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Abstract: A method to increase the sensitivity of an intracavity differential phase measurement that
is not made irrelevant by a larger increase of noise is explored. By introducing a phase velocity
feedback by way of a resonant dispersive element in an active sensor in which two ultrashort pulses
circulate, it is shown that the measurement sensitivity is elevated without significantly increasing the
Petermann excess noise factor. This enhancement technique has considerable implications for any
optical phase based measurement; from gyroscopes and accelerometers to magnetometers and optical
index measurements. Here we describe the enhancement method in the context of past dispersion
enhancement studies including the recent work surrounding non-Hermitian quantum mechanics,
justify the method with a theoretical framework (including numerical simulations), and propose
practical applications.

Keywords: intracavity phase interferometry; laser sensors; sensitivity enhancement; precision
sensing; inertial sensors; petermann excess noise factor; gyroscopes; ultrafast

1. Introduction

As the world strives for more adventurous space missions, higher precision studies
of fundamental physics and sleek wearable technology, the need for compact and energy
efficient, but highly sensitive, measurement devices has never been greater. Interferom-
etry has been a tool for precision measurements since long before the invention of the
laser [1–4]. It involves comparing two paths (sample and reference) of single frequency
or multi-color light. The result of the phase measurement is generally observed as an
amplitude modulation of passively interfering beams [5], or as a beat frequency in the case
of an active interferometer such as the laser gyroscope [6]. Implementing the latter with
frequency combs instead of continuous wave (cw) lasers has been termed, “Intracavity
Phase Interferometry” (IPI), and promises a wide range of sensing applications [7].

With few exceptions [7–9] most reports based on intracavity phase sensing have been
limited to cw lasers, i.e., the gyroscope. In this context, a recent hot topic is a byproduct
of the field of non-Hermitian quantum mechanics and the discovery of the Exceptional
Point (EP) [10]. By placing a sensor at a specific location in parameter space (the EP), it
has been shown that some devices can exhibit significantly increased sensitivity [11,12].
Unfortunately, these enhancements generally come at the expense of increased noise [13,14].
For the specific case of the laser gyroscope, the EP is equivalent to the dead band edge
where noise and instability dominate [13–17].

Tailoring cavity dispersion to increase detector sensitivity has been an active area
of study in the field of laser sensing [18,19]. Though, it has been shown that “slow light”
media causes a reduction in sensitivity to resonator path length changes, while “fast
light” sensors result in a linewidth broadening that exactly cancels the added sensitivity
benefit [20–22]. Recently, the critical anomalous dispersion point spoken about in “fast
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light” lasers, and their corresponding parasitic noise, have been equated to the EP of
non-Hermitian quantum mechanics [13,16,17]. By equating the two areas of study, the ex-
perimental work regarding the critical anomalous dispersion point can be reexamined in
the context of EP theory. One can then conclude that the broadened linewidth is caused
by coupling between modes as quantified by the Petermann excess noise factor. This
multiplicative factor to the Schawlow-Townes linewidth describes a linewidth broadening
that is generated by mode non-orthagonality resulting from mode coupling [23]. Since
most, if not all, previous studies in this field have been in reference to cw lasers, the claim
of this paper is that by reducing the coupling between the modes by way of an ultrafast
intracavity phase interferometry sensor [7], the linewidth broadening typically encountered
by dispersion enhancement can be avoided.

1.1. Intracavity Phase Interferometry

Most laser based sensors include a laser source separate from the sensing element.
This independent sensing element is frequently inserted in a resonator, which increases
the sensitivity based on its quality, “Q”, factor. A physical quantity (i.e., a stress in a
waveguide, a change in molecular state in a high quality Fabry-Perot, etc. . . ) that changes
the phase inside the resonator is monitored by a change in transmission. The sensitivity
to phase change is multiplied by Q because of the repeated passage through the phase
perturbation. These detectors typically use a cw laser source with utmost stretching of the
coherence time leading to a precisely defined single frequency. The opposite extreme is to
use ultrashort pulses. Ultrafast lasers include a mode-locking mechanism that generates
a train of equally spaced ultrashort pulses of which the spectrum is a frequency comb.
The width of each tooth of the comb can be as narrow as that of the best cw lasers [24–26].
Inside the mode-locked laser, a pulse makes a round-trip in a time, τrt, at a corresponding
average group velocity which defines the spacing of the comb teeth as 1/(2πτrt). This is
not to be confused with the average phase round-trip time, τp, which is associated with
the empty cavity resonance frequency. It has been demonstrated experimentally [27,28]
and theoretically [29] that the tooth spacing within a comb is rigorously constant. The
frequency comb extends over a large bandwidth such that only some of the central teeth
of the comb have their frequency at exact resonance with the empty cavity (or with some
intracavity tuning element [30,31]). The first tooth of the extended comb at the frequency
f0 is called the “carrier to envelope offset frequency” (CEO). This latter quantity is extremely
sensitive to any phase perturbation inside the laser cavity. The frequency νm of a tooth m
of the comb is defined as:

νm = f0 + m
1

2πτrt
. (1)

Rather than having a separate laser source and measuring interferometer, both subject
to their own uncorrelated fluctuations and noise, the type of sensing technique analyzed
here, termed “Intracavity Phase Interferometry” or IPI, has the laser source and measuring
interferometer as a single unit. Two pulses, instead of one, are made to circulate in the
laser cavity; one pulse serves as “reference” while the phase of the other is affected at
each round-trip by the parameter to be measured. Dual correlated frequency combs are
produced by forcing the two pulses to have the same group velocity in the same mode-
locked cavity. This source becomes an ultra-sensitive sensor if the physical quantity to be
measured causes a differential phase shift ∆ϕ per round-trip between the two pulses. This
differential phase shift causes a mode splitting, δ0 = ∆ϕ/(2πτp) = f02 − f01, where f02
and f01 are the CEO frequencies defined in Equation (1) for the two circulating pulses. For
an ideal source where no linear or nonlinear coupling exists between the two circulating
pulses, there will be a frequency split ∆ν = δ0 between the two generated frequency combs.
In an imperfect world where a phase coupling exists between the two circulating pulses,
∆ν ⇒ ∆ν(δ0) 6= δ0. Since the two frequency combs emitted by the source have the same
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repetition rate, interfering them on a detector produces a beat note of frequency ∆ν. We
define the slope sensitivity of the device as,

S =
d∆ν

dδ0
. (2)

This is not to be confused with the “scale factor”, S, used by the gyroscope community.
The scale factor relates the rotation rate to the mode-splitting, δ0 = SΩR. Instead the slope
sensitivity defined by Equation (2) is general in the sense that it relates the mode-splitting
to the beat frequency read out by the device, ∆ν = S(δ0).

The method described here differs from standard dual comb spectroscopy [32,33] in
several ways. First, the teeth of the two combs being equal (and equally spaced) implies
that all the teeth of the comb contribute to a beat signal with 100% modulation. Because
the two combs are correlated, the bandwidth of the beat note signal at ∆ν is typically less
than 1 Hz [34] which is considerably narrower than the bandwidth of an individual tooth
of either comb (That bandwidth is typically > 10 MHz in all the measurements performed
so far with unstabilized lasers). Another distinction is that recent experimental data did
not show a measurable beat note bandwidth dependence on δ0 [35,36], in agreement with
simulations presented in Section 5. The phase measurement takes place at each round-trip
and, hence, at the cavity round-trip frequency f > 100 MHz. Therefore, the 1/ f classical
noise is minimized in the beat note measurement.

Figure 1 shows two examples of sensor configurations, where “sample” stands for
any phenomenon that can produce a differential phase shift between the two pulses.

Ring cavity

G

GSample

Db

(a)

(b)

Sample

Db

Figure 1. Idealized design of an intracavity phase interferometer, in a ring (a) or linear (b) configura-
tion. Two pulses (green and blue) are circulated in the cavity. Sample is a device that produces, at each
round-trip, a differential phase shift between the two pulses that is proportional to the quantity to be
measured. This phase difference results in an optical frequency difference. The latter is measured as
a beat note between the two output combs made to interfere via an optical delay line on a detector
Db. G is the gain element.

The first implementation of a laser cavity with mode-locked pulses propagating in
opposite directions utilized a moving saturable absorber. In this configuration of “colliding
pulse mode-locking”, the pulses meet in the saturable absorber. Because of the motion of the
saturable medium, a dead band is averted though the randomization of the backscattered
phase [37]. The first application of the configuration of Figure 1a was to measure air flow
through the Fresnel drag [38]. The gyroscope response and the absence of dead band were
confirmed in [39]. A ring laser configuration applied to the determination of the Verdet
constant was demonstrated in [40]. The magnetic field induced phase measurement was
shown to have a 1000 times better signal to noise than a Faraday rotation measurement.
This is because, unlike the traditional measurement of Faraday rotation, the measurement
of a beat frequency is independent of the amplitude of the laser, and hence is not affected
by amplitude noise. A phase shift corresponding to a Faraday rotation of 10−9 radian was
easily measured. An atomic magnetometer [41] employing IPI could be used to reduce



Sensors 2021, 21, 8473 4 of 19

the large apparatuses required for brain scans in magnetoencephalography that typically
rely on superconductors [42]. The linear configuration of Figure 1b was first applied to
the measurement of an electro-optic coefficient [43]. It was next realized that an Optical
Parametric Oscillator (OPO) configuration offered better signal to noise, leading to a beat
frequency bandwidth of 0.17 Hz [34], or a phase resolution of 1.5 ×10−8 radian. This linear
configuration was applied to the measurement of a nonlinear index [34]. Another sensing
application has been scatterometry. Back-scattering coefficients as small 10−15 can be
resolved in transparent media [44] or on reflecting surfaces [45]. IPI has been applied to the
study of nonlinear dispersion associated with a three-level Λ system in atomic vapors [46].

These applications, summarized in a review article [7], involved discrete component
solid state lasers. Recent trends are to apply these techniques to fiber lasers, with a consid-
erable advantage in reduced size and energy consumption [47]. In the fiber implementation
of the linear configuration of Figure 1b the “green” and “blue” pulses are orthogonally
polarized, and the “sample” is a Michelson type interferometer with a polarizing beam
splitter separating pulses in two branches. IPI is now an accurate monitor of submicron
differences in optical path. The device can be used as an accelerometer if one branch
is terminated by an inertial mass. Pressure sensing is an active area of study where IPI
has yet to be applied. Instead of a piezoresistive based sensor, such as in [48], the linear
configuration of IPI could be used, where one pulse is reflected off the wall of a vessel.
While not providing a direct electrical response as in [48], it may find a niche of application
for its extreme sensitivity and non-contact reading.

If ` is the length of the sample element inside the laser resonator, the two light beams
will experience at each passage through the cavity (round-trip time at the phase velocity
τp) a phase difference ∆ϕ = ∆(k`), (wave vector k = 2πn/λ where λ is the wavelength in
vacuum and n the index of refraction) resulting in a differential mode-shift:

δ0 =
∆ϕ

2πτp
=

∆(k`)
2πτp

= ν
∆P
P

. (3)

The last term in Equation (3) expresses that the differential mode shift is the product
of the change in cavity perimeter ∆P relative to the total cavity perimeter P by the optical
frequency ν. It also shows that, in general, δ0 is inversely proportional to the linear dimen-
sions and, therefore, miniaturization is highly desirable. The exception is precisely the
most studied case of the laser gyroscope, where the response to a rotation rate ΩR (s−1) is,

δ0 =
4A
Pλ

ΩR, (4)

proportional to the ratio of the area (A) over the perimeter (P) and, hence, proportional to
the linear dimensions.

The gyro Equation (4) derives directly from the more general detector response (3)
where, for a circular cavity of radius R, the rotation induces a difference in optical path
between counter-circulating pulses of ∆P = 2RΩRτp. The fact that ∆P = 2RΩRP/c is
proportional to the square of the linear dimensions explains that the rotation response is
proportional to the linear dimension. This is in contrast to all other sensors based on IPI. The
rotation response (4) being the Sagnac phase shift ∆ϕs divided by 2πτp leads to:

∆ϕs =
8πA

λ
. (5)

This is the Sagnac phase shift of which the direct derivation requires special rela-
tivity [49,50]. Using the Lorentz transformation, one finds that the time difference for
completing a loop by two counter-circulating light beams is ∆ϕs/ω = (2/c2)

∮
v.d` =

(2/c2)
∮

~ΩR × ~d`.~d` = (4/c2)
∮

ΩRdA = (4/c2)ΩR A.
The ring is the only topology possible with a cw laser where the two beams occupy the

same space at all times. In a mode-locked laser, where two intracavity pulses circulate, each
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pulse occupies a different position in space at a given instant, and the linear equivalent
of the laser gyroscope is possible [Figure 1b]. The linear cavity correspondent of the
laser gyroscope is an accelerometer where the “sample” is the position of an inertial mass
affecting only one of the pulses.

1.2. Paper Outline

In order to show that dispersion tailoring enhancement does not lead to additional
noise in an IPI sensor, two equivalent simulation models will be used in sequence. In
Section 2, two short pulses step through a mode-locked laser cavity one round trip at a
time, producing a series of pulses through an output mirror. The resulting pulse trains
in time are Fourier transformed to produce two frequency combs. The beat note between
these two combs is analyzed and compared to the mode shift δ0. In the presence of coupling,
the beat note is smaller than the mode shift, approaching zero at a point defined as the EP in
the language of quantum mechanics. The closer the mode shift approaches the EP, the larger
the slope of the beat note response versus mode-shift becomes, which has been hailed as
an enhancement [11,12,51]. An increase in slope sensitivity S defined in Equation (2) is
only relevant if it is not at the expense of increased noise. The Petermann factor [23,52–54]
is introduced (Section 4) to quantify the noise contribution brought by the enhancing
parameter. Calculations of the Petermann factor get very involved in multimode systems.
Fortunately, the Petermann factor correlates with the beat note bandwidth, which is a
more convenient calculation in the frequency domain, and easily accessed experimentally.
Therefore, a second model operating entirely in the frequency domain is introduced in
Section 3. The frequency domain model is more convenient to analyze the dispersion
enhancement which is presented in Section 5. It is shown that, in the absence of coupling
between the two modes, the response to the mode splitting created by the physical quantity
to be measured is increased and remains a linear function of the mode splitting. Finally,
Section 6 describes how the enhancement technique is applied experimentally, including
preliminary experimental results.

2. Time Domain Laser Model

We consider picosecond (or femtosecond) pulses represented by their electric field,
E1,2(x, t) = 1

2 Ẽ1,2(x, t) exp[i(ωt− kz)]; x being a round-trip index and ω the average angu-
lar frequency of the emitted radiation. As mentioned in the introduction, the two pulses
interact with different cavity modes (at ω/(2π)± δ0/2) because of the differential phase
shift per round-trip between the two pulses caused by the physical quantity to be mea-
sured. The mode splitting implies a k-vector splitting ∆k = 2πδ0/c. In the slowly varying
envelope approximation, the propagation of the two field envelopes is given by:

∂Ẽ1

∂z
=

α1

L
Ẽ1 + i

∆k
2
Ẽ1 +

s
L
Ẽ2

∂Ẽ2

∂z
=

α2

L
Ẽ2 − i

∆k
2
Ẽ2 +

s
L
Ẽ1. (6)

A non-conservative coupling, represented by the complex number, s, is assumed
between the two modes. This coupling can only exist at the point of the cavity where the
two pulses overlap at each round-trip. If x = z/L is the round-trip index, Equation (6)
becomes:

∂Ẽ1

∂x
= α1Ẽ1 + i

∆ϕ

2
Ẽ1 + sẼ2

∂Ẽ2

∂x
= α2Ẽ2 − i

∆ϕ

2
Ẽ2 + sẼ1. (7)

We use the notation ∆ϕ = ∆kL = 2πδ0L/c = 2πδ0τp for the differential phase
shift/round-trip. Note that Equation (7) assumes that the net gain coefficients, αi, and the
coupling, s, are small (<1). For femtosecond and picosecond pulses that are shorter than
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the energy relaxation time of the gain medium, the net gain is given by (there is only
self-saturation to be considered here since the two circulating pulses do not meet in the
gain medium),

αi =
α0

1 + Wi/Ws
− βi, (8)

where α0 is the small signal gain factor per round-trip, Wi = (
∫
|Ei|2dt)/2η is the pulse

energy, Ws is the saturation energy density, η is the characteristic impedance of the medium,
and βi is the linear loss per round-trip for each field.

Let us assume for simplicity that the gain and losses are in equilibrium such that
αi = 0. The coupled-mode system of equations reduces to:

∂

∂x

(
Ẽ1
Ẽ2

)
=

[
−i∆ϕ/2 s

s i∆ϕ/2

](
Ẽ1
Ẽ2

)
. (9)

Postulating the existence of a steady-state solution, one uses the Ansatz: Ẽi = Ai,je
−iλjx

for the complex amplitudes where Ai,j are constants, and λj are solutions to the Eigenvalue
equation:

−i∆ϕ/2 + iλ s
s i∆ϕ/2 + iλ

= 0, (10)

which leads to the Eigenvalues:

λ± = ±
√

∆ϕ2 − 4s2

2
. (11)

The solutions for the fields Ẽ1 and Ẽ2 are a linear combination of the Eigenfunctions.
In this particular case of coupling between identical resonators, the beat note frequency is
simply ∆ν = (λ+ − λ−)/(2πτp). The dead band edge and EP then occur at, ∆ϕ2 = 4s2.

Figure 2 shows a pair of teeth of the two frequency combs corresponding to the fields
numerically solved from Equation (7). The system of Equation (9) are first solved for in
the time domain and then the Fourier transform of the resultant pulse train is taken to
obtain the frequency comb. The angular frequency variable, ∆Ω = Ω−ω, is the departure
from an average optical angular frequency, ω, such that the differential phase causes a
splitting centered at ∆Ω = 0. The simulation used a detuning of ∆ϕ = 0.27, gain of α0 = 1,
β1,2 = 0.05, and Ws = 1 in Equation (8), and the temporal dimensions are scaled by the
round-trip time (τp = 1). Figure 2a shows the result without coupling, s = 0, while Figure
2b shows what happens when a coupling of s = 0.1e(1i) is included. Since τp = 1, the peaks
are spaced by ∆ν = δ0 = ϕ/2π = 0.043 in frequency space. However, when the electric
fields are interfered, the system with coupling will read out a distorted beat frequency that
is not necessarily equal to the mode spacing.
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Figure 2. Numerical solution showing a pair of teeth of the two frequency combs (red,blue) defined
by the time model of Equation (7) after 100 round-trips with no coupling, s = 0 (a), and coupling,
s = 0.1e(1i) (b). Both simulations were carried out with a detuning of ∆ϕ = 0.27, gain of α0 = 1,
β1,2 = 0.05, and Ws = 1 in Equation (8), and τp = 1. When coupling is included, the fields pass
energy back and forth such that which field is dominant in plot (b) depends on how many round-trips
are considered If taken over an infinite number of round-trips, (b) and Figure 4b would be symmetric,
since the amplitudes of the two pulses follow similar oscillation, but out of phase. Since the variable
x is in fact the time (in unit of round-trip), (b) and Figure 4b can be recognized as wavelet transforms.

Gain Difference Exceptional Point

As pointed out in the “Gain Difference Exceptional Point” section of [16], the situation
described above is slightly different from the case of asymmetric gain considered in [51]. In
that case, the two electric fields have the same frequency, and there is not a beat note, but a
shift in absolute frequency that depends on the detuning. This is the situation where there
is a different gain α1 and α2 in each of the coupled resonators, and the coupling is purely
conservative (s = 0 replaced by κ1 = κ = −κ∗2 [16]). The Eigenvalue equation is then:

α1 − i∆ϕ/2 + iλ κ
−κ∗ α2 + i∆ϕ/2 + iλ

= 0, (12)

which leads to the Eigenvalues:

λ± = i
α1 + α2

2
± χ

2
, (13)

with,

χ =

√
4|κ|2 − [(α1 − α2)− i∆ϕ]2. (14)

One can then see that at zero detuning (∆ϕ = 0) the modes collapse to an Exceptional
Point when 4|κ|2 = (α1 − α2)

2. Numerical solutions were presented in [16] showing that
the two fields Ẽ1 and Ẽ2 have the same frequency such that no “beat note” can be observed.
An analytical expression for the fields Ẽ1 and Ẽ2 is given by:

Ẽ1 = A11e−iλ+x + A12e−iλ−x

Ẽ2 = A21e−iλ+x + A22e−iλ−x,
(15)

where the Eigenvalues λ± are from Equation (13). Choosing α1 = α = κ and α2 = −α, the
Eigenvalues become,

λ± = ±χ

2
= ±1

2

√
−2iκ∆ϕ− ∆ϕ2 ≈ ±

√
κ∆ϕ

2

√
−i = ±1

2

√
κ∆ϕ(1− i), (16)



Sensors 2021, 21, 8473 8 of 19

where the approximation is valid since near the EP ∆ϕ is small. By substituting this into
Equation (15), it is clear that the imaginary part of λ+ will cause the first term to decay
to zero, while the imaginary part of λ− will cause the second term to grow exponentially.
Saturation of the gain will stabilize the second term to a finite value, while the first term
decays to zero. Therefore, the fields Ẽ1 and Ẽ2 oscillate at the same frequency (dividing by
the round-trip factor 2πτp) of 1

4πτp

√
κ∆ϕ, and there is no beat note to be observed. Details

of the solution are given in Appendix A.
The fact that there should be no beat note in this model can be verified by solving

numerically the system of coupled differential equations, Equation (12), for a conservative
coupling κ = 0.05, saturable gain using α0 = 0.1, Ws = 1, β1 = 0, α2 = −κ, and ∆ϕ =
2π ∗ 0.1. The results are presented in Figure 3 which shows the two fields oscillating
with the same optical frequency. Initial cw fields of amplitude 1 were used, and the real
fields are plotted as a function of time. Because the real fields are plotted, the oscillations
correspond to the optical frequency and thus not directly experimentally accessible like
a true beat frequency. Assuming a cavity τp = 1 ns, the displayed period is 20 ns which
corresponds to a frequency of 0.05 GHz. This does not agree with the predicted frequency
of 1

4πτp

√
κ∆ϕ = 0.014 GHz because, as stated in [16], the relationship α1 − α2 = 2κ is not

maintained for ∆ϕ > 0. In this case the gain in the first resonator saturates to α1 = 0.00068,
while the second resonator maintains the constant α2 = −κ. Plugging these values into
Equation (13) and taking the real part (since the imaginary part leads to gain or loss) results
in the expected value of, Re(λ±)/(2πτp) = 0.05.
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(b)
Figure 3. Evolution of the two fields (red, blue) near the “Gain Difference Exceptional Point”.
Equation (7) was solved using initial cw fields of amplitude 1 and κ = 0.05, a saturable gain with
α0 = 0.1, Ws = 1, β1 = 0, α2 = −κ in Equation (8), and ∆ϕ = 2π ∗ 0.1. (b) is a zoomed in plot of (a)
showing that the two fields have the same optical frequency, and therefore there is no measureable
beat frequency when the two fields are interfered.

3. Frequency Domain Model

In continuously pumped lasers the noise is due to spontaneous emission from the
active medium. The evolution from noise to a regular train of pulses has been the object
of numerous theories and computer simulations since the first mode-locked laser was
operated (see, for instance, [55]). Instead of using the standard description for frequency
combs [56], we proceed in the frequency domain by following an initially broad spectrum
through successive round-trips. A pulse evolves in the cavity, and through its round-trip
summation a frequency comb develops. Instead of including all nonlinear effects that
force the longitudinal modes to be in phase, we assume at the onset that all frequency
components are locked together. In other words, it is assumed that the pulse already exists
in time and we are simply summing the round-trips. The dual correlated frequency comb
is generated by duplicating this evolution in the same cavity (same average round-trip time
at the group velocity) but with each pulse having a phase shift of ±∆ϕ/2, corresponding
to the modes being shifted by ±δ0/2. The advantage of this approach is that the mode
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linewidth can be controlled by the number of round-trips. We start with a spectrally broad
electric field Ep,0(Ω) = Ẽp,0(∆Ω) exp(−ikz) where the index p = ± refers to each of the
two frequency combs, and the cavity is at resonance at the frequency ω (corresponding
to ∆Ω = 0). The resonance condition is ωτp = 2Nπ where N is an integer and τp is the
round-trip time at the phase velocity corresponding to the resonant frequency ω. The
spectral field of each circulating pulse at the round-trip x + 1 is related to the field at the
previous round-trip, x by:

Ã±,x+1 = Ã±,xe−iτp(±∆ϕ/2+∆Ω). (17)

where the amplitude notation has been added to distinguish the mathematical round-trip
quantity (Ã) from the measurable resultant sum (Ẽ ). The measurable field is the sum after
M round-trips:

Ẽ±,M = Ã±,0

M

∑
x=0

e−ixτp(±∆ϕ/2+∆Ω). (18)

The sum of this geometric series leads to an analytic expression for the two frequency
combs:

Ẽ±,M = Ã±,0

1−
[
e−iτp(±∆ϕ/2+∆Ω)

]M+1

1− e−iτp(±∆ϕ/2+∆Ω)
. (19)

The model can be extended to include coupling between the counter-propagating
pulses. Since Fourier transformations are linear operations, the coupling can be simply
introduced the same way as in the time domain. We choose here the non-conservative
coupling s introduced in Section 2. With such a coupling an analytical solution such as in
Equation (19) is not available, and a numerical method must be sought. A split method is
used to create the summation. First, each electric field is propagated a round-trip individu-
ally without coupling according to its transfer function exp

{
−iτp(±∆ϕ/2 + ∆Ω)

}
. Next,

the coupling is applied by adding a proportional amount, s, of the opposite propagated
field into each other, leading to a coupled amplitude Ãc±,x at round-trip x. The coupling
being non-conservative means the total energy will diverge unless a saturable gain is
applied to the coupled amplitudes at each round-trip:

Ã±,x+1 = Ãc±,x + α1,2Ãc±,x. (20)

The resultant comb is again obtained by the summing the round-trips:

Ẽ±,M =
M

∑
x=0
Ã±,x. (21)

Figure 4 shows the result of the frequency domain calculation using the same param-
eters as the time domain system displayed in Figure 2. Comparison of the two figures
demonstrates the equivalence of the two models. The frequency domain calculation allows
a more straightforward approach to the dispersion enhancement that will be introduced in
Section 5.
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Figure 4. Numerical solution showing a pair of teeth of the two frequency combs (red,blue) defined
by Equation (21) after 100 round-trips with no coupling, s = 0 (a), and coupling, s = 0.1e(1i) (b). Both
simulations were carried out with a detuning of ∆ϕ = 0.27, gain of α0 = 1, β = 0.05, and Ws = 1 in
Equation (8), and τp = 1. When coupling is included, the fields pass energy back and forth such that
which field is dominant in plot (b) depends on how many round-trips are considered.

4. The Petermann Factor

For the situation of non-conservative coupling (s 6= 0; κ = 0) and balanced gain
(α1,2 = 0), the enhancement factor S is:

S =
d∆ν

dδ0
=

d(λ+ − λ−)

d∆ϕ
=

∆ϕ√
∆ϕ2 − 4s2

. (22)

The enhancement tends to infinity at the edge of the dead band ∆ϕ = 2s, and tends
asymptotically to unity as ∆ϕ increases away from the exceptional point. As is well known
in the optical gyroscope community, there is no advantage in operating close to the dead
band where the beat note bandwidth increases [57–59]. The Petermann excess noise factor
quantifies the excess noise produced next to an exceptional point which explains the
inherent noise that exists within the dead band region.

The excess noise theory has been developed for Schrödinger type systems, or more
generally, linear systems with corresponding discrete Eigenfunctions and Eigenvalues. This
is the case of modes of a cavity. Specifically, it has been shown that the system of equations
describing the evolution of the two pulses in a mode-locked cavity is a Schrödinger-type
equation of which the split between the Eigenvalues is the beat note ∆ν [60]. A good
representation of the excess noise added to a laser system due to the modes becoming
non-orthogonal is the Petermann factor [23].

Kp =
1

1− |〈ε1|ε2〉|2
, (23)

where |ε1〉 and |ε2〉 are the two eigenmodes of the system normalized to 〈ε1,2|ε1,2〉 =
1 [61]. It has been shown [52–54] that the factor Kp, which is a multiplicative factor of
the spontaneous emission noise, becomes >1 in a laser system when the modes |ε1,2〉 are
non-orthogonal. For many systems showing an enhancement at the Exceptional Point,
it has been pointed out that the Petermann factor increases [13,14]. For the case of the
two-level system described by Equations (9), The Eigenfunction equation corresponding to
the Eigenvalues λ± are:

0 =

(
−i∆ϕ/2± i

√
∆ϕ2 − 4s2

2

)
x1 + sx2

0 = sx1 +

(
i∆ϕ/2± i

√
∆ϕ2 − 4s2

2

)
x2. (24)



Sensors 2021, 21, 8473 11 of 19

Multiplying the first equation by i∆ϕ/2∓ i
√

∆ϕ2−4s2

2 , the second by s, and taking the
difference of the two equations gives the identity 0 = 0. The eigenvectors are then deduced
from the first equation to be:

ε± = µ±

[
2s

i∆ϕ± i
√

∆ϕ2 − 4s2

]
, (25)

where µ± is the normalization factor. If the system is just outside of the dead band edge
such that ∆ϕ2 > 4s2, then, to ensure that the normalization 〈ε±|ε±〉 = 1 holds, we have to
add the rather complicated normalization factor of,

µ± =
1√

2
(
∆ϕ2 ± ∆ϕ

√
∆ϕ2 − 4s2

) . (26)

This normalization is required for the Petermann factor to take the simple form shown in
Equation (23). The inner product is then,

〈ε+|ε−〉 = µ+µ−
[
2s −i∆ϕ− i

√
∆ϕ2 − 4s2

][ 2s
i∆ϕ− i

√
∆ϕ2 − 4s2

]
=

2s
∆ϕ

.
(27)

Plugging this into Equation (23) shows explicitly that the Petermann factor diverges
as the system approaches the dead band edge at ∆ϕ = 2s:

Kp =
1

1− 4s2

∆ϕ2

. (28)

The claim of this paper is demonstrated theoretically in Equation (28). If the coupling
between the modes is eliminated, s = 0, then no additional noise is added since Kp = 1.

Unfortunately, there is no clear way to extract the normalized eigenmodes of Equation (25)
from the numerical solutions that solve for the fields Ẽ±. However, the fact that Kp is a
multiplicative factor to the Schawlow–Townes linewidth means that its effect shows up as a
broadening of the lasing linewidth. Thus, by showing that the beat signal bandwidth is not
broadened when dispersion enhancement is added, the theoretical statement above can be
numerically confirmed.

The beat signal on the detector Db (Figure 1) in time is given by,

Db(t) =
1

2η

[
|Ẽ1|2 + |Ẽ2|2 + Ẽ∗1 Ẽ2 + Ẽ1Ẽ∗2

]
. (29)

Taking the Fourier transform of the beat signal, FT [Db(t)] = Db(∆Ω), and taking
advantage of the linearity and cross-correlation properties of the Fourier transform leads
to,

Db(∆Ω) =
1

2η

∣∣∣Ẽ1(∆Ω)⊗ Ẽ1(∆Ω) + Ẽ2(∆Ω)⊗ Ẽ2(∆Ω) . . .

+ Ẽ1(∆Ω)⊗ Ẽ2(∆Ω) + Ẽ2(∆Ω)⊗ Ẽ1(∆Ω)
∣∣∣2.

(30)

where the cross-correlation function is defined as,

A(x)⊗ B(x) =
∫ ∞

−∞
A∗(τ)B(x + τ)dτ. (31)
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The beat signal bandwidth can then be calculated as the square-root of the mean
square deviation (second central moment):

〈φ̈2〉 =
∫ ∞
−∞(∆Ω− 2π∆ν)2Db(∆Ω)d∆Ω∫ ∞

−∞ Db(∆Ω)d∆Ω
. (32)

Equation (32) will be used in the next section to quantify how much noise is added
to the enhanced system. The average beat frequency will be calculated as it would be
measured experimentally as the center of gravity of the beat signal spectrum,

∆ν =
1

2π

∫ ∞
−∞ ∆ΩDb(∆Ω)d∆Ω∫ ∞
−∞ Db(∆Ω)d∆Ω

. (33)

5. Enhancement through Resonant Dispersion

If an additional dispersive element is inserted into the cavity with a periodic transfer
function of h̃ = e−iψ(∆Ω), then Equation (17) becomes:

Ã±,x+1 = Ã±,xe−i[±(∆ϕ/2)τp+τp∆Ω+ψ(∆Ω)]. (34)

Using a Taylor expansion limited to first order ψ(∆Ω) ≈ ψ0 + ∆Ω ∂ψ/∂∆Ω|0, and ig-
noring the global phase factor ψ0 since it affects all teeth on each comb equally results
in:

Ã±,x+1 = Ã±,xe
−i
[
±(∆ϕ/2)τp+

(
τp+

∂ψ
∂∆Ω

∣∣∣
0

)
∆Ω
]
. (35)

By comparing Equation (17) and Equation (35), it is clear that the effect of adding
an intracavity dispersive element is to modify the phase round-trip time as τp ⇒ τp +
∂ψ/∂∆Ω|0. Inserting this into Equation (3) results in a modified detuning of,

δ =
∆ϕ

2π(τp +
∂ψ

∂∆Ω

∣∣∣
0
)
=

∆ϕ
2πτp

1 + 1
τp

∂ψ
∂∆Ω

∣∣∣
0

=
δ0

1 + 1
τp

∂ψ
∂∆Ω

∣∣∣
0

. (36)

The enhancement factor defined in Equation (2) now becomes:

S =
d∆ν

dδ0
=

∂∆ν

∂δ

∂δ

∂δ0
= S1S2 = S1

1

1 + 1
τp

∂ψ
∂∆Ω

∣∣∣
0

. (37)

S1 = ∆ν/δ is the scale factor enhancement typically reported by the gyroscope community.
If S1 is enhanced by way of placing the system at the Exceptional Point, it also comes with
an increase in excess noise [13,14,16]. S2 = δ/δ0 is a real mode-spacing enhancement (using
the method described above) which maintains the linearity of the response in the absence
of coupling as long as the modes remain in the linear region of the linear dispersion. If there
is negative (anomalous) resonant group-velocity dispersion (∂ψ/∂∆Ω|0 < 0) then S > 1,
and the mode splitting δ = Sδ0 is enhanced. This situation occurs in the dispersive region
of an absorbing resonance. The case of dispersion caused by a gain resonance represents a
decrease in sensitivity (S < 1).

Figure 5 shows the enhanced (solid) and non-enhanced (dashed) sensor response
curve and beat signal bandwidth. The average beat frequency (red, left axis) is plotted
as a function of mode splitting according to Equation (33). The enhancement is clear as
the slope of the lines correspond to the enhancement factor S . The beat signal bandwidth
(blue, right axis) is plotted according to Equation (32), implying that the noise does not
diverge since the coupling has been removed, s = 0. This calculation was carried out using
τp = 1, with 150 round-trips, gain parameters of α0 = 1, γ = 0.05, and Ws = 1, and an
enhancement factor of ∂ψ/∂∆Ω|0 = −0.5.
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Figure 5. Enhanced (solid) and non-enhanced (dashed) sensor response curves. The average beat
frequency (left axis, red) shows Equation (33) plotted as function of the applied mode-splitting.
The result of using the enhancement factor of ∂ψ/∂∆Ω|0 = −0.5 acts to increase the sensitivity
response, S (observed as the slope of the average beat frequency curve), without causing the noise to
diverge as characterized by the beat signal bandwidth, Equation (32) (right axis, blue). 150 round-
trips were used in these calculations, without coupling, and gain parameters of α0 = 1, γ = 0.05,
and Ws = 1.

Not only does this enhancement technique maintain its viability when considering
the effect of excess noise, but the dead band is eliminated entirely. This is in contrast to
the EP enhancement where the noise can be seen to diverge near the dead band edge. The
added instability created by operating the sensor near its dead band edge washes out any
perceived sensitivity enhancement, which has been shown both experimentally [14] and
theoretically both in this paper and in [13,16].

6. Practical Implementation of the Enhancement

It is implied in the previous section that the dispersion enhancement applies to each
mode of the frequency comb. Because the teeth of a frequency comb are equally spaced,
it is sufficient to lock the modes of a laser to a resonant structure with much larger mode
spacing. As demonstrated experimentally in [62], when an etalon (uncoated fused silica
plate of 15 mm thickness) is inserted in a mode-locked laser cavity, it pins the comb teeth to
the resonant modes of that Fabry–Perot. In addition, as a result of the etalon acquiring the
finesse of the laser, its transmission and dispersion are narrow compared with the mode
spacing of the laser. Because the dispersion is positive, Equation (37) implies a reduction of
S . In order to achieve negative dispersion, the Fabry–Perot has to be used in reflection,
i.e., as a Gires–Tournois end mirror. With an intracavity Fabry-Perot, the frequency comb
will lock to the transmission resonances automatically because this is a configuration
of minimum losses [62]. This is not the case when a Gires–Tournois is implemented,
where some stabilization mechanism has to be used to force the modes to coincide. A
preliminary demonstration of enhancement shown in Figure 6 was achieved by using an
intracavity etalon in transmission to force the modes to coincide, and a Gires–Tournois
end mirror of the same thickness and high finesse for enhancement [35]. In the case of a
linear cavity, the Gires–Tournois can simply be at an end mirror. In the case of a ring cavity,
a Gires–Tournois designed for normal incidence can be the end mirror of a tail [63] as in
Figure 6a. The non-enhanced response is compared to the response of the ring cavity with
the Fabry–Perot and Gires–Tournois combination in Figure 6b.
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Figure 6. (a) Ring cavity with tail: G—gain medium; A—saturable absorber; P—polarizer; FP—
uncoated etalon, 15 mm thickness; GT—Gires–Tournois, 15 mm thickness. (b) Comparison of the
beat note measured without FP and GT, with the beat note response with FP and GT.

7. Conclusions

Most phase measurements are traditionally performed by passive interferometry
where the relative phase of a reference and a sample beam is determined by the amplitude
of the sum of the two fields. The laser gyroscope however is an active interferometer, where
the Sagnac phase shift is measured as a beat frequency. By using mode-locked lasers in
which two pulses circulate, it is shown that active interferometry can be extended to most
phase measurement, yielding a beat frequency equal to the phase shift to be measured
divided by the laser round-trip time. We define the slope sensitivity of these active sensors
as the derivative of the beat frequency with respect to the imposed phase shift (the quantity
to be measured). It is shown that these lasers with two intracavity beams can be modeled as
non-Hermitian quantum systems. As such, they exhibit some specific location in parameter
space, called exceptional points, where the slope sensitivity. We show that this enhancement
is generally at the expense of increased noise, such that the net signal to noise is decreased.
This unwanted property is generally associated with an intracavity coupling between the
two beams circulating in the cavity. In some cases—such as a dual pulse optical parametric
oscillator pumped by a mode-locked laser—this coupling is completely eliminated. These
two-pulse lasers are modeled in the time and frequency domain. It is shown that the beat
note frequency response can be enhanced by introducing resonant intracavity dispersion.
Removing the coupling between the two electric fields to be interfered by using non
interacting ultrashort pulses recovers the boost in enhancement by maintaining mode
orthogonality. The frequency simulation demonstrates the enhancement with a net increase
of signal to noise. Preliminary experimental evidence shows promise for future studies
to fully realize the enhancement by implementing a Gires–Tournois interferometer end
mirror into IPI lasers.
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Abbreviations
The following abbreviations are used in this manuscript:

Q-factor Quality Factor
cw Continuous Wave
EP Exceptional Point
IPI Intracavity Phase Interferometry
Gyro Gyroscope
CEO Carrier-envelope-offset

Appendix A. Analytic Solution to Conservative Coupling Eigenmodes

The round-trip coupled-mode system of equations for a two-level system with conser-
vative coupling is given by,

∂

∂x

(
Ẽ1
Ẽ2

)
=

[
−i∆ϕ/2 κ
−κ∗ i∆ϕ/2

](
Ẽ1
Ẽ2

)
. (A1)

The Eigenvalues are found by taking the determinant of the Eigenvalue matrix and
solving,

α1 − i∆ϕ/2 + iλ κ
−κ∗ α2 + i∆ϕ/2 + iλ

= 0, (A2)

which leads to the Eigenvalues:

λ± = i
α1 + α2

2
± χ

2
, (A3)

where,

χ =

√
4|κ|2 − [(α1 − α2)− i∆ϕ]2. (A4)

The final solutions are a linear combination of the Eigenvalues and eigenvectors:

Ẽ1 = A1ε1
+e−iλ+x + A2ε1

−e−iλ−x

Ẽ2 = A1ε2
+e−iλ+x + A2ε2

−e−iλ−x,
(A5)

where the Eigenvalues λ± are given by Equation (A3). The eigenvectors are calculated to
be,

|ε±〉 =
[

ε1
±

ε2
±

]
=

[
1

α2−α1+i∆ϕ±iχ
2κ

]
, (A6)

and the amplitudes, based on the intial conditions E1,2(0), are given by,

A2 =
i

2χ
[2κE2(0)− (α2 − α1 + i∆ϕ + iχ)E1(0)]

A1 = E1(0)− A2.
(A7)
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The gain difference Exceptional Point occurs when the gain difference offsets the
conservative coupling such that (α1 − α2 − i∆ϕ)2 = 4|κ|2. This can be observed by setting
α1 = k, α2 = −k and E1,2(0) = 1. The equations then reduce to,

λ± = ±χ

2
,

χ =
√
−i2∆ϕκ − ∆ϕ2,

A2 = −∆ϕ + χ

2χ
,

A1 = 1− A2,

ε2
± =

−2κ + i∆ϕ± iχ
2κ

.

Since the Exceptional Point occurs at ∆ϕ = 0, it can be assumed that ∆ϕ is small, such
that,

λ± = ±χ

2
= ±1

2

√
−2iκ∆ϕ− ∆ϕ2

≈ ±
√

κ∆ϕ

2

√
−i = ±1

2

√
κ∆ϕ(1− i).

(A8)

Plugging this into Equation (A5) leads to,

Ẽ1 = A1ε1
+eix
√

κ∆ϕ/2−x
√

κ∆ϕ/2 + A2ε1
−eix
√

κ∆ϕ/2+x
√

κ∆ϕ/2

Ẽ2 = A1ε2
+eix
√

κ∆ϕ/2−x
√

κ∆ϕ/2 + A2ε2
−eix
√

κ∆ϕ/2+x
√

κ∆ϕ/2.
(A9)

The saturable gain in the lasing cavity will act such that gain and decay terms are
eliminated, leaving,

Ẽ1 =
(

A1ε1
+ + A2ε1

−

)
eix
√

κ∆ϕ/2

Ẽ2 =
(

A1ε2
+ + A2ε2

−

)
eix
√

κ∆ϕ/2.
(A10)

This shows explicitly that under the circumstances of operating near this Excep-
tional Point, the two counterpropagating electric fields oscillate at the same frequency of√

κ∆ϕ/(4πτp), where the denominator comes from the fact that x is a round-trip index.
While no beat frequency can be extracted from this system, the absolute frequency of each
of the fields still corresponds to the applied perturbation, ∆ϕ. Thus, there are ways that this
could be used as a detector as described in [17]. However, because the modes by definition
are non-orthogonal in the area surrounding this Exceptional Point, the issue of added noise
remains. Another point of concern is that a lasing cavity requires a saturable gain which
means that maintaining the two relationships, (α1 − α2)

2 = 4|κ|2, and α1 + α2 = 0, that are
required to place the system at the Exceptional Point becomes a challenge. Forcing the gain
terms to be constants of α1 = κ = −α2 results in the real electric fields tending to positive
and negative infinity. This is also the case when one chooses the saturable terms,

α± =
α0

1 + Wi/Ws
± κ. (A11)

The only way to maintain steady-state lasing seems to be to choose a saturable gain
term in one resonator and a constant loss of κ in the other,

α1 =
α0

1 + Wi/Ws
(A12)

α2 = −κ. (A13)
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However, as ∆ϕ is increased, the energy is unequally focused into the first resonator
such that α1 decreases. This means, then, that the only time that the EP relationship is
maintained is at ∆ϕ = 0.
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