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Abstract: The Internet of Things (IoT) is expected to provide intelligent services by receiving het-
erogeneous data from ambient sensors. A mobile device employs a sensor registry system (SRS) to
present metadata from ambient sensors, then connects directly for meaningful data. The SRS should
provide metadata for sensors that may be successfully connected. This process is location-based and
is also known as sensor filtering. In reality, GPS sometimes shows the wrong position and thus leads
to a failed connection. We propose a dual collaboration strategy that simultaneously collects GPS
readings and predictions from historical trajectories to improve the probability of successful requests
between mobile devices and ambient sensors. We also update the evaluation approach of sensor
filtering in SRS by introducing a Monte Carlo-based simulation flow to measure the service provision
rate. The empirical study shows that the LSTM-based path prediction can compensate for the loss of
location abnormalities and is an effective sensor filtering model.

Keywords: path prediction; LSTM; Monte Carlo; sensor registry system

1. Introduction

The Internet of Things (IoT) is a crucial component of the new generation of infor-
mation technology. As its name indicates, IoT is a network that extends on the Internet,
with terminals that expand to objects for data exchange and communication. It is designed
for seamless communication and data transfer between interrelated heterogeneous de-
vices [1]. The sensor network, for emphasis on wireless, also known as wireless sensor
networks, is an essential branch of IoT research. It utilizes sensors to collect dynamic
environmental data, delivers observations to edge computing devices for analysis and
evaluation, and finally provides intelligent services. In recent years, with the rapid spread
of inexpensive sensors and wireless equipment, more and more services based on sensor
networks have been proposed, such as health care [2], natural calamity monitoring [3],
and intelligent agriculture [4].

In a sensor network, sensors collect heterogeneous data. To combine various data,
the edge node, such as the mobile device, must be aware of the metadata that defines the
properties of the data. There are many ways to accomplish this, such as defining data
attributes directly in the framework [5], expressing data properties by ontology [6], and so
on. A sensor registry system (SRS) [7] based on ISO/IEC11179, is a suitable solution. It
provides semantic interoperability between sensors and devices for a ubiquitous computing
environment. The data acquisition process with SRS consists of two connections. The first
connection is between the mobile device and SRS. The mobile device fetches the metadata
of the sensor through the first connection. Based on intelligent service requirements
and the received metadata of ambient sensors, the mobile device sends requests to the
corresponding sensors and collects the sensor data. This is the second connection.

Existing optimization methods for sensor filtering in SRS [8–10] focus on the first
connection, i.e., how to improve the reliability of acquiring metadata. There is a denial-
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of-service area in which the mobile device cannot communicate with SRS in these efforts.
When a user enters a denial-of-service area, the mobile device cannot establish the first
connection in the previous text and is unable to fetch the metadata of the ambient sensors.
Such a situation may result in the inability to provide intelligent services. The movement
pattern of humans is predictable [11]. Therefore, the authors introduce the path prediction
algorithms that predict the next position of the user. Suppose the user is going to enter
a denial-of-service area. In that case, the metadata is obtained before entering the area,
and the service provision rate [9] of SRS can be improved.

However, there are disadvantages to these efforts. 1. The denial-of-service area is
grouped by measuring the reference signal received power (RSRP) of cellular networks
within the research area [9,10]. In recent years, with the popularity of commercial 4G
services and the improvement of cellular network infrastructure, the quality of service
between SRS and mobile devices can be guaranteed. There is no denial-of-service area
in daily life. The sensor filtering module that handles the denial-of-service area is no
longer necessary. 2. These works do not quantitatively evaluate the performance of
sensor networks with SRS. At that time, there was no historical trajectory dataset for SRS.
The service provision rate, which indicates the performance of SRS, was directly calculated
by the algebraic expressions [8]. 3. The mobile device’s position obtained from GPS is
sometimes wrong. GPS drift is the difference between the actual position and the position
recorded by a GPS receiver. Consumer-grade GPS receivers (such as mobile devices) are
not 100% accurate, which usually causes a difference between the actual and recorded
positions. The traditional sensor filtering module in SRS assumes that the input position
is actual and cannot handle GPS drift. Suppose the GPS of the mobile device receives a
wrong position, it may cause SRS to send the wrong sensor metadata to the mobile device,
and thus, service failure occurs.

To address these concerns, we propose a dual collaboration strategy for effective
sensor filtering in SRS and quantitatively evaluate the performance of SRS by a Monte
Carlo-based service provision rate simulation flow. There are two main advantages over
existing works. First, we focus on sensor filtering with GPS drift. A dual collaboration
strategy is proposed. It employs an LSTM-based path prediction algorithm to predict the
current position from the historical trajectory. Both positions predicted by the historical
trajectory and read from GPS are used to improve the performance of sensor filtering in
SRS. The metadata of the sensors at both positions is sent to the user’s mobile device. If one
of the positions is correct, the mobile device can connect to the actual ambient sensors and
acquire heterogeneous data. Second, we design a service provision rate simulation flow
based on the Monte Carlo method [12]. In the past two years, we collected movement data
from 59 participants [13]. It recorded a wide range of users’ daily activities. The simulation
flow randomly generates sensors and uses the collected historical movement to model
the service provision rate, which is an ideal method for evaluating the performance of
sensor filtering. The results show that a dual collaboration strategy that simultaneously
collects GPS readings and predictions from historical trajectories can effectively improve
SRS performance. In particular, the LSTM-based model has the highest accuracy in path
prediction and can bring the service provision rate approaching the theoretical performance
of SRS.

The remainder of the paper is organized as follows. Section 2 gives an overview of the
existing IoT-based sensor systems and path prediction algorithms. Section 3 describes the
LSTM-based path prediction algorithm, the service provision rate simulation flow, and the
dual collaboration strategy. Section 4 evaluates the geo-embedding, the LSTM-based path
prediction, and the service provision rate in SRS. Section 5 concludes the paper.

2. Related Work

Research on IoT-based sensor systems has a long history. Since sensors can detect
heterogeneous data, such multi-modal sensor systems are generally used in environmental
monitoring. The environment may be harsh, such as in nuclear waste containers [14]. It



Sensors 2021, 21, 8106 3 of 23

also may be large, such as sensing the energy consumption of air conditioners in several
buildings [5] or landslide monitoring on a hillside [15]. In these works, the metadata
of sensors is globally pre-defined. The acquired data is transferred to the IoT platform
through the wireless network for further visualization and data mining services. However,
in large-scale IoT networks, to relieve the load on the IoT platform, a portion of storage
and computation tasks are allocated to the edge devices [16]. In Gimpo-si, an IoT-based
sensor service was built for crime prevention [17]. The edge computing device, such as
a mobile device, cannot afford to store the metadata of all the sensors in a medium-sized
city. The metadata of the sensors is locally visible. Therefore, a location-based SRS is used
for the interoperability of the heterogeneous sensor data in large-scale IoT-based sensor
systems [9].

In this work, we improve the effectiveness of sensor filtering in SRS by using a
dual collaboration strategy. On the one hand, the strategy provides metadata of ambient
sensors by acquiring the position of the mobile device in real-time. On the other hand,
it compensates for the losses caused by GPS errors through a path prediction algorithm
with historical trajectories. As the name implies, the path prediction algorithms predict
the future position of an object. A high accuracy path prediction algorithm is vital to
compensate for GPS errors and improve the performance of the sensor filter in SRS.

Manually extracting frequent patterns is the most basic way of handling such problems.
Giannotti et al. [18] define frequency pattern as using a similar time to pass through the
same sequences of locations to construct visiting density in both temporal and spatial
domains. He et al. [19] restructure the route data based on time of the day to separate
time property and repeatedly compare the regular coefficient with the threshold to group
frequency-based regular routes.

A more convenient approach is to employ a tree structure to represent frequency-
based behavior patterns [20]. Chen [21] et al. present continuous route pattern mining.
They first divide the research area into cells and map the GPS data into cell-temporal
sequences. Then, referring to the idea of frequency-based clustering with thresholds,
the cell-temporal sequence composed of cells is transformed into a regional-temporal
sequence formed by regions-of-interest. Finally, the regional-temporal sequence is used to
organize a tree structure to predict the result. This method reduces the number of nodes
through projections. It can also reuse data to implement an incremental mining strategy to
reduce the computational load on the mobile device. Tiwari et al. [22] further optimize the
prediction speed by parallelizing the tree prediction problem through a partial match.

The basic probabilistic model is the Markov model, it assumes that the future state
of a given temporal-spatial sequence depends only on the current state. In path predic-
tion, its principal problem is how to define the state manually with multi-modal data,
such as position [23,24], semantics, and context [25]. Lee et al. [8] equate the position to
path fragment with pre-defined roads. The state is the fragment that contains location
information. The transition probability matrix is determined by the frequency of moving
from one fragment to another. Gambs et al. [26] integrate historical data into n previous
visited points of interest. Each point of interest corresponds to a state in the Markov model.
In addition to integrating n-step data into a single state, the sequence can also be processed
using the higher-order Markov model [27] or Hidden Markov Model (HMM). However,
for HMM, the Baum–Welch approach is not effective [28] and still requires the manual
design of the hidden state [29,30].

Recurrent neural networks (RNN) are effective tools for processing sequential data
and can be applied to path prediction as well [31,32]. Crivellari et al. propose a se-
ries of methods to analyze call detail records related to tourists’ behavior in Italy, such
as geo-embedding [33,34], predicting individual mobility traces [35], trajectory transla-
tion [36], and urban traffic forecasting [37]. Similar to natural language processing, these
methods have three significant components [38]: 1. Converting the original data into
high-dimensional dense vectors by word2vec [39,40]; 2. Feeding the data into an LSTM
encoder; 3. Predicting the results with a decoder depending on the application [41].
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Nevertheless, Markov models struggle to extract higher-order or irregular transition
patterns. RNN cannot detect periodicity in sequences. The attention mechanism [42] can
also be used in path prediction. Feng et al. [43,44] propose DeepMove contained in multi-
modal embedding for a fusion of various factors, a historical attention model to capture
multi-level periodicity, and a decoder for multi-task prediction. H-TALL [45] concerns the
linkage between destinations through an attention mechanism and utilizes multiple pre-
diction layers to improve the accuracy by combining different granularity. Altaf et al. [46]
focus on temporal difference and positional discrepancy using two independent attention
units, respectively. The results show that the reasonable value of the context window
occupies an essential role in hyperparameter tuning of the attention mechanism.

3. Methodology
3.1. Problem Definition

This article aims to improve sensor filtering in SRS [7]. SRS is a framework of sen-
sor networks for semantically interpreting and processing heterogeneous information.
The concept of SRS is inherited from ISO/IEC 11179 – Metadata Registry, which is one of
the international standards used to develop the sharing and exchange of data. Based on
the combined use of metadata registry and sensor network, users can directly handle the
heterogeneous sensor data through mobile devices in SRS.

There are two connections in SRS. One is the mobile network for a mobile device to
receive registered sensor metadata. The other is the sensor network for the mobile device
to connect directly and obtain data from sensors. In the applied scenario [10], the research
area Ω is divided into grid cells c. Lc is a list of sensors s linked to the cell c. The trajectory
of human movement is a sequence composed of a series of cells {c1, · · · , ct−1, ct}, where
the superscript indicates the time, ct is the current cell of the user, and c1 is the starting
cell of the trajectory. When a mobile device lies inside the cell ct, it gets the metadata of
sensors in the list Lct via the mobile network. It is the first connection in SRS. After the
list of ambient sensors is obtained, the mobile device connects to sensors according to the
metadata. It is the second connection.

Existing sensor filters in SRS mainly focus on the unstable connection of the mobile
network. There is an area without mobile network coverage called the denial-of-service
area. When a user moves into a denial-of-service area, the mobile device fails to obtain the
metadata of sensors. A path prediction algorithm predicts the user’s next position ct+1.
By the strategy of obtaining the metadata of sensors in the future cell, users can handle
data from ambient sensors in the denial-of-service area.

This work focuses on the second connection, which connects the mobile device to the
sensor. GPS sometimes shows users in the wrong place. Many things can degrade GPS
positioning accuracy. Common causes include satellite signal blockage due to buildings,
indoor or underground use, and signals reflected off buildings or walls. In SRS, users
read their position at regular intervals and then connect to ambient sensors. There are
many ways for mobile devices to connect to ambient sensors, such as Wi-Fi, Bluetooth,
ZigBee. However, if the current position from GPS is wrong, the mobile device cannot
access the actual sensors. It is a failed sensor filter. To address this issue, we employ a
dual collaboration strategy to improve sensor filtering in SRS. Both positions predicted by
the historical trajectory {c1, c2, · · · , ct−1} and read from GPS values are used to guess the
user’s current cell ct. In this way, blind spots caused by GPS errors can be filled.

3.2. Trajectory Preprocessing

The data collected by the GPS device is a collection of spatial-temporal points. Each
spatial-temporal point P is a tuple of geographical coordinate g and timestamp t,
i.e., P = (glon, glat, t). Due to the uncertainty of the data obtained from GPS devices,
outliers need to be removed. We use a sequential model that consists of a range filter, time
filter, long-distance filter, speed filter, short distance filter, sequenced DBSCAN, and angle
filter to refine the data received from GPS devices [13]. We then organize the smooth data
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as a set of trajectory sequences in the form of {Si|i = 1, 2, 3, · · · , k}. Trajectory sequence S
is a spatial-temporal point sequence expressed as S = {Pi|i = 1, 2, 3, · · · , n}, where n is the
number of spatial-temporal points.

In this work, we use a regular grid to divide the research area into cells. Grid-based
path prediction is more flexible than the segment-based method because the learned and
predicted results are not limited by the road network structure. Spatial-temporal points
are mapped to cells with a non-injective surjective system. After the mapping process,
trajectory sequences are transformed into discrete sequences with cells, expressed as
S′ = {ci|i = 1, 2, 3, · · · , n}. We use these trajectory sequences to train the word2vec model
to obtain dense vectors representing the behavior pattern of cells. However, the sequences
cannot be directly put into the LSTM model. Each sequence should be divided into
trajectories T with fixed length expressed as T = {ci|i = 1, 2, 3, · · · , m}, where m is the size
of the sliding window. The window size depends on the final purpose. A larger window
increases the influence of long-term historical movement trajectory on the predicted results.
Conversely, a smaller window size reinforces the effect of the last cell. The process is
represented in Figure 1. After the sliding window, we can obtain the input data and labels
used for training the neural network.

...CELL1 CELL2 CELL3 CELL4 CELL5 CELL6 CELLn

...CELL1 CELL2 CELL3 CELL4 CELL5 CELL6 CELLn

...CELL1 CELL2 CELL3 CELL4 CELL5 CELL6 CELLn

Sliding window (size=3) Input

{CELL1, CELL2, CELL3} CELL4

{CELL3, CELL4, CELL5} CELL6

{CELL2, CELL3, CELL4} CELL5

Output

Figure 1. The process of the sliding window (with a length of three cells in the past) and the model
input–output pairs.

3.3. Word2vec Model

Embedding is an injective, surjective structure to use a dense vector for representing
an object. Its primary function is to convert sparse vectors, such as one-hot encoding
into dense vectors, which are convenient for the processing of the deep neural network.
The embedding vector can represent features of the corresponding object, and the distance
(cosine similarity) between the vectors reflects the similarity between the objects. Compared
with the feature vector generated by traditional methods such as Matrix Factorization,
embedding is more expressive. The popularity of this concept began with the study of
using a vector to represent a word in training corpora.

Word2vec [39,40] is a popular model that generates vector expressions for words.
Since it was proposed in 2013, embedding technology has been extended from natural
language processing to other fields, such as advertising, searches, images, and recommen-
dation systems. It has become a crucial technical point in the deep learning knowledge
framework. Applied to the field of geographic information mining, it is also known as
geo-embedding [33].

We use a corpus consisting of a set of trajectory sequences to train the word2vec
model. Each cell in the research area is initialized with a random vector of a pre-defined
size to obtain the initial embedding matrix of dimensionally num_size× vector_size. Specif-
ically, we adopted the skip-gram approach. Suppose a trajectory sequence of length n
is S′ = {ci|i = 1, 2, 3, · · · , n}, each cell in the sequence determines its neighboring cells.
A graphic representation of skip-gram is in Figure 2. The skip-gram approach utilizes a
sliding window to acquire training instances. For each trajectory sequence in the corpus,
a fixed-length training instance is obtained by sliding through a window of length 2w + 1.
The input is the current cell vector. Since each cell determines the neighbors, based on the
maximum likelihood estimation method, the product of conditional probabilities of all
samples is desired to be maximized. The cost function is the negative log probability of the
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current answer and is defined over the entire dataset. After several iterations of training
the whole corpus and updating the embedding vector values, the dense vectors used to
represent cells are obtained.

...CELL1 CELL2 CELL3 CELL4 CELL5 CELL6 CELLn

...CELL1 CELL2 CELL3 CELL4 CELL5 CELL6 CELLn

...CELL1 CELL2 CELL3 CELL4 CELL5 CELL6 CELLn

output

CELL7 CELL8 CELL9

CELL7 CELL8 CELL9

CELL7 CELL8 CELL9

outputinput

Figure 2. Graphic representation of the skip-gram model.

3.4. LSTM for Path Prediction

RNN is a sort of neural network for processing sequential data. Compared with
general neural networks, it can handle data with sequential changes. LSTM [47] is a
variant of RNN. It is designed to solve the gradient vanishing problem to perform practical
computation without long-range decay and controls the update of the cell state c and hidden
state h using the gate mechanism. Equations (1)–(6) report the updating formulations.

it = σ(Wixxt + Wihht−1 + bi) (1)

ft = σ
(

W f xxt + W f hht−1 + b f

)
(2)

ot = σ(Woxxt + Wohht−1 + bo) (3)

gt = tanh
(

Wgxxt + Wghht−1 + bg

)
(4)

ct = ft ∗ ct−1 + it ∗ gt (5)

ht = ot ∗ tanh(ct) (6)

Equation (1) is the input gate. The current input xt has the weight Wix, the previous
hidden state ht−1 has the weight Wih, and bi is the bias. The input gate computes a
weighted sum of the current input and previous state, passes that through a sigmoid
function, and gets the output it. it is the mask to select the information to input to the
current cell state ct. Similarly, Equations (2) and (3) use the same current input xt and the
previous state ht−1 with corresponding weights W f x, W f h, Wox, and Woh and biases b f and
bo to obtain the masks ft and ot. ft is the output of the forget gate (2). This gate aims to
delete information from the current cell state ct when it is no longer needed. ot from the
output gate (3) is used to decide what information is required for the current hidden state
ht. g indicates the new information to be added to the current cell. It is also extracted from
the current input xt and the previous hidden state ht with weights Wgx and Wgh and bias
bg. Equation (4) extracts the substantive information usually using tanh as the activation
function. ∗ is the Hadamard product. In Equation (5), the previous cell state ct−1 is filtered
by the forget gate output ft and the input mask it. The new hidden state ht is a filtered
version of the new cell state ct, resulting from the multiplication between the output mask
ot and the tanh of the cell state ct. In RNN, the time dependency is directly stored in the
hidden state and passed to the next step. In LSTM, the data is further gated to decide
whether to enter the cell state or not. In short, the forget gate ft determines if the time
dependency from the previous cell state is retained in the current cell. The data filtered by
the input gate and forget gate are stored in the cell state. It is conditioned by the output
gate to acquire the current hidden state.

In this work, we utilize LSTM to predict the next position from historical trajectories.
Its essence is a multi-classification problem on sequential data. The model consists of
three components: an embedding layer, an LSTM layer, and a softmax decoder. Each cell
identifier is first converted through the embedding layer into a dense vector representing
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the behavioral characteristics. After embedding, the fixed-length trajectories are then fed
into the LSTM for learning the long-range dependencies of the sequences. After extracting
the information by the LSTM encoder, the next step is to predict the result. In the softmax
decoder, similar to the decoder of the general multi-classification problem, we stack the
dropout layer, fully connected layer, and softmax layer to estimate the probability of the
next cell. A graphic overview of the model is illustrated in Figure 3.

CELL1

Embedding

LSTM

CELL2

Embedding

LSTM ...

CELL3

Embedding

LSTM

CELLn

Embedding

LSTM

Decoder

CELL(n+1)

LSTM LSTM ...LSTM LSTM

Encoder

Figure 3. Overview of the neural network model with LSTM for next cell prediction.

3.5. Service Provision Rate Simulation Flow

Service provision rate RSP is the probability of successfully providing services to a
mobile device when they are requested. As mentioned earlier, we divide the research area
into 10×10 m cells. The position of a mobile device is mapped to the corresponding cell
and sent to SRS in real-time. A dual collaboration strategy based on LSTM-based path
prediction is employed to improve the performance of sensor filtering. The performance
refers to the probability of successful requests between mobile devices and sensors. When
a user’s position is confirmed, SRS provides metadata of potentially connectable ambient
sensors. The user’s mobile device attempts to connect to these sensors for data, which is a
service request. If the mobile device can successfully connect to the corresponding sensor,
SRS has provided a service. Conversely, if for some reason the link cannot be established, it
is a failed service. A function can be defined to describe the state of the service request.

Φ(c, s) =
{

1, SRS provides a service when the user is in cell c.
0, it is a failed service when the user is in cell c.

(7)

where c is a cell in the research area, and s is a potentially connectable ambient sensor
of the cell c. As detailed later, the function Φ(c) is implemented through a probabilistic
communication model. In some cases, a cell has no corresponding sensor, which means
that the user does not need SRS service in this cell. Such a cell will be skipped in the
service provision rate calculation. On the contrary, a cell may be associated with multiple
sensors. We use the average of the states for numerous sensors to describe the count of
service successes at the cell. The count r is not necessarily an integer but may also be a
float number. Suppose cell c corresponds to m sensors. Its count of service successes is
as follows.

rc =
1
m

m

∑
i=1

Φ(c, sl) (8)

The service provision rate RSP is the percentage of provided services within a trajectory
{ci|i = 1, 2, 3, · · · , n}, which is the cell version for network availability.
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RSP =
1
n

n

∑
i=1

rci (9)

To quantitatively evaluate the effectiveness of the dual collaboration strategy in sensor
filtering, we have developed a Monte Carlo-based simulation flow in which RSP is a metric
for evaluation. The basic idea of the Monte Carlo method is: first, build an appropriate
probability distribution so that the solution to be obtained is equal to the mathematical
expectation value of the random variable; second, conduct a simulation experiment and
repeat it several times to derive the random event; finally, statistically average the results
of the random investigation to obtain the solution of the target. The proposed service
provision rate simulation flow is a two-step approach:

Step 1. Generate random sensors.
Step 2. Evaluate the service provision rate with historical trajectories.
All the above steps are repeated several times, as shown in Figure 4. Ns is the total

number of simulation runs. After Ns rounds, we calculate the average of the results of each
round as the final service provision rate.

Begin

N=0

N=N+1

N=Ns

Read historical
trajectory list

No

No

End

Calculate SRS Availability

Begin

N=0

N=N+1

Generate random sensors

Is the  
historical trajectory  

list empty?

No

N<Ns

Read historical
trajectory list

Dequeue a trajecotry

Yes

End

Calculate the average

Yes

Evaluate the service
provision rate

Figure 4. Service provision rate simulation flow.

Sensing and communication are two essential concepts in the study of sensor net-
works [48]. For a sensor s, its sensing area is a disk, denoted by diskRs(s). Its boundary
is called the sensing circle, denoted by circleRs(o), where Rs is the sensing radius. Sim-
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ilar to sensing, each sensor has a communication area, which is also a disk. Within the
communication radius Rc, its communication disk is diskRc(s), and the boundary of the
communication disk of sensor o is circleRc(o). In this work, we assume that the sensors
already cover the target area as required and focus on the connectivity between a mobile
device and the sensors. We generate two random numbers using a uniform distribution
on the interval (0, 1). These two random numbers are multiplied by a factor to create the
longitude and latitude of the origin of the sensor, respectively. In step 1, ns sensors are
generated randomly with communication radius Rc, as shown in Figure 5a. The ns and Rc
are hyperparameters that can be set according to requirements. The PostGIS is employed
for spatial operations, which is a spatial database extender for PostgreSQL object-relational
database. It adds support for geographic objects allowing location queries to be run in SQL.
For example, in step 1, the communication boundary for each sensor is a circle resulting
from origin and radius. As a spatial database, PostGIS supports operations on spatial
objects, such as finding intersections. It implies that we can express the probability of a
successful connection by the area ratio of the intersection to the cell.

Figure 5b illustrates the concept of indicating the connectivity by area ratio. For CELL
5800, its entire region is covered by the communication disk, which means that the proba-
bility of a mobile device connecting to the sensor is 100%. In contrast, for the CELL5685, its
geometry does not intersect any communication disk. The area ratio is 0, and the mobile
device will fail to connect to the sensor within the CELL5685. Between these two extremes,
it is possible to evaluate whether the service requests from mobile devices in the cell are
provided or not by comparing random numbers and area ratios. Let p be a random number
using a uniform distribution in the interval (0, 1), R is the area ratio of the intersection to
the cell. If p < R, the service request is successful. If not, the service request is failed.

(a) (b)

Figure 5. Examples of the communication disks. (a) The communication disks are represented as
circles with hatch fills. (b) The intersection areas of the cells and communication disks are different.
The area ratio is defined as the intersection area in the cell divided by the area of the cell. It implies
that we can identify the connectivity by the area ratio.

Algorithm 1 describes the evaluation of a service request in the ideal scenario. The ideal
scenario means that the GPS is entirely reliable. A mobile device sends the service requests
and obtains responses based on its current position in SRS. First, a trajectory is extracted
from the historical data for evaluating the service provision rate. The last cell in the trajec-
tory is the current position of the mobile device. Second, the SRS server sends metadata
about the ambient sensors to the mobile device. Once the mobile device has received the
metadata, it requests a service to each sensor to create a peer-to-peer connection with Wi-Fi
Direct and exchange the sensing data. If the connection is established, the service request is
successful, and the service success count is increased by 1. If not, the count is not increased.
For the cell that intersects with multiple communication disks, we evaluate whether the
service request for each sensor is successful or no, and take the average of the success
requests as the final count of service successes, as shown in Equation (9).
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Algorithm 1: evaluate_service_request_ideal_scenario
Input:
T: Trajectory, a list of cells
M: A dictionary, key is a cell, value is a list of sensors intersect the cell
Su: Size of the unit cell
Output:
r: Count of service successes

1 c← T[−1] ;
2 Gc ← Geometry of cell c ;
3 r ← 0 ;
4 foreach sensor s ∈ M[c] do
5 Gs ← Geometry of the sensor’s communication disk;
6 p← Random float between 0 and 1;
7 if p < (Intersection(Gs, Gc)/Su) then
8 increment(r);
9 end

10 end
11 r ← r/M[c].length;

In a real environment, there is a possibility that the position received by GPS will
drift into error. The wrong position will reduce the service provision rate of SRS. We
use Algorithm 2 to examine this reduction quantitatively. As compared to Algorithm 1,
Algorithm 2 has a new hyperparameter GPS reliability RG to denote the probability of
mobile devices getting the correct position. Similar to the method used to evaluate whether
the network is connected, we employ a random number with a uniform distribution in the
interval (0, 1) compared to the GPS reliability to assess whether the position provided by
the mobile device is accurate at the moment.

Algorithm 2: evaluate_service_request_with_GPS_drift
Input:
T: Trajectory, a list of cells
M: A dictionary, key is a cell, value is a list of sensors intersect the cell
Su: Size of the unit cell
RG: GPS reliability
Output:
r: Count of service successes

1 r ← 0 ;
2 p← Random float between 0 and 1;
3 if p < RG then
4 c← T[−1] ;
5 Gc ← Geometry of cell c ;
6 foreach sensor s ∈ M[c] do
7 Gs ← Geometry of the sensor’s communication disk;
8 p← Random float between 0 and 1;
9 if p < (Intersection(Gs, Gc)/Su) then

10 increment(r);
11 end
12 end
13 end
14 r ← r/M[c].length;

To evaluate the impact of path prediction on service provision rate, we incorporate the
path prediction algorithm as a dual collaboration strategy in SRS, as shown in Algorithm 3.
The cells obtained from the mobile device and path prediction are processed together.
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The concatenation of the list of sensors corresponding to the two cells is taken as the service
request target. The service provision rate will be achieved after the random simulation.

Algorithm 3: evaluate_service_request_with_path_prediction
Input:
T: Trajectory, a list of cells
M: A dictionary, key is a cell, value is a list of sensors intersect the cell
Su: Size of the unit cell
RG: GPS reliability
Output:
r: Count of service successes

1 cpred ← Run path prediction with T[: −1];
2 ctrue ← T[−1];
3 Gc ← Geometry of cell ctrue ;
4 r ← 0 ;
5 p← Random float between 0 and 1;
6 if p < RG then
7 M′ ← M[ctrue];
8 else
9 M′ ← M[cpred];

10 end
11 foreach sensor s ∈ M′ do
12 Gs ← Geometry of the sensor’s communication disk;
13 p← Random float between 0 and 1;
14 if p < (Intersection(Gs, Gc)/Su) then
15 increment(r);
16 end
17 end
18 r ← r/M′.length;

Figure 4 indicates the service provision rate simulation flow. It consists of two nested
loops. The inner loop extracts each trajectory in the historical trajectory list. In this way, the SRS
performance can be measured under different behavioral patterns. The outer loop iterates over
various sensor networks. Sensors are repositioned randomly in the research area. Thus, it is
possible to evaluate the performance of SRS under different sensor networks. After achieving
the number of simulation runs Ns, the simulation flow is terminated. We can average the results
generated by each step to arrive at the service provision rate of SRS.

4. Experiment
4.1. Dataset

The ubiquitous smart devices with GPS make the collection of personal trajectories more
efficient and effective. An Android application written in Java runs on smartwatches records the
spatial-temporal points of the participants. It uses the fused location provider in Google Play
services location APIs to receive the device’s last known location every 5 s. Participants wear their
smartwatches the whole day, run the application under the open sky, and stop it indoors to save
battery power. The entire GPS trajectory dataset collected by 59 users in six months contains over
900 million spatial-temporal points. Because of the requirements for behavior pattern research,
the data should be concentrated in a fixed research area. Our research area is the campus of
Kunsan National University and living areas near it. After removing the unwanted data, a data
preprocessing strategy contains five filters, and the sequenced DBSCAN [13] is employed to
remove outliers. The filtered information consisted of 240 million spatial-temporal points that
make up 35,234 trajectories with a total distance of 1588 km and 3300+ h. It recorded a broad
range of user’s daily activities, such as going to class, shopping, and dining. This fact makes
the dataset ideal to validate path prediction algorithms and service provision rate in a sensor
register system.
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4.2. Experimental Settings

We implement the word2vec algorithm by relevant Python modules in the Gensim
library, train the skip-gram model with a window size of nine cells in the past and another
nine cells in the future. The cells with a total frequency lower than 50 are ignored to
deal with many potentially inaccessible and irrelevant places. To measure the “closeness”
between embeddings, we use the cosine similarity. Cosine similarity measures the angle
between two vectors. The smaller the angle, the larger the cosine similarity, and the more
similar the two vectors of cells. As shown in Equation (10), cosine similarity consists of the
dot product of unit-normalized vectors.

sim(i, j) = cos(i, j) =
i · j

‖i‖ · ‖j‖ (10)

We design the neural network model using an input embedding size of 100 dimensions
and a block of two LSTM layers having a hidden size of 200 neurons. The training process
was based on cross-entropy loss function, mini-batches, and Adam optimizer. The dropout
of the softmax layer is set to 0.2 to avoid over-fitting. To evaluate the model’s performance,
we shuffle the data and split the dataset into a training set, a validation set, and a test set,
containing 80%, 10%, and 10% of the trajectories, respectively.

To evaluate the results, we compared the path prediction accuracy with vanilla RNN,
CBP, and GatedCNN. These methodologies represent traditional methods in time sequence
processing, old works in SRS, and the convolutional approach.

Vanilla RNN. The predominant approach to time sequence processing is Hidden
Markov Model (HMM). The Baum–Welch algorithm, the standard algorithm for HMM,
does not work well in path prediction tasks [28]. We use vanilla RNN instead of HMM.
These two methods are similar in the mathematical structure and describe the dependency
between time sequence through the hidden state. To imitate HMM in [28], we construct
a (ncells, 2) embedding matrix from the geographic information system directly. The first
dimension corresponds to the number of cells. The second dimension contains the lati-
tude and longitude of the cell centroid. The geographic coordinates are converted to the
Universal Transverse Mercator coordinate system. Specially, we use WGS 84/UTM zone
52N (EPSG: 32652) to compute and visualize the data in this work. The vanilla RNN uses
spatial embedding, a block of one layer having a hidden size of 200 neurons, and a softmax
decoder which is the same as the LSTM model.

Collective Behaviour Pattern (CBP) [8]. The CBP is a real-time and incremental
mining method [8] that can be used for grid-based path prediction. Spatial-temporal points
associated with the user’s behavior are mapped to the nearest gird cells and put into a
greedy algorithm to determine heuristic solutions using empirical knowledge. The CBP
is a simplified version of the discrete-time Markov chain. The main difference lies in the
probability matrix of CBP and is updated with one order time sequence and limited by
spatial relationship.

Gated Convolutional Neural Network (GatedCNN) [49]. Gated mechanisms control
what information should be propagated through the hierarchy of convolutional layers.
Stacked convolutions can extract hierarchical features over large contexts to increase
effective temporal representation in parallel [50]. We use a kernel size of five for all the
kernels. One gated convolutional layer is stacked after the word2vec embedding layer.
After this, there are another 15 gated convolutional layers in 3 residual blocks. The final
classifier consists of a dropout layer, a fully connected layer, and a softmax layer.

4.3. Evaluation of Geo-Embeddings

Geographical distance and behavioral distance are not proportional: the same dis-
tances in space do not imply the same behavioral similarities. Although cells’ intervals are
geographically comparable, human’s motion between them may be different. It means a
feasible approach to mitigating the problem of the curse of dimensionality. That is, replace
the original cell index with meaningful high-dimensional vectors. Figure 6 reports the geo-
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graphic coordinates of cells and the top five proximal cells of CELL6263. The rectangular
area formed by top-left CELL5913 and bottom-right CELL6616 is a vehicular road. There
is a sidewalk under the tree from CELL5912 to CELL6614. For a pedestrian at CELL6263,
the possible movement pattern is walking along the sidewalk or turning to CELL6028 to
enter the car park. Their behavioral representation is different. It implies that the behavioral
relation changes. The dense vector received by word2vec can represent the behavioral
characteristics of the cell.

Figure 6. Example of top five proximal cells of CELL6263. “0-1.000” indicates that it is the target cell
and the cosine similarity to itself is 1.000. “1-0.902” denotes that CELL6380 ranks 1 in proximal cells,
and the cosine similarity to the target cell is 0.902.

The movement pattern of pedestrians is complicated. Users can work in various
spaces on campus, such as roads, grasslands, squares, and buildings. By comparison,
driving is restricted by the road and has more obvious regularity. Meanwhile, GPS-enabled
mobile devices are typically accurate under the open sky. It allows spatial-temporal data to
express movement behavior accurately. Cells on roads can reflect the difference between
behavioral distance and geographical distance. Figure 7 shows the top ten proximal cells
of CELL6264. Cells on the road tend to have very high similarity values with cells along
the road and low similarities with both sides of the road. In other words, cells belonging to
the road are maximally connected to nearby locations along the road.

Figure 7. Example of top ten proximal cells of CELL6264. The cell is under the open sky. “0-1.000”
indicates that it is the target cell and the cosine similarity to itself is 1.000. “1-0.957” denotes that
CELL6147 ranks 1 in proximal cells and the cosine similarity to the target cell of 0.957.

In contrast to that, pedestrians tend to perform frequent short-distance movements in
buildings, such as from one room to another. Furthermore, GPS-enabled mobile devices’
accuracy worsens indoors. These two reasons make it difficult to learn behavior patterns
from many irregular movements or erroneous position data in buildings. As depicted in
Figure 8, the cells indoors have high similarity values with cells in the surrounding area.
For CELL4981, the behavior distance and the spatial distance are similar.
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Figure 8. Example of top ten proximal cells of CELL4981. The cells are indoors. “0-1.000” indicates
that it is the target cell and the cosine similarity to itself is 1.000. “1-0.953” denotes that CELL4864
ranks 1 in proximal cells and the cosine similarity to the target cell of 0.953.

Considering the movement restrictions and the GPS accuracy on the road and in
the building are the two extreme cases of studying the movement patterns. The road
restricts the movement, and the GPS accuracy is high. On the contrary, the activities in
the building are random, and there are a lot of erroneous data received from GPS. We
compare the spatial distribution of the top ten similarities of the cells in the two cases.
Roads and buildings are obtained from OpenStreetMap. For each cell in the research area,
if the cell intersects a multiline string geometry of the road, it is considered to be on the
road. Similarly, suppose a cell intersects with a multipolygon geometry of a building, it is
considered to be inside the building. The overall different similarity behavior of buildings
and roads can be observed in the normalized histograms of Figure 9. Both of the two cases
tend to have significant percentages of high similarities. For a specific cell, the location of
the cell cannot be distinguished by the distribution of the top ten similarities.

(a) (b)

Figure 9. Similarity distribution of (a) buildings and (b) roads.

We measure the average distance of cells with their top ten proximal cells. The results
are reported in Table 1. The difference is noticeable. Cells on the road have a higher sparsity.
Figure 10a shows an example of a cell’s positional relationship with the top ten proximal
cells. The average distance, in this case, is 22.0 m. Cells with similar behavioral distances
tend to extend in specific directions. The behavior distance is a noticeable difference from
the geographical distance. Figure 10b is an example that the average distance is 16.0 m,
close to the average distance of the cells in the building. In this case, the cells are clustered
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together, and the positional relationship is close to the geographic distance. The behavior
distance is identical to the geographical distance approximately. It means the behavior
pattern tends to be random. The word2vec model is an effective embedding method in
behavior representation.

Table 1. Average distance with top ten proximal cells.

Buildings top 10 average distance 15.9 m

Roads top 10 average distance 22.8 m

(a) (b)

Figure 10. Example of two positional relationships when the average distances are (a) 22.0 m and (b)
16.0 m. The average distance is the average of the distances from the center of the target cell (red) to
the centers of other cells (blue).

4.4. Evaluation of Path Prediction

We evaluate the LSTM model with three other typical path prediction methods. Table 2
reports the comparison results in terms of macro-recall and weighted-recall. The recall is
the fraction of true positives out of the actual positives. It measures the ability of the model
to find all the positive units in the dataset [51]. Macro-recall is simply computed as the
arithmetic mean of the metrics for single cells. Weighted-recall is the recall that has been
weighted by the frequency of each cell. LSTM outperforms the other methods. Compared
to CBP in previous work, the two recalls are improved by 0.34 and 0.23, respectively.
For vanilla RNN, macro-recall and weighted-recall improve by 0.50 and 0.38. GatedCNN
has the most significant number of parameters among the four methods but does not
achieve well. Its weighted recall is 0.15 lower than LSTM.

Table 2. Overall performance comparison between our methodology (LSTM) and vanilla RNN, CBP,
and GatedCNN.

Marco-Recall Weighted-Recall

Vanilla RNN 0.1037 0.2956

CBP 0.2620 0.4427

GatedCNN 0.1856 0.5296

LSTM 0.6057 0.6780

The vanilla RNN here is only to imitate the mathematical structure and results of
HMM and has not undergone the necessary hyperparameter tuning process in a mod-
ern neural network. It reports significantly lower accuracy than others. The results are
close to Wesley Mathew [28], who used the Baum–Welch approach to estimate HMM
parameters. It suggests that traditional HMM without manual feature extraction for time
sequence multi-classification can not capture the complex sequential transition from histor-
ical trajectories. CBP is the baseline for path-based prediction of SRS. It has a discrepancy
between macro-recall and weighted-recall, which indicates that the frequency of occur-
rence of different cells within the dataset is different. Cells in areas of participants’ daily
movements frequently appear; on the contrary, in regions that participants cross occasion-
ally appear rarely. The training data has more frequently appearing cells as the results
lead to more accuracy. The differences in prediction accuracy for different regions of
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cells, multiplied by the weighting factor, lead to differences between macro-recall and
weighted-recall. The weighted-recall of GatedCNN is higher than CBP, and the macro-
recall is lower. It implies that CBP and GatedCNN capture different behavior patterns.
CBP is based on the first-order Markov model and only considers the effect of the current
cell on the predicted outcome. However, GatedCNN extracts a whole sequence through
stacked one-dimensional convolutional layers, overfits more than CBP and LSTM on a
small dataset, and improves the overall accuracy but loses the ability to generalize various
behavior patterns.

Moreover, we analyze how different trajectory characteristics affect the prediction.
Figure 10 and Table 1 show that the positional relationship between a cell and its top
ten proximal cells can represent the user’s behavior pattern. It can be measured by the
average distance from the cell’s centroid to the centroid of similar cells. Therefore, we use
the average distance to classify cells in the research area and study the influence on the
prediction. Table 3 compares the experimental results on weighted-recall and macro-recall.
For the case where the average distance is less than 15 m, the behavior pattern of the
cell mainly reflects randomness. The four methods all obtain the lowest accuracy. It is a
challenge to predict random movement. As the average distance increases, the prediction
accuracy increases, reaching a crest when the average distance is between 25 m and 30 m.
At this time, the positional relationship of cells is close to Figure 7. Users move along a fixed
route with regularity. When the average distance is greater than 30 m, prediction accuracy
is slightly reduced. As shown in Figure 7, there may be two situations where the average
distance is greater than 30 m. The first case is that, based on Figure 7, the cell is not located
in the center of the top ten proximal cells. It is caused by the imbalance in the direction
of movement of users passing through this cell. Considering that our dataset has been
collected for a long time, the number of occurrences of this imbalance is small. Another case
is that the speed of users is high, causing the distribution of the top ten proximal cells to be
discontinuous in geographical space. The time interval at which we collect spatial-temporal
data is 5 s. The side length of the cell is 10 m. If the user’s moving speed is greater than
7.2 km h−1 (2.0 m s−1), the cell sequence mapped may be discontinuous. For the cell on the
motor traffic lane, the user’s speed is usually much greater than 7.2 km h−1. The trajectories
passing through the cell are erratic, resulting in a discontinuous distribution of the top ten
proximal cells. The discontinuous trajectories increase the selectable range of the prediction,
resulting in a decrease in prediction accuracy. Together with the four methods, LSTM has
apparent advantages both in terms of weighted-recall and macro-recall.

Table 3. Weighted-recall (and macro-recall in brackets) comparison for different values of average
distance.

Average Distance= ≤15 m 15–20 m 20–25 m 25–30 m >30 m

Vanilla RNN 0.1685
(0.0567)

0.2371
(0.0911)

0.4144
(0.0757)

0.4798
(0.0622)

0.2800
(0.0506)

CBP 0.376
(0.1512)

0.4183
(0.2181)

0.5025
(0.1576)

0.5465
(0.1243)

0.3721
(0.1103)

GatedCNN 0.4012
(0.0875)

0.5015
(0.1494)

0.6275
(0.0755)

0.6612
(0.0572)

0.4256
(0.0326)

LSTM 0.5754
(0.3098)

0.6646
(0.4866)

0.7333
(0.4424)

0.7563
(0.4042)

0.6738
(0.4178)

Intuitively, traveling through the same distance (in this work, 18 cells), if the displace-
ment is large, it means that the user is moving in a particular direction. The next position
should be easy to predict. Conversely, if the displacement is small, the user is repeatedly
moving in an area. It is difficult to predict the user’s next position. Table 4 presents an
overview of weighted-recall and macro-recall comparisons for different values of traveled
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displacement. When the displacement is less than 50 m, the trajectory is restricted to a
small area, the weighted-recall and macro-recall of LSTM are close. The results indicate
that the feature extraction ability of LSTM is stronger than the other three methods. As the
displacement increases, the accuracy continues to improve, reaching a peak of 0.7165 when
the displacement is between 150 m and 200 m. The most effortless trajectory to predict is to
go straight. The displacement corresponding to 18 cells arranged in a straight line is 170 m,
located in 150 m to 200 m. It is consistent with intuition. The displacement continues to
grow. When the displacement is greater than 200 m, it indicates that the user’s moving
speed is fast and that the trajectory’s cells are not continuous. As mentioned in the previous
paragraph, a too-fast speed will increase the selection range of the predictions and reduce
the prediction accuracy. Comparing the four methods, LSTM is in a leading position in
both weighted-recall and macro-recall.

Table 4. Weighted-recall (and macro-recall in brackets) comparison for different values of displacement.

Displacement= ≤50 m 50–100 m 100–150 m 150–200 >200 m

Vanilla RNN 0.1039
(0.0747)

0.1362
(0.0816)

0.2695
(0.1042)

0.3729
(0.1124)

0.1052
(0.0534)

CBP 0.2016
(0.1745)

0.3017
(0.2036)

0.4340
(0.2813)

0.5015
(0.2813)

0.1825
(0.1340)

GatedCNN 0.1926
(0.1197)

0.3287
(0.1369)

0.5287
(0.1904)

0.6122
(0.2028)

0.1514
(0.0682)

LSTM 0.4546
(0.4456)

0.5797
(0.5393)

0.6859
(0.6193)

0.7165
(0.6031)

0.4528
(0.4030)

4.5. Evaluation of Service Provide Rate

To evaluate the actual performance of different path prediction algorithms in SRS, we
consider the service provision rate for sensor counts of 20, 50, 100, 200, and 300, respectively.
Table 5 displays the basic statistics for sensor network communication disks. The number
of sensors directly affects the sensor communication disk coverage rate, which is 0.052 for
20 sensors and increases to 0.560 for 300 sensors. The number of sensors is essentially a
scaled parameter to adjust the coverage. It is then used to test the performance of the SRS
under different coverage scenarios.

Table 5. Basic statistics of sensor communication disks.

Number of Sensors 20 50 100 200 300

Sensor communication disks coverage rate 0.052 0.126 0.236 0.419 0.560

Table 6 presents the service prevision rate comparison for a different number of
sensors. RG is the GPS reliability. The ideal scenario of a completely accurate mobile device
position determines the upper limits of the service provision rate, and the lower limit is
the case when GPS positioning is sometimes wrong (RG = 0.9). The service provision rate
reinforced by dual collaboration strategy is distributed between the ideal scenario and the
actual scenario.

A cell occupies a square space in the research area. Rarely, a sensor network can com-
pletely cover a specific cell. Therefore, even with the metadata provided by SRS containing
the correct correspondence between the cell and the sensors, there is no guarantee that a
successful connection can be made within the cell. The service provision rate for the ideal
case is not 1.0.

The four models are characterized separately. Our model (LSTM) has the best perfor-
mance. By applying the dual collaboration strategy with LSTM, the effect of mobile device
position error can be compensatory. Unlike the version of recall, Monte Carlo simulations
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show that the second well-performing method is CBP. The predicted output of CBP is
chosen from the eight cells surrounding the input cell. Given the daily movement speed of
participants, the true cell is generally near the input cell. Even if the predicted cell is not the
same as the true cell, it is still near the true cell in geographical space. A sensor may cover
both true and predicted cells. In the evaluation of service provision rate, the possibility
improves the performance of CBP.

The vanilla RNN behaves quite differently from weighted-recall. As shown in Table 6,
it performs slightly better than GatedCNN, both of which are effective time series multi-
classification models. However, the features extracted are different. GatedCNN focuses
on patterns of high-frequency sequences and improves weighted-recall by enhancing the
accuracy of high-frequency sequences. The vanilla RNN extracts directions [52] from
sequences and cannot precisely predict cells. However, the predicted positions are close
to the true cells. A sensor covers not just a single cell but several cells within a circle.
With the predicted and true positions being spatially adjacent, there is a chance that the
corresponding two cells are in the same sensor communication disk. Imperfect predictions
can provide a successful service. Therefore, as with CBP, vanilla RNN is significantly
superior to that of the weighted-recall in Table 1. Both vanilla RNN and GatedCNN
improve the service provision rate of dual collaboration strategy, with the former being
slightly more effective.

Table 6. Service provision rate comparison for a different number of sensors.

Number of Sensors 20 50 100 200 300

Actual scenario (RG = 0.9) 0.606 0.607 0.613 0.612 0.616

Vanilla RNN 0.661 0.662 0.671 0.669 0.674

CBP 0.667 0.667 0.675 0.673 0.678

GatedCNN 0.658 0.660 0.669 0.667 0.672

LSTM 0.670 0.671 0.678 0.677 0.681

Ideal scenario 0.674 0.674 0.681 0.680 0.684

The relation between the number of sensors and the service provision rate can be used
to measure the reliability of the simulation results. When m = 0, the users in the cell do
not need SRS service. In the simulation, we ignore these cells, as shown in Equation (8).
Theoretically, the communication disk coverage rate or the number of sensors should
not affect the final service provision rate. However, Table 6 shows a difference in the
service provision rate for the different number of sensors. The difference comes from the
stochastic behavior of the Monte Carlo simulation. As shown in Figure 4, the sensors
and their corresponding communication disks are randomly generated at each step in
the simulation flow. Their positions affect the connectivity in the cells at the edge of the
communication disks. Figure 11 shows two examples of positional relationships between
cells and communication disks. In Figure 11a, for the colored cells, using the area ratio to
calculate the service provision rate in these cells obtains 0.613. Correspondingly, the case of
Figure 11b corresponds to the value 0.303. Each step is performed using the same historical
trajectories but with different sensors in different positions, which leads to fluctuations
in the results. In Table 6, the differences between the maximum and minimum values of
service provision rate for the six scenarios are 0.010, 0.013, 0.011, 0.014, 0.011, and 0.010,
respectively. Taking the service provision rate at 0.670 as a reference value, the deviation
of 0.014 is only 2%, and Table 6 can be considered as a qualified result. If the number of
simulations Ns is further increased, the results may be more consistent, but it will waste
computational resources. Therefore, we set Ns = 100, and Table 6 is used for the service
provision rate of the different scenarios.
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(a) (b)

Figure 11. Two examples of the positional relationship of the cells and the communication disk.
The colored cells intersect with the border of the communication disk. When a user moves in the
colored cells, the red area is proportional to the service provision rate. The ratio of the red area to the
colored cells is (a) 0.613 and (b) 0.303.

4.6. Discussion

The word2vec algorithm is a popular method for building dense vectors and is
widely used in natural language processing. We apply it to analyze human behavioral
patterns. Based on human movement behavior, the spatial relationship between cells
is ignored. Only the movement from one cell to another cell is taken to construct the
embedding vector. After evaluation, the behavioral and spatial distances between cells are
disproportionate. The finding is similar to the existing work called geo-embedding [33].
Some cells may be spatially adjacent but behaviorally distant. For example, the behavioral
distance between the cells along the road is proximity. The behavioral distance between
the road and the space on both sides is distant. It indicates that the vector, after embedding,
can represent human behavior patterns. The representation is based on the frequency of
other cells appearing around the target cell. It is the same as the word2vec model. By
comparing the positional relationship of the top ten proximal cells, we notice that the
positional relationship in embedding space can represent human behavior. Suppose a
person frequently follows a specific trajectory; the shape of the top ten proximal cells’
position is similar to the trajectory, as shown in Figures 6 and 7. Conversely, there is no
particular direction when the cell is in a square or indoors where GPS noise is severe.
The spatial and behavioral distances between this cell and nearby cells are proportional.
The top ten proximal cells tend to group, as shown in Figure 8. We extract the building
layer and the road layer from OpenStreetMap. By checking whether the cells intersect with
the multiline string geometry from the building or road layers, the cells are categorized
into building cells, road cells, and other cells. We calculate the average distance between
a target cell and its top ten proximal cells to obtain Table 1 and then draw two typical
positional relationships, as shown in Figure 10. Table 3 shows the recall comparison for
different values of average distance. The columns where the crests and troughs are found
confirm the guesses in Figure 10. The results imply that the average distance to the top ten
proximal cells can indicate humans’ behavior patterns. When the average distance is small,
human’s behavior reflects randomness. Relatively, when the average distance is larger,
the behavior shows regularity.

The dense vectors obtained after embedding are used as inputs for the neural network
for path prediction. We compare the accuracy of four path prediction algorithms, which
are vanilla RNN, CBP, GatedCNN, and LSTM. The Hidden Markov Model was the most
popular algorithm for handling time series in the past. For path prediction, it requires the
manual design of hidden states. Learning with the Baum–Welch approach does not provide
meaningful results. We replace the HMM with a vanilla RNN without hyperparameter
tuning as the baseline for path prediction. CBP is the method applied in the existing
SRS. GatedCNN supports increased parallelism and effective temporal representation and
is a promising topic. The LSTM has been employed in several works and is the most
widely used deep learning-based path prediction algorithm. We compare macro-recall
and weighted-recall. The discrepancy between macro-recall and weighted-recall indicates
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an imbalance in the distribution of our dataset. Furthermore, it shows the differences
in path prediction algorithms. The GatedCNN is similar in accuracy to work [50]. Still,
the learned features are different from the RNN-based approach. Analogous to the higher-
order Markov model, it captures the regular historical trajectories from high frequencies,
with macro-recall and weighted-recall differing the most. With the comparison of recall,
we realize that LSTM is a suitable algorithm for path prediction in SRS.

We also compare the performance of historical trajectories with different complexities
under various path prediction algorithms. To characterize the complexity of the trajectories,
we tried to use features from two spaces. In the embedding space, the average distance
to the top ten proximal cells is used. In geographical space, the displacement from the
starting cell to the end cell is also considered a feature. The results show that too long
or too short a displacement from the starting cell to the end cell reduces the prediction
accuracy. In contrast, the average distance to the top ten proximal cells is proportional to the
predictability. Therefore, the average distance is a helpful feature to evaluate predictability.
The finding is beneficial for studying human behavior patterns, for example, visualizing
human behaviors at different cells in a geographic information system.

Path prediction is introduced to improve the performance of SRS. High-accuracy path
prediction algorithms do not always perform well in the real scenario. We use the service
provision rate to evaluate the performance of sensor filtering in SRS. In this work, we
employ a dual collaboration strategy to improve the service provision rate. The position
obtained by the mobile device from GPS is sometimes wrong. Furthermore, the second
position, predicted by historical trajectory, may also be mistaken. Simultaneous attempts
are made to connect the sensors corresponding to these two positions. If one of the
positions is correct, the mobile device can connect to the actual ambient sensors and acquire
heterogeneous data. However, there is a limitation. Its upper limit is the ideal scenario
where the GPS is completely accurate. In comparison with four path prediction algorithms,
the LSTM model almost reaches the upper limit, with a difference of only 0.003, achieving
the purpose of compensating for the loss caused by GPS unreliability. It raises the question
of whether it is necessary to improve the accuracy of path prediction by the attention
mechanism [43,44]. In SRS, the improvement is estimated to be only 0.001. However,
in other intelligent services, the increase may be meaningful. Meanwhile, the difference
between the recall and the results of the Monte Carlo method illustrates the reasonableness
of the Monte Carlo method for evaluating the performance of sensor filtering in SRS.

5. Conclusions

We addressed the problem of sensor filtering with incorrect GSP positions and quanti-
tatively showed that the dual collaboration strategy was able to solve the sensor filtering
problem. With the dual collaboration strategy, the sensor filtering module collaborates
both positions from GPS and path prediction. If one of the positions is correct, the mobile
device can connect to the actual ambient sensors and acquire heterogeneous data. The path
prediction module consisted of geo-embedding and LSTM to predict the current position
of the mobile device from a historical trajectory. We also proposed a Monte Carlo-based
simulation flow for evaluating the service provision rate. Several hundred thousand trajec-
tories were collected. The experiment showed many new results compared to previous
works: 1. The geo-embedding was also suitable for grid-based partition for user behavior
feature extraction. In embedding space, the positional relationship was able to represent
human behavior patterns. The average distance was used to recognize the predictability
of the trajectories. 2. The path prediction algorithms with various structures focused on
different characteristics of historical data. LSTM was a suitable model for grid-based path
prediction. 3. We used the service provision rate to evaluate the performance of sensor
filtering in SRS and employed the Monte Carlo-based simulation flow for quantitatively
evaluating the service provision rate. Four path prediction models were evaluated under
several scenarios for the service provision rate. For our dataset, LSTM and CBP had the
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best performance for sensor filtering in SRS. The LSTM-based path prediction was able to
compensate for the loss of the GPS drift and was an effective sensor filtering model.

There are several future directions for our work. First, we currently only predicted
the current position using spatial-temporal sequences. In the future, we will plan to
embed multi-modal information with historical trajectories, such as time, semantics, and
context to improve the prediction accuracy further. Second, we still want to learn human
behavior patterns with specially designed neural networks to achieve better path prediction
results. Third, we directly handled a fixed GPS reliability and communication radius to
simulate the service provision rate in this paper. Building a more realistic model for better
SRS evaluation is also an exciting topic. Finally, we will try to create a long-range path
prediction model by the seq2seq approach to improve the sensor filtering effectiveness in
SRS further.
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