high-dimensional input is transformed via the CAE into a compressed and compact 2D
spatial image representation. In the second step, the CAE outputs are fed into a powerful
pre-trained image classification model in order to successfully address classification tasks.

The main contribution of this research lies in proposing and implementing CAE
as a general unsupervised learning data preprocessing method for creating robust and
compressed feature representations. The rationale behind our approach is to improve
state-of-the-art DL models to perform stable and accurate predictions on classification
tasks when high-dimensional and noisy image input datasets are involved. The aim of
this work is to tackle the problem of Deep Learning models being vulnerable in noise and
redundant information tied into the raw input images, especially from high-dimensional
inputs, leading to unstable and unreliable predictions. To this end, our approach is based
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on exploiting the advantages of CAEs as an efficient pre-processing noise filtering and
compression method in order to improve CNN models in terms of robustness and accuracy
when dealing with noisy high-dimensional inputs.

In order to validate the efficacy and the efficiency of the proposed method, we per-
formed extensive experimental simulations utilizing high-dimensional image datasets
concerning three different application domains. The first dataset concerns the problem
of plant disease detection, the second concerns skin cancer detection, and the third Deep-
Fake detection.

The rest of this paper is organized as follows: in Section 2, we present the state of
the art image classification models and our proposed topology, while in Section 3, we
present the technical details concerning the utilized datasets. Section 4 demonstrates
our experimental results, and finally, Section 5 sketches our conclusive remarks and the
future directions.

2. Materials and Methods
2.1. Related Work

During the last decades, a remarkable number of methodologies have been proposed
in order to remove noise and redundant information from input images for creating
robust and efficient image representations. Tian et al. [20] presented an excellent review
regarding conventional machine learning methods and deep learning technologies for
image denoising. The authors presented the most decent works proposed in the literature,
focusing on the advantages of each approach. Finally, they discussed some promising
research directions for image denoising based on deep learning technologies. In general,
image denoising approaches can be separated into the traditional ones, such as GSM
models and MRF-based methodologies, and the most elegant—the CAE-based approaches.

Portilla et al. [10] proposed a new methodology for noise removal from digital images
which was based on a local GSM model in an overcomplete oriented pyramid represen-
tation. In their proposed methodology, they computed the full optimal local Bayesian
least squares solution (LSS), as opposed to first approximating the local variance, and then
utilized it to estimate the coefficient. Additionally, we utilized the vectorial form of the
LLS solution in order to exploit all the information provided by the covariance modeling
of signal and noise. The authors provided empirical evidence that these enhancements
considerably improve the denoising performance.

Tappen et al. [11] presented a new approach for training a Gaussian Conditional
Random Field (GCRF) model for image denoising, which is able to outperform the non-
convex Field of Experts model. The rationale behind their approach of focusing on discrete-
valued and non-convex MRF models was that GSM models tend to over-smooth images
and blur edges. An advantage of the GCRF model is that its parameters can be optimized
efficiently on relatively large images. Based on their experimental analysis, the authors
stated that their proposed approach constitutes an attractive option for image and vision
processing applications.

Barbu [21] proposed an interesting approach in which it was demonstrated that the
process of training an MRF/CRF model together with a very fast inference algorithm
could offer promising results relative to both speed and accuracy. The key idea of the
proposed approach was that a validation set can be utilized to estimate the generalization
performance of the trained system. Their experiment was performance on 256 × 256 images
which presented that the proposed approach obtained an improved performance as well as
a 1000–3000 times speedup compared to the state-of-the-art Field of Experts MRF trained
with contrastive divergence.

Zhang et al. [22] proposed a novel Gaussian mixture Markov random field model (GM-
MRF) which can be efficiently utilized as a very expressive prior model for image denoising
and reconstruction. The proposed method forms a global image model by merging together
individual GSM mixture models for image patches. Furthermore, the authors analytically
presented a framework for computing MAP estimates with the GM-MRF model through
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the construction of exact surrogate functions. Their experimental analysis included a
demonstration of the efficiency of their approach for denoising of dual-energy CT images.

Chen et al. [23] proposed a new framework which was based on a convolutional
autoencoder model for creating unsupervised representations for images of lung nodule.
More specifically, their approach was composed by a two-stage training procedure: at the
first phase, the CAE was trained in an unsupervised way utilizing unlabeled data for image
features learning; in the second phase the CAE is merged with a dense neural network and
the resulting model was trained in a supervised way utilizing labeled data. An attractive
property of the proposed approach comparing to a supervised one, is that it requires a
small amount of labeled data for efficient feature learning applied in classification tasks.
Additionally, the authors provided evidence that their proposed methodology can be
extended for similarity measurement tasks of lung nodules images.

Seyfioğlu et al. [24] proposed a three-layer CAE topology for radar-based classification
of similar aided and unaided human activities. After the unsupervised training procedure
of the CAE, the decoder was removed, and it was substituted by dense layers and an
output softmax layer. The develoved convolutional-based classification model was then
trained in a supervised way. Their experimental analysis showed that their proposed
methodology was superior compared to other deep learning classification models, support
vector machines, extreme gradient boosting and random forest.

The main difference of our proposed approach compared to the previous state-of-the-
art approaches lies in the fact that a CAE is trained for filtering out noise and creating
robust and stable feature representations while simultaneously reducing the input image
dimension size. In the sequence, the output of the encoder is utilized for developing
a training set to fit a powerful pre-trained image classification model. The rationale
behind our approach is to enhance the predictive power of pre-trained neural network
classification model by developing a higher quality training dataset. For this purpose,
we utilized a CAE for simultaneously compressing an image and filtering out noise and
redundant information while also maintaining the spatial feature characteristics from the
initial image data.

2.2. State-of-Art Pre-Trained CNN Classification Models

Large Deep Learning models trained on over millions of images, composed by a large
variety of various CNN architectures, topologies such as VGG and ResNet, are considered
as the mainstream approaches for addressing image classification applications [1,2]. In fact,
these networks are utilized as pre-trained feature extraction models transferring their
knowledge into new small non-trained networks (main transfer learning approach) in
order to specialize in new specific image classification problems.

VGG [19] adopted its name by the team Visual Geometry Group at the University of
Oxford and is applied in computer vision tasks. This deep neural network is constituted by
multiple (3× 3) convolution filters, which are proved to be more efficient compared to its
prior network AlexNet. On the other hand, AlexNet was composed by kernel-sized filters
(11 and 5 in the first and second layer, respectively).

ResNet [25], also called Residual Network, is a Deep Learning model which utilizes
identity connections in order to address the degradation problem which is caused by very
large network depths (such as over 18 layers). In particular, these connections take the
input directly to the end of each residual block, while each residual block is constituted by
3 × 3 and 1 × 1 convolution filters.

DenseNet [26] constitutes an updated version of ResNet and is implemented us-
ing dense blocks, which connect each layer to every other layer in a feedforward way.
The main advantages of utilizing these blocks are feature reuse, implicit deep supervision,
and parameter efficiency.

MobileNet [27] is a computationally efficient state of the art CNN topology designed
for application mainly to mobiles. MobileNet’s topology is based on an inverted residual
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structure, while the input and output of the residual block are thin bottleneck layers in
contrast to classic residual networks.

2.3. Convolutional Autoencoders

Convolutional autoencoders (CAEs) are unsupervised dimensionality reduction mod-
els composed by convolutional layers capable of creating compressed image representa-
tions [28]. In general, CAEs are mainly utilized for reducing and compressing the input
dimension size, removing noise while simultaneously keeping all useful information and
extracting robust features [5,17,18]

The main difference between convolutional AE and traditional AE is the utilization of
convolutional layers. It is worth mentioning that these layers are characterized by their
attractive property of extracting knowledge and learning the internal representation of
image data.

More specifically, CAEs are composed by two CNN models, the Encoder and Decoder,
as presented in Figure 1. The Encoder is mainly used for encoding the initial input image
into a latent representation which has lower dimension. On the other hand, the Decoder
is responsible for reconstructing the compressed latent representation creating an output
image being as much similar with the initial one.

Figure 1. General pipeline of a CAE model.

Mathematically, let x = XM×H×W×3
initial denote the initial input image dataset, where

H, W are the number of pixels corresponding to the Height and Width of every image
X, and M is the number of samples. Additionally, E and D denote the Encoder and
Decoder, respectively. Then, the encoded representation y = XM×h×w×3

compressed , where h and w
are the width and depth dimensions of the compressed spatial 2D representation, and the
decoded reconstruction x̂ = XM×H×W×3

initial consist of the output of the encoder and decoder,
respectively, that is: {

y = E(x)
x̂ = D(y)

The performance of the convolutional autoencoder can be measured by the reconstruction
error eCAE, which is defined by:

eCAE = LCAE

(
(x̂(k)), x(k)

)
The function LCAE denotes a measurement of difference such as the widely used square
Euclidean distance defined as:

LCAE

(
x̂(k), x(k)

)
=

1
2
‖x̂(k) − x(k)‖2.

Then, the cost function in its general form can be formulated as follows:

JCAE =
1
M

M

∑
k=1

LCAE

(
D(E(x(k))), x(k)

)
(1)

By minimizing the cost function JCAE, we attempt to find the optimal weight parameters
for the convolutional autoencoder.
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In our implementation, the cost function (1) was minimized utilizing Adam optimiza-
tion algorithm [29], and the value of the learning rate was set to 10−3.

2.4. Proposed Topology

Figure 2 presents the main pipeline of the proposed convolutional autoencoder–
convolutional neural network (CAE-CNN) topology. In our approach, initially a CAE is
trained with the initial training dataset. When the CAE finishes its training procedure, then
the decoder component is discarded, while the encoder is used for compressing the initial
high-dimensional image dataset into a compressed image dataset. Finally, the output of
the CAE’s encoder (compressed image dataset) is used for feeding and training a CNN
classification model, such as ResNet, VGG, etc.

Figure 2. Main pipeline of the proposed CAE-CNN topology.

In the sequel, let us denote C as the CNN classification model and l = {l1, l2, . . . , lN},
where li ∈ {0, 1} ∀i ∈ N, as the target output of N total classes with respect to the
classification problem. The initial training dataset x is transformed via the encoder E into
an encoded compressed 2D representation y. The raw output l̂ = {l̂1, l̂2, . . . , l̂N} of the
CNN classification model is given as follows:

l̂ = C(y)
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The performance of the CNN classification model can be measured by the reconstruction
error:

eCNN = LCNN

(
l̂(k), l(k)

)
The function LCNN denotes a measurement of difference such as the widely used Cross
Entropy loss function [30]. Then, the cost function in its general form can be formulated as
follows:

JCNN =
1
M

M

∑
k=1

LCAE

(
D(E(l(k))), l((k))

)
Finally, by minimizing the cost function JCNN , we obtain the optimal weight parameters
for the CNN classification model with respect to the classification task.

2.5. Proposed Convolutional Autoencoder’s Architectural Design

Figure 3 presents the proposed CAE topology of our architecture, while Figure 4
presents the compressed image output of the CAE of some examples regarding the three
utilized image datasets. Finally, Table 1 presents in a detailed way the CAE parameters’
settings configurations setup. The proposed CAE has a symmetric architecture with four
batches of 2D convolutional and deconvolutional layers followed by a Rectified Linear Unit
(ReLU) activation function. The deconvolution [31] (also called as transposed convolution)
is performing the reverse operation of the convolutional layer. In particular, it maps the
input from a low-dimensional space to a high-dimensional one.

Figure 3. Architectural presentation of our CAE topology.
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Figure 4. (A) Initial high-dimensional image. (B) Compressed image using CAE.

More specifically, the raw input image with dimensions H ×W × 3 is fed into the first
layer (2D Conv1-ReLU1), which is also the CAE’s Encoder’s input and creates 32 down-
sampled spatial feature maps of dimensions H/2×W/2, utilizing a 4× 4 kernel size with
32 filters. Subsequently, this output is fed into the second layer (2D Conv2-ReLU2), which
is the Encoder’s output and creates the compressed image representation of dimensions
H/4×W/4× 3, utilizing a 2× 2 kernel size with 3 filters. Since the first layer’s output
feature maps have a lower dimensional size comparing to the input image, it is reasonable
to utilize a smaller kernel size in the second layer. Similarly, the third and fourth layers
(2D Deconv3-ReLU3, 2D Deconv4-ReLU4) of CAE’s decoder component perform in a
symmetric way the reverse operation of this of the encoder’s.

Table 1. Parameter settings of the utilized CAE topology.

Layers Input Size Kernel Size Stride Output Size

2D Conv
(E. Input)

H ×W × 3 4× 4× 32 2× 2× 1 H/2×W/2× 32

En
co

de
r ReLU H/2×W/2× 32 − − H/2×W/2× 32

2D Conv H/2×W/2× 32 2× 2× 3 2× 2× 1 H/4×W/4× 3
Sigmoid

(E. Output )
H/4×W/4× 3 − − H/4×W/4× 3

2D Deconv3
(D. Input)

H/4×W/4× 3 2× 2× 32 2× 2× 1 H/2×W/2× 32

D
ec

od
er ReLU H/2×W/2× 32 − − H/2×W/2× 32

2D Deconv4 H/2×W/2× 32 4× 4× 3 2× 2× 1 H ×W × 3
Sigmoid

(D. Output)
H ×W × 3 − − H ×W × 3

3. Case Study Applications/Datasets

Next, we present the characteristics of the datasets, which were utilized in this study in
order to evaluate the efficiency of the proposed architectural topology. The first application
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concerns the problem of plant disease detection, the second concerns the skin cancer
detection, and the third the DeepFake detection.

These three application domains have attained very high interest in the last
years [32–39] for many different reasons. More specifically, regarding the plant disease
problem, due to the massive agriculture improvement, it is necessary to automate plant
disease detection by using technologies such as air drones and cure ill plants fast and accu-
rately [40]. Regarding skin cancer detection, the fast recognition and treatment in its earliest
stages is crucial for its treatment and curing process. The DeepFake faces image detection
problem recently has attained very high interest [33–39]. The recent invention and the
continuous development of the Generative Adversarial Networks (GANs) [40] technology
has made possible the generation and the creation of high quality and extremely realistic
fake images and videos being very hard even for experts to recognize them. These fake
images/videos can be extremely harmful for human rights, especially when the deepfakes
are used maliciously as a source of misinformation, manipulation, and harassment.

Plant disease. Concerning the plant disease detection problem, the utilized train-
ing dataset is composed of 464, 81, 559, and 532 of “healthy”, “multiple-disease”, “rust”,
and “scab” labeled plants, respectively, while the testing dataset consists of 52, 10, 63,
and 60 of “healthy”, “multiple-disease”, “rust”, and “scab” labeled plants, respectively. All
images had initial resolution of 1024×1024. This dataset is available at: https://drive.
google.com/drive/folders/12DIF3KF-ZOnpBzsA6inRRjNNOBLqJhhG (accessed on 14
November 2021).

Skin cancer. This dataset was obtained by ISIC (International Skin Imaging Collabora-
tion, https://www.isic-archive.com (accessed on 14 November 2021)), which aims to assist
in reducing melanoma mortality through the application of digital skin cancer imaging.
The utilized training dataset consists of 1754 and 178, while the testing dataset consists of
168 and 22 of “Benign” and “Malignant” diagnosed patients, respectively. All images had
initial resolution of 1024× 1024.

DeepFake experts. Concerning the DeepFake detection problem, we utilized a
balanced dataset created by expert photoshop designers, conducted by the Computa-
tional Intelligence and Photography Lab in the Department of Computer Science at
Yonsei University. In particular, they forged and replaced persons’ facial marks such
as eyes and mouth into other different person faces. Thus, such images are manipu-
lated and considered as fake instances. The utilized dataset includes images, which vary
from easy, mid, and hard recognition difficulty. The training dataset constitutes 924 and
973, while the testing dataset constitutes 121 and 108 “Fake” and “Real” labeled face im-
ages, respectively. All images had initial resolution of 600× 600. This dataset is available
at: https://www.kaggle.com/ciplab/real-and-fake-face-detection (accessed on 14 Novem-
ber 2021).

4. Experimental Results

In this section, we validate the efficiency and robustness of the proposed topology
by performing comprehensive experimental simulations utilizing various state of the art
CNN topologies. The measurement of quality is based on the well-known widely used
evaluation metrics: Accuracy (Acc), Geometric Mean (GM), and the Area Under the Curve
(AUC) [41]. Notice that the performance metrics GM and AUC present the information
provided by a confusion matrix in compact form [42,43]; hence, these two metrics constitute
the proper ones to evaluate if a prediction model has not overfitted the training data. The
best performance for each state-of-the-art model and performance metric is highlighted
in bold. The implementation code was written in Python 3.7 utilizing FastAI library [44],
while the hyper-parameters were defined under exhaustive experimentation.

In our implementation, the cost function (1) was minimized utilizing Adam opti-
mization algorithm [29], and the value of the learning rate was set to 10−3. Additionally,
in order to avoid overfitting and maximize the efficiency of the proposed CAE, 10% of

https://drive.google.com/drive/folders/12DIF3KF-ZOnpBzsA6inRRjNNOBLqJhhG
https://drive.google.com/drive/folders/12DIF3KF-ZOnpBzsA6inRRjNNOBLqJhhG
https://www.isic-archive.com
https://www.kaggle.com/ciplab/real-and-fake-face-detection
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training data was used for validation and early stopping technique based on “validation
loss” was used.

The evaluated approaches are the “Traditional”, “Means Denoising (MD)”, and the
proposed one, “CAE”. In the Traditional approach, the images are directly fitted to a CNN
classification model, while in the MD approach, a non-local MD algorithm [45] was applied
on every input image, as a first preprocessing step, before feeding the images into the
CNN classification models. The motivation behind this approach was to provide a more
comprehensive experimental comparison by evaluating the proposed methodology against
a classical approach which uses an image processing denoising technique. Finally, in our
proposed CAE approach, the images are initially compressed and transformed via the CAE
model and then fitted to a CNN classification model.

Tables 2–4 summarize the performance of the evaluated approaches regarding plant
disease, skin cancer, and DeepFake experts, respectively. Notice that each approach has
been evaluated utilizing VGG, ResNet, DenseNet, and MobileNet as a pre-trained CNN
classification model. Notice that all pre-trained models were trained on ImageNet dataset.
The interpretation of Tables 2–4 reveals that the incorporation of CAE managed to signifi-
cantly increase the performance of all CNN models in all case study scenarios, especially
for the VGG model in which is observed a considerable improvement. In addition, it man-
aged to outperform the MD image pre-processing technique for every utilized pre-trained
CNN. More specifically, the proposed CAE approach managed to significantly increase
the performance of the ResNet, DenseNet, and MobileNet CNN model producing the best
results for all datasets. Moreover, it managed to considerably increase the performance of
the VGG model for all utilized datasets. Furthermore, the DenseNet CNN model managed
to deliver the best results overall for all utilized approaches (Traditional, MD, CAE) and
all utilized datasets, while the VGG model reported the worst results. However, utilizing
the proposed CAE approach, the VGG model managed to achieve a decent and great
performance, similar to the other CNN models.

Finally, it is worth mentioning that in our preliminary experiments, we fitted the CNN
models with the original images, and we utilized the reconstructed images on the testing
phase. However, the performance of all models was similar or slightly degraded.

Table 2. Performance results for plant disease benchmark. The best results are displayed in bold.

Approaches CNN Model Acc GM AUC

Traditional 80.0% 852 0.866
MD VGG 83.2% 906 0.896
CAE 87.6% 913 0.917

Traditional 90.3% 1027 0.935
MD ResNet 91.4% 1044 0.946
CAE 92.4% 1066 0.949

Traditional 93.0% 1187 0.953
MD DenseNet 92.9% 1188 0.954
CAE 93.5% 1140 0.956

Traditional 94.6% 1031 0.963
MD MobileNet 92.9% 1075 0.957
CAE 93.5% 1087 0.956
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Table 3. Performance results for skin cancer benchmark. The best results are displayed in bold.

Approaches CNN Model Acc GM AUC

Traditional 66.3% 38 0.631
MD VGG 67.4% 39 0.637
CAE 70.0% 40 0.750

Traditional 73.7% 37 0.633
MD ResNet 74.7% 39 0.642
CAE 77.9% 42 0.697

Traditional 75.8% 42 0.685
MD DenseNet 75.3% 41 0.681
CAE 80.0% 41 0.689

Traditional 75.2% 35 0.603
MD MobileNet 74.2% 36 0.612
CAE 72.0% 39 0.638

Table 4. Performance results for DeepFake experts benchmark. The best results are displayed in bold.

Approaches CNN Model Acc GM AUC

Traditional 73.3% 83 0.732
MD VGG 76.4% 87 0.774
CAE 82.0% 93 0.869

Traditional 80.8% 92 0.881
MD ResNet 81.2% 93 0.892
CAE 82.1% 94 0.897

Traditional 84.3% 96 0.905
MD DenseNet 83.4% 95 0.903
CAE 86.1% 98 0.926

Traditional 79.0% 90 0.853
MD MobileNet 79.5% 91 0.857
CAE 81.0% 92 0.889

Another significant finding is that the incorporation of CAE considerably improved
the performance of the CNN models in the DeepFake Experts dataset. This is probably due
to the fact that this dataset is considered as a very noisy dataset with considerable amount
of redundant information in every image. This means that the CAE managed to capture
the relevant information (fake signs on every face for this case study scenario), filtering out
the noise. Therefore, the CNN classification models had to focus only on the most relevant
information, thus leading to this great performance improvement.

Clearly, the purpose of this study was not to propose a deep learning classifier but
to demonstrate a complete topology for addressing hard image classification problems in
which the training image data has a high-dimensional size and contains noise. As a result,
it obviously leads to some computational cost increase for training the CAE, but on the
other hand, reducing the noise leads to a considerable reduction in computational cost for
training the DL model (smaller figures).

To summarize, our results demonstrated that the incorporation of convolutional
autoencoders as an image preprocessing technique could improve the performance of
CNN models leading to robust and accurate results. Therefore, it can be considered as a
promising tool on high-dimensional and noisy dataset applications.

Next, we attempt to provide statistical evidences about the efficiency of our proposed
approach. More analytically, we investigate if the hypothesis H0 that all evaluated ap-
proaches, i.e., “Traditional”, “Means Denoising (MD)”, and the proposed one, “CAE”,
performed equally well for a given level. For this purpose, we used the non-parametric
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Friedman Aligned Ranking (FAR) [46] test. Furthermore, for examining if the differences
in the performance of the utilized pre-trained CNN models are statistically significant, we
applied the post hoc Finner test [47] with significance level α = 5%.

Tables 5–7 report the statistical analysis, performed by nonparametric multiple com-
parison, relative to Accuracy, GM, and AUC performance metrics, respectively. Clearly,
the results presented in Tables 5–7 provide statistical evidence that the proposed approach
reported the highest probability-based ranking, outperforming the other approaches.

Table 5. FAR test and Finner post hoc test based on Accuracy metric.

Series Friedman Finner Post Hoc Test
Ranking p-Value H0

CAE 9.4167 − −
MD 21.6667 0.004399 Rejected
Traditional 24.4167 0.000975 Rejected

Table 6. FAR test and Finner post hoc test based on GM metric.

Series Friedman Finner Post Hoc Test
Ranking p-Value H0

CAE 11.5000 − −
MD 17.8333 0.140894 Not rejected
Traditional 26.1667 0.00065 Rejected

Table 7. FAR test and Finner post hoc test based on AUC metric.

Series Friedman Finner Post Hoc Test
Ranking p-Value H0

CAE 7.58330 − −
MD 22.0417 0.000775 Rejected
Traditional 25.8750 0.000021 Rejected

5. Conclusions

In this work, we proposed and suggested the incorporation of convolutional autoen-
coders as a general unsupervised learning data preprocessing method for creating robust
and compressed feature representations in order to improve CNN performance on image
classification tasks.

The utilized CNN models (ResNet, DenseNet, MobileNet, and VGG) are generally
considered as widely used state-of-the-art (SoA) image classification models. Furthermore,
our scope in this research work is not to prove directly that our method leads to the highest
performance results comparing with other SoA image classification models. In contrast,
our aim is to prove that the proposed method is able to improve any SoA CNN model via
the combination and incorporation of the CAE component. Therefore, we consider that the
utilization of four SoA image classification models is a sufficient number in model selection
in order to lead to reliable and robust experimental results.

In order to validate the efficiency of the proposed methodology, we utilized datasets
from three very popular and totally different application domains, the plant disease, skin
cancer, and DeepFake detection problems, applying state-of-the-art CNN model architec-
tures such as ResNet and DenseNet. Based on our experimental results, the proposed
methodology was significantly superior compared to every other utilized approach. Note
that it is possible that the prediction ability of the proposed approach could be further
improved by including more sophisticated DL tools, loss and activation functions, class
weighted approaches, etc. (see [48] and the references therein). This is to be included and
fully investigated in our future research.
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Nevertheless, the limitation of the proposed framework lies in the fact that there is no
mathematical proof that it outperforms traditional methodologies nor that the conditions
of the Nyquist theorem are satisfied. The conclusions and findings of this work can be
demonstrated only from experimental and qualitative reasoning. Furthermore, the utilized
real-world datasets did not provide us with any information about the distribution and
the kind of noise. To this end, we were not able to estimate the expense of error or
the image quality improvement. These also constitute general limitations to all prior
works [8,15,23,24], which proposed denoising schemes based on the use of CAEs.

Additionally, CAEs are usually prone to overfitting which implies that in such cases,
they may not create high-quality data for fitting a Deep Learning model. From our numeri-
cal experiments, we have not noticed such cases; however, more experiments are needed.
This is probably dependent on the problem at hand and the quality of the original images.

Another limitation of the proposed work is that the level of compression is dependent
on the CAE’s architecture and more specifically on the output of the encoder. Note
that the smaller the output of the encoder, the higher the level compression. However,
for identifying the optimal level of compression, we believe that more experimentation is
needed in order to examine and evaluate the performance of the proposed approach using
different architectures and eventually different levels of compression.

In future work, we aim to investigate ensemble learning methods [49–52] such as
Bagging and Stacking and combine them with our proposed topology, aiming to create more
robust and accurate composite classification models. In addition, we intend to explore
further the efficacy and efficiency of the proposed network in a variety of datasets of various
sizes and complexity from real-world application domains. The vigorous development
of the Internet and the widespread adoption of electronic medical records have led to the
development of large repositories of labeled and mostly of unlabeled biomedical images.
Nevertheless, the process of correctly labeling new, unlabeled instances frequently requires
the efforts of specialized personnel, which incur a lot of time and high monetary costs.
To deal with this problem, Semi-Supervised Learning algorithms constitute the appropriate
machine learning methodology for extracting useful knowledge from both labeled and
unlabeled data in order to build efficient prediction models. To this end, another interesting
idea could be the adoption of the proposed autoencoder methodology to Semi-Supervised
Learning (SSL) techniques [53] for addressing challenging biomedical classification tasks.
SSL is a new state-of-the-art data mining area, which focuses on applications where the
labeled data are limited and require much effort and cost to obtain. Since the autoencoders
do not require by default labeled data for their training procedure, the incorporation of the
proposed framework in the SSL area could provide us with promising models. Finally, we
also aim to incorporate intrinsic interpretability using explainable features [54–56] in order
to provide some degree of explainability.
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List of Acronyms and Abbreviations

Acc Accuracy
AUC Area under the curve
CAE Convolutional autoencoders
CNN Convolutional neural networks
CAE-CNN Convolutional autoencoder–convolutional neural network
DL Deep learning
GCRF Gaussian conditional random field
GM Geometric mean
GM-MRF Gaussian mixture Markov random field model
GSM Gaussian scale mixture
ISIC International skin imaging collaboration
LSS Least squares solution
MD Means denoising
ML Machine learning
MRF Markov random fields

References
1. Zhao, Z.Q.; Zheng, P.; Xu, S.T.; Wu, X. Object detection with deep learning: A review. IEEE Trans. Neural Netw. Learn. Syst. 2019,

30, 3212–3232. [CrossRef] [PubMed]
2. Shao, L.; Zhu, F.; Li, X. Transfer learning for visual categorization: A survey. IEEE Trans. Neural Netw. Learn. Syst. 2014,

26, 1019–1034. [CrossRef] [PubMed]
3. Zhang, C.; Zhang, K.; Li, Y. A causal view on robustness of neural networks. arXiv 2020, arXiv:2005.01095.
4. Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks.

arXiv 2013, arXiv:1312.6199.
5. Wickramasinghe, C.S.; Marino, D.L.; Manic, M. ResNet Autoencoders for Unsupervised Feature Learning From High-Dimensional

Data: Deep Models Resistant to Performance Degradation. IEEE Access 2021, 9, 40511–40520. [CrossRef]
6. Zabalza, J.; Ren, J.; Zheng, J.; Zhao, H.; Qing, C.; Yang, Z.; Du, P.; Marshall, S. Novel segmented stacked autoencoder for effective

dimensionality reduction and feature extraction in hyperspectral imaging. Neurocomputing 2016, 185, 1–10. [CrossRef]
7. Ilesanmi, A.E.; Ilesanmi, T.O. Methods for image denoising using convolutional neural network: A review. Complex Intell. Syst.

2021, 7, 2179–2198. [CrossRef]
8. Jain, V.; Seung, S. Natural image denoising with convolutional networks. In Proceedings of the 22nd Annual Conference on

Neural Information Processing Systems, Vancouver, BC, Canada, 8–10 December 2008.
9. Lyu, S.; Simoncelli, E.P. Statistical modeling of images with fields of Gaussian scale mixtures. In Proceedings of the 20th Annual

Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 4–7 December 2006.
10. Portilla, J.; Strela, V.; Wainwright, M.J.; Simoncelli, E.P. Image denoising using scale mixtures of Gaussians in the wavelet domain.

IEEE Trans. Image Process. 2003, 12, 1338–1351. [CrossRef]
11. Tappen, M.F.; Liu, C.; Adelson, E.H.; Freeman, W.T. Learning gaussian conditional random fields for low-level vision. In Pro-

ceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007;
pp. 1–8.

12. Weiss, Y.; Freeman, W.T. What makes a good model of natural images? In Proceedings of the 2007 IEEE Conference on Computer
Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; pp. 1–8.

13. Arai, H.; Chayama, Y.; Iyatomi, H.; Oishi, K. Significant dimension reduction of 3D brain MRI using 3D convolutional
autoencoders. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), Honolulu, HI, USA, 17–21 July 2018; pp. 5162–5165.

14. Guo, X.; Liu, X.; Zhu, E.; Yin, J. Deep clustering with convolutional autoencoders. In Proceedings of the International Conference
on Neural Information Processing, Guangzhou, China, 14–18 November 2017; pp. 373–382.

15. Kucharski, D.; Kleczek, P.; Jaworek-Korjakowska, J.; Dyduch, G.; Gorgon, M. Semi-supervised nests of melanocytes segmentation
method using convolutional autoencoders. Sensors 2020, 20, 1546. [CrossRef]

16. Da Silva, I.N.; Spatti, D.H.; Flauzino, R.A.; Liboni, L.H.B.; dos Reis Alves, S.F. Artificial neural network architectures and training
processes. In Artificial Neural Networks; Springer: Cham, Switzerland, 2017; pp. 21–28.

17. Sun, Y.; Mao, H.; Guo, Q.; Yi, Z. Learning a good representation with unsymmetrical auto-encoder. Neural Comput. Appl. 2016,
27, 1361–1367. [CrossRef]

18. Mei, S.; Ji, J.; Geng, Y.; Zhang, Z.; Li, X.; Du, Q. Unsupervised spatial–spectral feature learning by 3D convolutional autoencoder
for hyperspectral classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6808–6820. [CrossRef]

19. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.

http://doi.org/10.1109/TNNLS.2018.2876865
http://www.ncbi.nlm.nih.gov/pubmed/30703038
http://dx.doi.org/10.1109/TNNLS.2014.2330900
http://www.ncbi.nlm.nih.gov/pubmed/25014970
http://dx.doi.org/10.1109/ACCESS.2021.3064819
http://dx.doi.org/10.1016/j.neucom.2015.11.044
http://dx.doi.org/10.1007/s40747-021-00428-4
http://dx.doi.org/10.1109/TIP.2003.818640
http://dx.doi.org/10.3390/s20061546
http://dx.doi.org/10.1007/s00521-015-1939-3
http://dx.doi.org/10.1109/TGRS.2019.2908756


Sensors 2021, 21, 7731 15 of 16

20. Tian, C.; Xu, Y.; Fei, L.; Yan, K. Deep learning for image denoising: A survey. In Proceedings of the International Conference on
Genetic and Evolutionary Computing, Changzhou, China, 14–17 December 2018; pp. 563–572.

21. Barbu, A. Learning real-time MRF inference for image denoising. In Proceedings of the 2009 IEEE Conference on Computer
Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 1574–1581.

22. Zhang, R.; Bouman, C.A.; Thibault, J.B.; Sauer, K.D. Gaussian mixture Markov random field for image denoising and reconstruc-
tion. In Proceedings of the 2013 IEEE Global Conference on Signal and Information Processing, Austin, TX, USA, 3–5 December
2013; pp. 1089–1092.

23. Chen, M.; Shi, X.; Zhang, Y.; Wu, D.; Guizani, M. Deep features learning for medical image analysis with convolutional
autoencoder neural network. IEEE Trans. Big Data 2017. [CrossRef]
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