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Abstract: Human activity recognition without equipment plays a vital role in smart home appli-
cations, freeing humans from the shackles of wearable devices. In this paper, by using the channel
state information (CSI) of the WiFi signal, semi-supervised transfer learning with dynamic associate
domain adaptation is proposed for human activity recognition. In order to improve the CSI quality
and denoising of CSI, we carried out missing packet filling, burst noise removal, background esti-
mation, feature extraction, feature enhancement, and data augmentation in the data pre-processing
stage. This paper considers the problem of environment-independent human activity recognition,
also known as domain adaptation. The pre-trained model is trained from the source domain by
collecting a complete labeled dataset of all of the CSI of human activity patterns. Then, the pre-
trained model is transferred to the target environment through the semi-supervised transfer learning
stage. Therefore, when humans move to different target domains, a partial labeled dataset of the
target domain is required for fine-tuning. In this paper, we propose a dynamic associate domain
adaptation called DADA. By modifying the existing associate domain adaptation algorithm, the
target domain can provide a dynamic ratio of labeled dataset/unlabeled dataset, while the existing
associate domain adaptation algorithm only allows target domains with the unlabeled dataset. The
advantage of DADA is that it provides a dynamic strategy to eliminate different effects on different
environments. In addition, we further designed an attention-based DenseNet model, or AD, as our
training network, which is modified by an existing DenseNet by adding the attention function. The
solution we proposed was simplified to DADA-AD throughout the paper. The experimental results
show that for domain adaptation in different domains, the accuracy of human activity recognition
of the DADA-AD scheme is 97.4%. It also shows that DADA-AD has advantages over existing
semi-supervised learning schemes.

Keywords: human activity recognition; channel state information (CSI); semi-supervised learning;
domain adaptation; attention

1. Introduction

Environmental sensors are widely deployed everywhere in our daily environment,
with the environmental sensors including temperature, humidity, light, ultraviolet (UV)
index, barometric pressure, noise, and acceleration with wireless communication function-
ality in an ultra-small footprint. With the environmental sensor data, it records our daily
activities through human activity recognition (HAR) [1]. The research significance and
practical value of HAR have attracted interest recently, so a large number of research results
on HAR have been the focus of recent attention. The existing HAR systems usually use
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cameras, wearable devices, and sensors [2]. It is noticeable that vision-based and sensor-
based fall detection had already been investigated in the literature. However, HAR using
cameras had raised concerns about privacy violations and the limited coverage. In addition,
wearable devices for HAR are not suitable for long-term monitoring because they are not
easily accepted by the elderly, and their accuracy is often limited by environmental factors.
The sensing device has a high reliability but cannot detect stationary events. However, all
of the aforementioned methods require a large amount of hardware equipment with the
limitation of the power lifetime to limit its universality. Consequently, it is very important
and valuable to investigate the device-free HAR system.

As mobile smart devices and wireless networks affect all aspects of human production
and life, wireless communication services (WCS) have gradually become an indispensable
part of people’s lives. With the development of technology, WCS are no longer limited
to providing communication services. Many existing studies have shown that WCS can
be used in other fields, such as positioning, identification, and detection. Compared with
other communication technologies, such as mmWave [3] and Bluetooth [4], the wavelength
is shorter and the coverage is poor. With the proliferation of WiFi infrastructure, WiFi
signals have become ubiquitous, especially in indoor scenarios. Due to the unguided
nature of WiFi signal propagation, WiFi signals propagate freely in the atmosphere and
may be reflected by walls or other objects. The multipath effect refers to the propagation of
electromagnetic waves through different paths, with each component field arriving at the
receiving end at different times and superimposing each other according to their respective
phases to produce interference, distortion, or erroneous changes to the original signal.

Because human body interference changes the signal path, thereby affecting the trans-
mission channel, a new human sensing and recognition technique can be initialized based
on this feature. As a result, WiFi-based HAR has made great strides, and many efforts have
been devoted to developing practical applications, for example, localization [5,6], motion
prediction [7–9], fall prediction detection [10,11], etc. In a WiFi system, the received signal
strength indicator (RSSI) only reflects the total amplitude of a multipath superposition,
but CSI can show different subcarriers in orthogonal frequency division multiplexing.
CSI can measure the frequency response of multiple subcarriers simultaneously from one
data packet instead of superimposing all subcarriers. CSI illustrates the overall amplitude
response, thereby more finely depicting the state of the channel. In addition, CSI extends
the single-value RSSI to the frequency domain and adds phase information, which provides
richer and fine-grained channel state information for wireless sensing in the frequency
domain. However, there are still many challenges for using CSI. For instance, due to
the different superposition of a multipath, the received signal of the same activity and
the influence on the wireless channel are significantly different at different locations. In
other words, activity recognition is relied on to find the location environment. In practical
applications, the most urgent need is environment-independent recognition, which means
that activities in any environment can be recognized. Assuming that smart devices for HAR
can only be controlled in a fixed environment, there are huge obstacles in the promotion of
technology applications.

Sigg and Orphomma et al. [7,8] used the change in RSSI signal to perform HAR. If
the environment is complicated, the overall amplitude response superimposed by all of
the subcarriers cannot achieve good sensing accuracy. Zhang et al. [9] used the change
in CSI signal combined with a convolutional neural network-support vector machine
(CNN-SVM) model for HAR, which achieves better results than that of only using RSSI
and CSI signals. The Wifall system proposed by Wu et al. [10,11] uses the special diversity
of CSI to detect human falls in indoor environments. The first version of Wifall [11] uses
the subcarriers fusion method to reduce the amount of data. The modified version of
Wifall [10] additionally considers the frequency as the weight index of the subcarriers
fusion method. The FallSense [11] proposed by Huang performs the dynamic template
matching (DTM) algorithm for Wifall [10,11]. These mentioned results rely on the complex
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classifiers such as SVM to produce the high computational complexity. All of these results
point out that machine learning is a feasible solution for HAR.

CSI-based HAR can express more fine-grained information than RSSI-based HAR,
but the impact of the environment reduces the recognition accuracy. Many studies are
devoted to improve the recognition performance through signal processing technology.
Gu et al. [12] proposed the Butterworth filter to filter out unreasonable high-frequency
signals. Zhong et al. [13] used discrete wavelet transform (DWT) to denoise CSI raw
data. The denoising method used for Li et al. [14] is the weighted moving average
(WMA) method. Recently, deep learning (DL) has made utilized. Shi et al. [15] applied
DL to extract features from CSI signals to improve the accuracy of action recognition.
Yousef et al. [16] used a recurrent neural network (RNN) to extract features of the CSI
signal, so that the representative features of the CSI signal were extracted. These above
methods are affected by the CSI phase shift which is caused by the receiving time offset,
called the carrier frequency offset (CFO) [17], by the distance between the transmitting
antenna and the receiving antenna. It is noted that a slight error in the CSI phase may
cause a significant reduction in the recognition rate. To estimate and compensate for the
timing offset, some interesting results have been proposed. Wang et al. [18] evaluated
the carrier frequency offset (CFO) between the transmitted signal and the received signal
by considering the channel frequency response (CFR) power formula, and estimated the
offset through the number of static and dynamic paths. After solving the time offset
and signal noise, the uncertainty problem caused by environmental noise existed. In
classification learning, the quality of the model has two indicators; the training sample and
the new test sample strictly satisfy the independent and identical distribution and enough
training samples to avoid underfitting. However, in practical applications, WiFi-based
human activity recognition is difficult to meet these indicators. Zhenguo Shi et al. [19]
proposed an environment-independent HAR using deep learning and enhanced CSI, called
the HAR-MN-EF scheme. The HAR-MN-EF scheme is trained on a limited number of
datasets from source environments and can directly recognized different activities in a new
environment without retraining. Unfortunately, the HAR-MN-EF scheme does not provide
better recognition accuracy, but the complexity of retraining is lower.

To improve the CSI quality and denoising of CSI of our work, we carried out burst
noise removal, missing packet filling, background noise removal, and feature enhancement.
In this paper, we further consider the problem of domain adaptation. The pre-trained
model is trained from the source domain by a complete labeled dataset of CSI of human
activity patterns. To significantly improve the recognition accuracy, efforts are made to
slightly increase the retraining complexity by performing the fine-tune operation by adding
the dynamic number of CSI with labeled data in the new environment. The pre-trained
model is transferred to the target environment through the transfer learning stage. When
humans move to different target domains, a partial labeled dataset of the target domain is
allowed for the fine-tuning operation, depending on the target environment status.

Therefore, we specially design a dynamic associate domain adaptation, called DADA.
By modifying the existing associate domain adaptation algorithm, the target domain can
provide a dynamic ratio of the labeled dataset and the unlabeled dataset, while the existing
associate domain adaptation algorithm only functions with the target domain without
the labeled dataset. The advantage is that DADA provides a new strategy to dynamically
eliminate different effects on different environments. The design of the dynamic capability
of DADA is that it may allow the target domain to keep all of the labeled dataset or all of
the unlabeled dataset, depending on the new target environment status.

In addition, we further designed an attention-based DenseNet model, or AD, as our
training network, which modifies the existing DenseNet by adding the attention func-
tion. The solution we proposed was simplified to DADA-AD throughout the paper. The
experimental results show that for domain adaptation in different domains, the accu-
racy of human activity recognition of the DADA-AD scheme is 97.4%. It also shows that
DADA-AD has advantages over existing semi-supervised learning schemes.
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As shown in Figure 1, the DADA-AD scheme is illustrated. Specifically, the main
contributions of this work are as follows:

• An existing semi-learning learning work, called an associate domain adaption (ADA)
scheme, is developed in [20], while the target domain is limited to be unlabeled dataset.
The data of the source domain and the target domain are mapped in the same space
through the similarity of relevance, under all data in the target domain that are unlabeled.
To further provide a dynamically adjusted ratio of labeled and unlabeled datasets in
the target domain, we modified the existing ADA algorithm to dynamic associative
domain adaptation (DADA). We design a new semi-supervised transfer learning with
dynamic associate domain adaption (DADA) capability for HAR. An improvement of
this work is our proposed DADA scheme with the capability of a dynamically adjusted
ratio, which is dynamically dependent on the target environment state. To improve
the recognition accuracy, we may increase the dynamically adjusted ratio if the target
domain encounters a new undesirable environment.

• The traditional ADA [20] has the limitation of data balance for the target domain, To
overcome the problem of data imbalance, our proposed DADA also overcomes the
problem of data imbalance. The data imbalance issue allows for the data imbalance
to occur in our target environment. Our practical experimental results show that the
average accuracy of DADA is 4.17% higher than that of ADA if there is data imbalance
problem, but only 1.08% if there is no data imbalance problem.

• To increase the recognition accuracy, an attention-based DenseNet model (AD) is de-
signed as our new training network. This modifies the existing DenseNet model and
ECA-NeT (efficient channel attention-net) model. To reduce the data size, we adopted
the bottleneck structure when ending denseblock and entering the next layer. It halves
the data size and compresses the number of features. These operations may lose a lot of
hidden information, so we adopt the ECA structure to retain important information. To
avoid the loss of hidden information, we incorporate the ECA structure to strengthen the
important channels of previous layers, and bring it to the next denseblock of DenseNet.
Our experimental results show that the accuracy of AD as our training network is
increased by 4.13%, compared to the existing HAR-MN-EF scheme [19].

Domain A Domain BModel
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Environment noise in A

Tx
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Rx3

Rx2
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Pretrain Model
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Figure 1. Our proposed DADA-AD scheme.
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The rest of the paper is organized as follows. Section 2 describes the research back-
ground, including the related works and motivation. Section 3 introduces the system
model, problem expression, and basic ideas of this paper. Section 4 describes the proposed
scheme. Section 5 discusses the performance results. Finally, Section 6 concludes this paper.

2. Background

This section firstly describes the related works in Section 2.1 and discusses the motiva-
tion of the research in Section 2.2.

2.1. Related Works

In this section, the recent research results on signal processing, including the denoising
of a WiFi signal, and recognition technologies for WiFi-based HAR are introduced.

Noise removal is a key and important operation of HAR’s WiFi signal pre-processing.
If redundant CSI is discarded, the same action characteristics can be retained. Gu et al. [12]
proposed the Butterworth filter to attenuate unreasonable high-frequency signals using
a fixed angular frequency and cut-off frequency. The bandwidth of the environmental
instability signal is not fixed in a certain range, so this method may possibly simultane-
ously destroy the useful information, so cannot effectively perform the noise filtration.
Zhong et al. [13] proposed discrete wavelet transform (DWT) to denoise CSI raw data, and
use wavelet transform to denoise. When the signal and noise are decomposed by wavelet
at different scales, the transfer characteristics shown are completely opposite. After wavelet
decomposition, most of the wavelet coefficients with larger amplitude are useful signals,
while the coefficients with smaller amplitudes are generally noise. The wavelet transform
coefficients of useful signals can be considered to be greater than the wavelet transform
coefficients of noise. When performing wavelet decomposition, parameter adjustment is a
difficult problem. Although approximate estimation can solve this problem, it is still too
complicated in terms of computational efficiency and parameter adjustment. It is observed
that Li et al. [14] used the weighted moving average (WMA) method to solve this problem
from a different perspective. The weighted moving average puts more weight on the most
recent data, while exponentially attenuating the past data. This is done by multiplying
the amplitude of each bar by a weighting factor, taking the calculated value as a fixed
environmental noise, and subtracting it from the original CSI value to obtain the amplitude
of the activity for calculation. Due to its unique calculation method, WMA reduces the
amount of calculation and highlights the features more than DWT.

WiFi CSI signal has a strong time dependence, which also leads to too much data
and too much information. How to extract useful features and use the simplified features
for effective identification is an important issue. To solve this problem, Zou et al. [21]
proposed DeepSense to design an autoencoder long-term recursive convolution network
(AE-LRCN), which extracts the inherent time dependence through the long short-term
memory (LSTM) module. Shi et al. [22] further proposed a CSI compensation and en-
hancement (CCE) method to compensate for the timing offset between the WiFi transmitter
and receiver, enhance activity-related signals, and multiply the signal matrix to eliminate
time information. Reduce the size of the signal input to the model, and the activity filter
(AF) to distinguish similar activities has less training time and higher recognition accuracy.
Li et al. [23] proposed a new solution by calculating the angle of arrival (ADoA) to elimi-
nate position and background information. The phase difference of the same subcarrier in
adjacent receiver antennas was calculated and measured from adjacent sample points. They
extracted the principal components of ADoA to reduce the data dimension and simplify
the training process.

When the environment changes, the background noise of the environment will change
the characteristics, resulting in poor recognition efficiency. All of the above-mentioned
research does not consider the environment change problem. Therefore, how to use as
few samples as possible to achieve environment-independent sensing to achieve high-
precision recognition is a crucial and quite critical issue. Shi et al. [19] proposed an
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environment-robust channel state information (CSI)-based HAR by leveraging the prop-
erties of a matching network (MatNet) and enhanced features, called HAR-MN-EF. This
result achieves successful cross-environment HAR, and the MatNet is adopted to process
features extracted by CSI-CE. MatNet allows to learn and extract inherent and transferable
functions, thereby transferring knowledge in different environments. Unfortunately, al-
though the knowledge of CSI information after feature extraction can be transferred, the
required accuracy cannot be met only by directly transferring the features. Ding et al. [24]
proposed a semi-supervised WiFi location-independent HAR, called WiLISensing. CNN
architecture is used to identify activities in locations that do not require training or have few
training samples through transfer learning methods by using a small number of sample
transfer datasets to train the fully connected layer behind the network. This greatly reduces
the need for training samples, but can improve recognition accuracy and convergence
speed. Han et al. [25] proposed a semi-supervised, fine-grained, deep-adapted network
gesture recognition scheme (DANGR), and GAN is used to expand the dataset. The key
idea is to adopt the domain adaptation based on the multi-core maximum mean difference
scheme. The mean embedding of the cross-domain abstract representation in the regen-
erated kernel Hilbert space is matched, and the deviation of the source domain and the
target domain is compared, and the possible deviation of the distribution of CSI in various
environments is reduced. Arshad et al. [26] also utilized transfer learning to develop a
framework (TL-HAR) that can accurately detect a variety of human activities and use
multiple-input multiple-output (MIMO) subcarrier variance to extract activity-based CSI.

2.2. Motivation

In order to be more practical, it is more important to support cross-environmental
device-less or device-free CSI-based HAR research. The device-less HAR task based on WiFi
CSI can provide people with high-quality, low-cost, and private human body monitoring
services. Although the signal processing and identification methods in HAR have been
already studied, there is room for efforts to solve the deviation of cross-environment
CSI-based HAR with high recognition accuracy and low training cost. In practice, the
relationship between CSI and the environment cannot be ignored because it may affect the
prediction results.

Shi et al. [19] use matching network (MatNet) one-time learning technology to learn
and extract inherent and transferable functions. MatNet uses one-shot learning technology
(one shot learning) to efficiently transfer the environment, but the high-efficiency transfer
makes the model’s recognition accuracy low; compared with DADA-AD using a small
amount of data for fine-tuning, the recognition accuracy of DADA-AD transfer will be
improved. Ding et al. [24] proposed WiLISensing, which uses supervised transfer learning
to improve the efficiency of extracting transferable features, freezes the feature extraction
layer, and learns from the label data brought into the target domain. They use label data to
improved the recognition accuracy of MatNet, but in the process of learning transferable
features, only the results of classification can be used to measure the result of learning
classification features. Compared with DADA-AD by calculating similarity, DADA-AD
can use a small number of the targets’ label data for transfer learning. Han et al. [25] used
the results of classification to measure learning, and used the multicore maximum mean
difference (MK-MMD) to measure the difference between domains, so as to provide a
standard for the fusion of domain differences, thereby accelerating the efficiency of transfer
learning. The need to calculate multiple kernel functions leads to poor model efficiency.
DADA-AD can more accurately measure the difference between the two domains, and use
the embedder to map, so that the time to calculate the similarity is linear. Therefore, this
paper proposes the dynamic associate domain adaptation learning using attention-based
DenseNet (DADA-AD) scheme to improve the generalization ability, maximize domain
confusion, and minimize classification loss for source and target domains, as shown in
Figure 2, combining the advantage of [19,24,25] to achieve the identification result that is
not affected by the environment.
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Target Feature Space

Source Feature Space

Minimize Classification Loss

Maximize Domain Confusion

Improve Generalization Ability

Figure 2. DADA-AD scheme improves generalization ability, maximize domain confusion, and minimize classification loss
for source and target domains.

3. Preliminaries

This section describes the system model, problem formulation, and basic idea in
Section 3.1, Section 3.2 and Section 3.3, respectively.

3.1. System Model

Figure 3 is our system architecture diagram of a semi-supervised transfer learning
with dynamic associate domain adaptation for HAR using WiFi signals, which includes
four modules; CSI data collection, raw data pre-treatment, data processing module, and
activity recognition models. In this paper, five human activity patterns are considered; there
are squat, sitting, stand, jump, and fall. The main design difficulty of HAR is multipath
distortion caused by signal interference. We briefly describes these modules.

In CSI collection module, we collect CSI raw data through two computers equipped
with Intel 5300 NIC as an interface by Intel IWL 5300 NIC tool [27]. MIMO communication
technology of Modern COTS WiFi equipment is utilized, which can be equipped with
multiple antennas for multiple inputs and multiple outputs, so we have L = Nr × Ns data
streams. The Intel IWL 5300 NIC tool [27] can extract CSI raw data from M subcarriers of
each pair of transceiver antennas, based on the IEEE 802.11n protocol, where M = 30.

The raw data pre-treatment module is responsible for the handling with the data
packet loss and sudden noise problem caused by the inconsistent transmission and recep-
tion power. The packet filter and noise filter operations are performed to recover from the
abnormal amplitudes and data packet missing problems. In the data processing module,
the activity features are captured and further perform the feature enhancement. All subcar-
riers of CSI data are used to calculate the correlation feature matrix, and the reduced data
dimensionality of correlation feature matrix will be helpful to make the recognition model
more robust.

In the activity recognition model we should consider the deviation of CSI distribution
caused by different environments. This problem will be serious if data labeling is more
difficult to obtain. The system structure is given in Figure 3, the CSI clean data is obtained
from CSI raw data after executing the CSI collection model, raw data pre-treatment model,
and data processing module. The CSI clean data is divided into source domain, denoted as
S, and target domain, denoted as T. For the labeled data of the source domain, S is used
to train the pre-training model. By transferring part of the knowledge learned from the
pre-training model, the labeled data and unlabeled data of target domains are associated to
bridge the difference between the two different environmental data.
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Figure 3. System structure of DA-DADAscheme.

3.2. Problem Formulation

We follow the similar notations defined in [19], let h(t) be magnitude of CSI vector at
t-th packet, which can be given by

h(t) = [h1,1(t), ..., h1,m(t), ..., hl,m(t), ..., hL,M(t)]T (1)

where h1,m(t) is the CSI information in the l-th wireless link for m-th subcarrier of t-th
packet, M is the total number of subcarriers in each wireless link; L is the total number of
wireless links, where L = Nr × Ns, Nr and Ns are the number of transmitter and receiver
antennas. T denotes the transpose operation. In this paper, the Intel IWL 5300 NIC tool [27]
is used to extract CSI information from M subcarriers of each pair of transceiver antennas,
based on the IEEE 802.11n protocol, where M = 30. After collecting CSI vectors from K
packets, the CSI matrix H can be expressed as:

H = [h(1), ..., h(t), ..., h(K)]. (2)

In order to improve the CSI quality and denoising of CSI, a new CSI matrix H̃ is
obtained by carried out burst noise removal, missing packet filling, background noise
removal, and feature enhancement operations on CSI matrix H = [h(1), ..., h(t), ..., h(K)]
in the data pre-processing stage, which will be described in detail in Section 4.1. In this
work, Ds and Dt represent the source domain and the target domain, H̃s and H̃t are further
denoted as the CSI matrix from the source domain and the target domain, respectively.
We consider a source domain, Ds = {H̃s

i , ys
i }(i=1,. . . ,ns)

, where H̃s
i is the i-th collected CSI

matrix H̃s
i from the source environment, and ys

i is the corresponding label of H̃s
i . The target

domain, Dt = {H̃t
i , yt

i}(i=1,. . . ,n) ∪ {H̃t
i }(i=n+1,. . . ,nt)

, ns and nt represent the total number

of Ds and Dt data, respectively, where H̃t
i is the i-th collected CSI matrix H̃t from the target

environment. It is observed that CSI matrix H̃t
i of the target environment has target label yt

i
where 1 ≤ i ≤ n. However, there are no target labels for all H̃t

i where n + 1 ≤ i ≤ nt. That
is, the target labels {yt

i}(i=n+1,. . . nt)
are not available for training.

It is noted that the source domain, Ds = {H̃s
i , ys

i }(i=1,. . . ,ns)
, and the target domain,

Dt = {H̃t
i , yt

i}(i=1,. . . ,n) ∪ {H̃t
i }(i=n+1,. . . ,nt)

, ns are associated with the same labeled space
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due to the same activity patterns that are kept in the source domain and any other target
domains.

Efforts will be made in this work to re-design the association between the source
domain and the target domain through the statistical similarity measures. Basically, the
source and the target domains have similar features, while it may reduce the prediction
error from the source domain to the target domain. The source and target domains come
from different distributions, and these influences are opposed to each other. This work is
divided into two parts; the pre-training stage and the fine-tuning stage.

In the first part, we formalized the objective function Lp in the pre-training stage
as follows:

arg×min Lp

Lp =
1
ns

ns

∑
i=1

H(ys
i , ps

i ) =
1

ns ×m

ns

∑
i=1

m

∑
j=1

ys
i,j × log(ps

i,j)

subject to

 ys
i,j , yl

i,j , ∀ i, j

0 ≤ ps
i,j, pl

i,j ≤ 1 , ∀ i, j

(3)

where Q(ys
i , ps

i ) is the cross-entropy used for the classification problem in the source
domain, ys

i is denoted as the i-th data belonging to the real category in the source domain,
and ps

i is denoted as the predicted probability in the source domain, ns represent the
number of training data of the source domain, m is defined as the number of classification
categories, ys

i,j is denoted as the i-th data belonging to the real category of the j-th category
in the source domain, and ps

i,j is denoted as the predicted probability; the purpose of Lp is
to minimize the classification error.

In the second part, we formalized the objective function L f in the fine-tuning stage
as follows:

arg×min L f

L f = (1− λ)Lc + λ×Lsim

subject to 0 ≤ λ ≤ 1

(4)

where L f is the combined objective function of both considering the Lc and Lsim, where
Lc is the objective function of classification, Lsim is the objective function of the similarity
problem, L f is the weight-sum of Lc and Lsim, as the total objective function, where λ
is the hyper-parameter of the hybrid objective function. The objective function Lsim is
used to measure the difference between two different distributions, which is expressed as
Wasserstein distance below,

Lsim =
√

min
Pst

EPst‖φ(Ds)− φ(Dt)‖2
2. (5)

The distribution Ps represents the distribution of Ds, the distribution Pt represents the
distribution of Dt,and Pst is the joint distribution of Pt and Pt, and Ps 6= Pt, φ represents
a mapping function, which maps data of different distributions to the same space. Lsim
represents is the joint distribution Pst. Find out the minimum expected value EPst by
mapping Ds and Dt in the same space through φ.

Lc is the objective function used for classification problems in the fine-tuning stage
and is given as follows:

Lc = max [
1

Ns

Ns

∑
i=1

H(ys
i , ps

i ),
1
Nl

Nl

∑
i=1

H(yl
i , pl

i)] (6)

H(ys
i , ps

i ) = −
1
m

m

∑
j=1

ys
i,j × log(p,

i,j) (7)
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H(yl
i , pl

i) = −
1
m

m

∑
j=1

yl
i,j × log(pl

i,j) (8)

subject to

 ys
i,j , yl

i,j , ∀ i, j

0 ≤ ps
i,j, pl

i,j ≤ 1 , ∀ i, j

where Q(ys
i , ps

i ) and Q(yt
i , pt

i) are cross-entropy function of source domain and target do-
main for classification, where Q(ys

i , ps
i ) is the cross-entropy used for classification problem

in the source domain, ys
i is denoted as the i-th data belonging to the real category in

the source domain, and ps
i is denoted as the predicted probability in the source domain,

Q(yt
i , pt

i) is the cross-entropy used for rhe classification problem in the target domain, yt
i

is denoted as the i-th data belonging to the real category in the target domain, and pt
i is

denoted as the predicted probability in the target domain, and ns and nt represent the
number of training data of the source and target domains. m is defined as the number of
classification categories, ys

i,j and yt
i,j are respectively denoted as the i-th data in Ds and Dt,

the data belonging to the real category of the j-th category. ps
i,j and pt

i,j are expressed as the
predicted probabilities that belong to the predict category of the j-th category of Ds and Dt,
respectively. Since the purpose of the model is to bridge the two domains, Ds and Dt can
be regarded as the same distribution, and Lc is to reflect the worst state of the split and pro-
vide the model for adjustment, and the purpose of Lc is to minimize the classification error.

3.3. Basic Idea

The basic idea is to use the domain adaptation technique to transfer the common
features. Figure 4 shows that the process is divided into two parts. The first part is the
pre-training part. The data enhancement is adopted for the data in the source domain
to produce the pre-training model. The second part is to transfer the knowledge in the
pre-training to find out the features shared by the source domain and the target domain.
With t-SNE embedding technique, it is found that the shared features exists in the shallower
model. The knowledge of the shallower model is transferred so that the characteristics
of the two domains can be fitted. Figures 5 and 6 show the design differences. Figure 5
shows [25] using the MK-MMD technique for transfer learning; multiple kernels are used
to project the features on the kernel Hilbert space, and the distance between the average
embeddings of the two probability distributions is calculated. This distance is calculated
by the kernel tricks.

Figure 6a shows the semi-supervised associative domain adaptation (ADA) proposed
by [20], which mainly embeds features in the same space and uses associative algorithms to
map the features of the source domain to the target domain, is being mapped back from the
target domain, but it is impossible to measure whether the features of the mapped target
domain are evenly mapped, so the training model must ensure that the target domain is
evenly distributed. Figure 6b shows the dynamic associative domain adaptation (DADA)
proposed in this paper.
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4. A Semi-Supervised Transfer Learning with Dynamic Associate Domain Adaptation
for HAR

In this section, we propose a HAR algorithm based on semi-supervised dynamic asso-
ciate domain adaptation learning in WiFi networks to predict unlabeled activity recognition
with the cross-domain data. The flowchart of the proposed algorithm is given in Figure 7.
The algorithm is divided into four phases.

(1) Data collection and processing phase: This phase aims to collect CSI data by keeping
the environment reinforcement, and avoiding the hardware defects. The main work of
this phase is to discard redundant information, retain the characteristics of enhanced
activity, and reduce irrelevant information.

(2) Pre-training phase: This phase is to build an attention-based DenseNet (AD), as our
training network. In AD, DenseNet is adopted as backbone network and further add the
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ECA structure to retain the important training information. The activity classification is
pre-trained in this phase through feature reuse and attention mechanism for the transfer
training.

(3) Dynamic associate domain adaptation phase: This phase aims to project the features
of two different domains into the same space through DNN embedding by using
a dynamic associate domain adaptation algorithm (DADA). The dynamic associate
domain adaptation is to improve previous work, associate domain adaptation, to further
consider the data imbalance problem. In addition, our dynamic associate domain
adaptation can dynamically adjust the ratio of labeled dataset/unlabeled dataset.

(4) Associate knowledge fine-tuning phase: In this phase, the HAR through the image
has the characteristics of domain invariance, the weights of the shallow layers of the
source domain learned previously are unchanged and frozen as a common feature, and
the knowledge of the deep layers is transferred to new target domain for fine-tuning.

Figure 7. The flow chart of AD-DADA Scheme.

4.1. Data Collection and Processing Phase

The main task of Phase 1 is to collect and process WiFi CSI data. Modern COTS WiFi
equipment is with MIMO communication technology, which enables it to be equipped
with multiple antennas for multiple inputs and multiple outputs. About the WiFi CSI
data, this paper uses the image recognition method for human activity recognition; the
phase information of CSI is not useful of our processing work, and the phase offset
of CSI can be ignored. Amplitude intensity of CSI will be completed utilized in this
work. As defined in Section 3.2, after collecting CSI vectors from K packets, the CSI
matrix H can be expressed as, H = [h(1), . . . , h(i), . . . , h(K)], for 1 ≤ i ≤ K, and h(i) =
[h1,1(i), . . . , h1,k(i), . . . , hj,k(i), . . . , hL,M(i)]T , where 1 ≤ j ≤ L and 1 ≤ k ≤ M. Conse-
quently, CSI matrix H is performed in six steps, including missing packet filling, burst
noise removal, background estimation, feature extraction, feature enhancement, and data
augmentation operations, before the next phase. The details of the CSI data collection and
data pre-processing phase are described as follows:

S1. Missing packet filling: To solve the packet loss problem, a timer is set in RX, and the
timer starts after the packet is received. To maintain the continuity of the signal, the linear
interpolation is used to repair the lost packets. Assuming hj,k(i) is a lost packet of H =
[h(1), . . . , h(i), . . . , h(K)], for 1 ≤ i ≤ K, and h(i) = [h1,1(i), . . . , h1,k(i), . . . , hj,k(i), . . . ,

hL,M(i)]T , where 1 ≤ j ≤ L and 1 ≤ k ≤ M. The lost packet hj,k(i) can be repaired by a
simple linear interpolation function as:

hj,k(i) = (i− p)
hj,k(n)− hj,k(p)

n− p
+ hj,k(p) (9)

where hj,k(p) and hj,k(n) are represented as the previous packet and the next packet
of hj,k(i), respectively. The output matrix Hp f = [hp f (1), . . . , hp f (i), . . . , hp f (K)],where
1 ≤ i ≤ K, is obtained, where Hp f = liner_ interpolation(H).

S2. Burst noise removal: To perform the burst noise removal operation on Hp f matrix due
to the sudden noise caused by the environment and hardware equipment, we adopt
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the wavelet transform denoising [28] algorithm to Hp f matrix to obtain Hnr matrix
as follow:

Hnr = DWT(o, p, Hp f ) =
∫ ∞

−∞
2−

o
2 ψ(2−oi− p)hp f (i) di (10)

A six-level discrete wavelet transform is used to decompose, and symlet is used as
the wavelet base, and the denoised CSI packet sequence will be reconstructed through
inverse transform. The output matrix Hnr = [hnr(1), . . . , hnr(i), . . . , hnr(K)] is obtained
for 1 ≤ i ≤ K.

S3. Background estimation: There exists some useless background information of human
activities in matrix Hnr = [hnr(1), . . . , hnr(i), . . . , hnr(K)] for 1 ≤ i ≤ K, which are not
related to human activities. These useless feature may reduce the quality of the trained
model. We let hnr(i) be represented as hnr(i) = hbe(i) + h f e(i) for 1 ≤ i ≤ K. The
useless background information is represented by hbe(i), which is also denoted as
the static CSI vector at time i, h f e(i) represents as the dynamic CSI vectors, which
is represented as the useful features of the human motion at time i, where h f e(i) is
obtained by a number of activity-related features. The main work is to estimate the
dynamic CSI vector h f e(i), being generated by the human activities, so hbe(i) is initially
obtained for 1 ≤ i ≤ K by adopting the exponentially weighted moving average
(EWMA) algorithm [29] as follows:

hbe(i) = λhnr + (λ− 1)hbe(i− 1) (11)

where 1 ≤ i ≤ K, λ is the forgetting factor, where 0 ≤ λ ≤ 1. Each new estimated point
is recursively calculated from the previous observations and attenuated by a forgetting
factor. Consequently, the static CSI matrix Hbe = [hbe(1), . . . , hbe(i), . . . , hbe(K)], where
1 ≤ i ≤ K.

S4. If static CSI matrix Hbe = [hbe(1), . . . , hbe(i), . . . , hbe(K)], where 1 ≤ i ≤ K, is find-
ing, so the dynamic CSI matrix H f e is obtained by H f e = Hnr − Hbe, where H f e =
[h f e(1), . . . , h f e(i), . . . , h f e(K)].

S5. Feature enhancement: The matrix size of the dynamic CSI matrix H f e is L×M and a
width of 1 kHz×3 s. We adopt the similar feature enhancement algorithm [19] to obtain
the correlation matrix H̃, where H̃ = H f e × H f eT

, to enhance the correlation between
the signals on the subcarriers, which is more important than the time dimension
data. The correlation matrix between the signals on all subcarriers M eliminates the
time dimension information, leaving the characteristics of the correlation between the
subcarriers. The matrix size of H̃ is smaller than the original size of H f e, which is also
reduced in the complexity of the trained model.

H̃ = H f e × H f eT
=



h f e(1)× h f e(1) · · · h f e(1)× h f e(i) · · · h f e(1)× h f e(K)
...

. . .
...

. . .
...

h f e(i)× h f e(1) · · · h f e(i)× h f e(i) · · · h f e(i)× h f e(K)
...

. . .
...

. . .
...

h f e(K)× h f e(1) · · · h f e(K)× h f e(i) · · · h f e(K)× h f e(K)


(12)

S6. Data augmentation: To enhance the robustness of model training, the data augmenta-
tion technique is used to enlarge the training dataset to generate more training data. In
this work, the correlation matrix H̃ will be augmented by adopting the spin, mask, and
zoom methods.

In this work, we use one transmitting antenna (Nr = 1) and three receiving antennas
(Ns = 3) for five kinds of activity recognition; standing, sitting, squatting, jumping, and
falling. To more easily highlight the difference of each stages, a 2D diagram is converted
into a 3D diagram of all the CSI matrix in Figure 8, and the color of the 2D diagram is
restored to the amplitude. The sampling rate is 1 kHz and sampling is 3 s, the CSI matrix
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size is 90× 3000, where the Intel IWL 5300 NIC tool extracts CSI raw data from M = 30
subcarriers of three pairs of transceiver antennas (Nr = 1 and Ns = 3) in our experimental
environment. By using linear interpolation to repair the missing data packets, and also
using the wavelet transform to remove noise, Figure 8a is an example of the package filling
operation of matrix Hp f for the fall activity pattern. The burst noise removal operation is
performed by using the EWMA algorithm, and the output matrix Hnr is obtained. Figure 8b
is an example of denoising CSI matrix Hnr of the burst noise removal operation. Figure 8c
is an example of static CSI matrix Hbe of the background estimation operation. Figure 8d is
an example of dynamic CSI matrix H f e of the feature enhancement operation. Figure 8e is
an example of the correlation matrix H̃ of the feature enhancement operation. We observe
that Figure 8 shows the 3D diagram of the data matrix, where the x-axis is subcarriers,
y-axis is time, and z-axis is amplitude. We also provide a 2D diagram of the each data
matrix in Figure 9, value of (x, y) of the 2D diagram is its amplitude, where the x-axis is
subcarriers and the y-axis is time.

Figure 8. The 3-D diagrams of data pre-processing for the fall activity patterna, where (a) Hp f matrix of missing packet
filling operation, (b) denoising CSI matrix Hnr of burst noise removal operation, (c) static CSI matrix Hbe of background
estimation operation, (d) dynamic CSI matrix H f e of feature enhancement operation, and (e) the correlation matrix H̃ of
feature enhancement operation.
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Figure 9. The 2D diagrams of CSI data pre-processing.

4.2. Pre-Training Phase

The 2D correlation matrix, H̃, between the signals is obtained to reduce the data
complexity of the training. The correlation matrix H̃ will be used to pre-training the
knowledge for the source domain. Note that the pre-training dataset is the source domain,
Ds = {H̃s

i , ys
i }(i=1,. . . ,ns)

, where H̃s
i is the i-th collected CSI matrix H̃s

i from the source envi-

ronment, and ys
i is the corresponding label of H̃s

i . To increase the recognition accuracy, an
attention-based DenseNet (AD) model is designed as our new training network. This mod-
ified the existing DenseNet model and ECA-NeT (efficient channel attention-net) model.
To reduce the data size, we adopted the bottleneck structure, when ending denseblock
and entering the next layer. It halves the data size and compresses the number of features.
These operations may lose a lot of hidden information, so we adopt the ECA structure to
retain important information. To avoid the loss of hidden information, we incorporate ECA
structure to strengthen the important channels of previous layers, and bring it to the next
denseblock of DenseNet. The algorithm is given in Algorithm 1 and the corresponding
operations of Algorithm 1 are also given below.

S1. The basic training network of this work adopted a deep DenseNet model [30]. A deep
DenseNet is constructed by a number of denseblocks. The dense connection [30] is also
utilized, where each layer is repeatedly connected with all of the previous layers in the
channel dimension. Note that denseblock directly connects feature maps from different
layers. In denseblock, the output of all of the previous layers is connected as input, zD

o ,
for the next layer, and can be expressed as:

zD
o = σ(D0, ..., DL−1) (13)

where σD represents a non-linear transformation function, and DL−1 represents the
output of the L− 1 layer in the denseblock. Each convolutional layer produces dif-
ferent feature maps. All of the feature maps obtained each time are called a channel.
Assuming that each layer in the denseblock uses k convolution kernels, we set the
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growth rate to be k. Let the channel number of the feature map in the input layer be c0,
and the last output channel number is

CD = c0 + kD(L− 1) (14)

where denseblock utilizes the bottleneck architecture to reduce the calculation cost.
Specially, it is noted that each layer produces k output feature maps, and is the same as
that of the growth rate (=k) and convolution kernels (=k).

S2. To increase the recognition accuracy, an attention-based DenseNet (AD) model is de-
signed as our new training network. This is the modified existing DenseNet model
and ECA-NeT (efficient channel attention-net) model. This modified work is done as
follows. The feature is extracted through the dense connection mechanism. For con-
necting two adjacent denseblock, they are connected by using ECAT architecture [31],
while ECAT is a connection layer based on the channel attention mechanism ECA
architecture [31]. Because the denseblock input channel number is determined by the
number of channels of the denseblock in the upper layer, if the channel dimension
is not reduced through the connection layer, this leads to too many parameters and
inefficient calculation. We expect to add the channel attention mechanism to strengthen
the correlation between feature channels to improve training accuracy. The feature
map with the same size is maintained without destroying the features. The number of
channels is reduced and the size of the feature map is halved. Suppose there are CD

input channels, the number of output channels, CT , of a denseblock is expressed as:

CT = θCD (15)

where 0 < θ ≤ 1, θ is the compression factor. The output feature, zT
o , by the connection

layer is expressed as:
zT

o = σ(zD
o ) (16)

where σT represents the non-linear transformation, which is repeatedly used in the
transition layer [30], by adding the ECA network as a substructure, it is embedded in
the connection layer to learn feature weights to achieve better training results.
Through the global average pooling, we designed it to be flattened into 1× 1× CT .
Through the convolution of 1× 1× cs, the mutual relationship between each channel
and its cs neighboring channels is constructed, where cs is related to the channel
dimension CT . The larger the number of channels is, the stronger the relationship to
adjacent channels will be. The relationship can be expressed as CT = ψ(cs), where ψ is
the approximate exponential mapping function, and is expressed as ψ(cs) = 2(γ×cs−ω),
given the channel dimension CT , the adaptation channel size cs [31], i.e., the number
of neighboring channels, is expressed as:

cs =

∣∣∣∣∣ log2(C
T) + ω

γ

∣∣∣∣∣
odd

(17)

where ω and γ is set as 1 and 2. With ECAT, the channel and feature size is adjusted
and the channel dimension is also reduced, and the important channel weight can be
increased through the channel attention mechanism. The weight is expressed as:

wo = σcs
ECA(z

T
o ) (18)

where σcs
ECA is an adaptation non-linear transformation which is composed of global

average pooling and 1× 1× cs convolution. Consequently, the output weighted feature
zECAT

o is

zECAT
o = zT

o × wo (19)
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by multiplying weight wo and output zT
o of the connection layer. After repeating the

denseblock structures with the ECAT mechanism twice, the maxpooling operation MP
is applied to the feature to extract the maximum value.

mo = MP(zp
o ) (20)

where zp
o is the final output before reaching the flattening layer, where mo is the

flattened feature. Finally, mo pass through an f -layer fully connected layer to obtain
the final feature, denoted as d and used for the final activity prediction through a fully
connected layer by an activation function of softmax.

ps
i = Wo × d + bo (21)

where ps
i represents the predicted value of H̃s

i , where Wo and bo are trainable parameters.
S3. After obtaining the final activity prediction, the loss function is calculated through

cross-entropy based on the actual label ys
i and the activity prediction ps

i obtained in the
previous phase Lp.

arg×min Lp

Lp =
1
ns

ns

∑
i=1

H(ys
i , ps

i ) =
1

ns ×m

ns

∑
i=1

m

∑
j=1

ys
i,j × log(ps

i,j)

subject to

 ys
i,j , yl

i,j , ∀ i, j

0 ≤ ps
i,j, pl

i,j ≤ 1 , ∀ i, j

(22)

where ns is the number of training data in the source domain, m is the number of
classification categories, ys

i,j is expressed as the true category of the i-th data in Ds that
belongs to the j-th category, ps

i,j is expressed as the prediction of the i-th data in Ds

belonging to the j-th category.

The attention-based DenseNet (AD) model is shown in Figure 10a. Figure 10b shows
that the AD model uses the bottleneck architecture to reduce the calculation cost, while
maintaining the same size of feature map without destroying the features, and reduce the
channel number. For instance, we let σD use BN + ReLU + 1 × 1 convolution + BN + ReLU
+ 3 × 3 convolution, in addition to 1 × 1 convolution before 3 × 3 convolution. Figure 10c
is the detailed ECAT structure, while the channel number is reduced and the size of the
feature map is halved. Let σT be a non-linear transformation which is composed of 1 × 1 ×
CT convolution and 2 × 2 pooling.

The time complexity of the model structure is linear, and the time complexity of
calculating the cross-entropy is ns ×m, where ns is the number of source data, and m is
the number of categories, the number of categories is a fixed constant in this work, so the
overall time complexity in Algorithm 1 is O(ns).
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Figure 10. (a) The attention-based DenseNet (AD) model. (b) Illustration of denseblock with a 1× 1 convolution layer and
a 3× 3 convolution layer. (c) Illustration of transition block with a 1× 1 convolution layer, a 2× 2 pooling layer, and an
ECA structure.

Algorithm 1: The pre-training phase.

Input: The source domain label data Ds = {H̃s
i , ys

i }i=1...ns .
Output: Prediction probability ps

i .
while epoch do

- - - - - - - - - - - - - - - - - - - - - - - Step 1 - - - - - - - - - - - - - - - - - - -
zC = σC(H̃s)
zD

1 = σDenseblock(zC)
- - - - - - - - - - - - - - - - - - - - - - - Step 2 - - - - - - - - - - - - - - - - - - -
for o = 2; o ≤ n; o++ do

zT
o = σECAT(zD

(o−1))

zD
o = σDenseblock(zD

o )

M = GAP(zD)
zF

1 = FC(M)
for o = 2; o ≤ f ; o++ do

zF
o = FC(zF

(o−1))

- - - - - - - - - - - - - - - - - - - - - - - Step 3 - - - - - - - - - - - - - - - - - - -
The value of prediction ps

i = W × zF
o + b

The model uses the gradient densent to update weights W by Lp,where
Lp = Q(ys

i , ps
i ) = −

1
m ∑m

j=1 ys
i,j × log(ps

i,j)

for h = 1; o ≤ l; h++ do
Wh = W(h−1) − λ

∂Lp(W)
∂Wh−1

4.3. Dynamic Associate Domain Adaptation Phase

A novel semi-learning learning work, called an associate domain adaption (ADA)
scheme, is developed in [20]. The task of inferring class labels for an unlabeled target
domain of an ADA scheme based on the statistical properties of a labeled source domain.
The data of the source domain and the target domain are mapped in the same space
through the similarity of relevance. We modified the existing ADA algorithm to a dynamic
associative domain adaptation (DADA). One improvement of this work is our proposed
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DADA scheme can dynamically adjust the ratio of a labeled dataset and an unlabeled
dataset of the target domain, which is dynamically dependent on the target environment
status. It is noted that all of the target domain is unlabeled on the ADA scheme. In order
to improve accuracy, if the target domain encounters a new bad environment, we may
increase the ratio of the labeled dataset and the unlabeled dataset of the target domain.
The traditional ADA [20] has the limitation of a data balance for the target domain, To
overcome the problem of the data imbalance, DADA is proposed. The data imbalance issue
allows for the data imbalance to occur in our target environment.

Recall the notations, the source domain Ds = {H̃s
i , ys

i }(i=1,. . . ,ns)
, where H̃s

i is the i-th

collected CSI matrix H̃s
i from the source domain, and ys

i is the corresponding label of H̃s
i .

The target domain Dt = {H̃t
i , yt

i}(i=1,. . . ,n) ∪ {H̃t
i }(i=n+1,. . . ,nt)

and nt represent the total

number of Ds and Dt data, respectively, where H̃t
i is the i-th collected CSI matrix H̃t

i from
the target environment. It is observed that, CSI matrix H̃t

i of the target environment has
target label yt

i , where 1 ≤ i ≤ n. However, there are no target labels for all H̃t
i , where

n + 1 ≤ i ≤ nt. That is, the target labels {yt
i}(i=1,. . . ,n) are not available for training.

S1. The source domain and target domain are mapped into the same feature space. Let
Si = φ{H̃s

i }i=1,...,ns
, Uj = φ{H̃t

i }i=1,...,n , Lk = φ{H̃t
i }i=n+1,...,nt

, then dot product is
used to calculate the similarity of the source domain and the target domain. The
similarity of the domain features is calculated by a similarity matrix between the
source domain and the target domain, Fij = Si ×Uj and Gik = Si × Lk, where Fij is the
similarity matrix of the unlabeled data of the source domain and the target domain,
and Gik is the similarity matrix of the labeled data of the source domain and the target
domain.

S2. After obtaining the similarity matrix, Fij, a conversion probability, PSU
ij , of the source

domain followed by [20] is

PSU
ij = P(Uj|Si) = SMcolumns(F)ij =

(exp(Fij))

∑j′ exp(Fij′)
(23)

where PSU
ij is the conversion probability of the similarity matrix Fij by applying the

softmax function for the column of Fij, and the first row of PSU
ij is expressed as the

probability of similarity of data H̃s
i to all unlabeled data in the target domain. For

more consideration of DADA, we further calculate PSL
ik as follows. The i-th row of

PSL
ik is expressed as the similarity probability of the source domain data H̃s

i to that
of all labeled data of the target domain, where 1 ≤ i ≤ ns. Similarly, the conversion
probability from [20] of the target domain of Fij is,

PUS
ij = P(Si|Uj) = SMrows(F)ij =

(exp(Fij))

∑i′ exp(Fi′ j)
(24)

where PUS
ji is the conversion probability of the similarity matrix Fij by applied the

softmax function to the row of Fij, the first row of PUS
ji is expressed as the similarity

probability of the data H̃t
n+1 to all data of the source domain. For more consideration

of DADA, we also further calculate PLS
ik as follows. The i-th row of PLS

ik is expressed
as the similarity probability of the labeled data of the target domain H̃t

i to that of the
source domain, where n + 1 ≤ i ≤ nt. Following [20], the subsequent calculation of the
associated similarity for unlabeled data in the target domain can be expressed as:

PSUS = (PSU PUS)ij = ∑
n

PSU
in PUS

ni (25)
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where PSUS
ij [20] is the round-trip probability of similarity matrix Fij, starting from Si

and ending at Sj. Assuming that the label mapped back to Sj is unchanged relative to
Si, the label distribution of Si [20] is expressed as:

Yij = {
1/Si class(Si)=class(Sj)

0 else
(26)

The i-th column of Yij [20] can be expressed as the probability of similarity between H̃s
i

and other source domain data, and the cross-entropy with the round-trip probability
can be expressed as:

LSUS = H(Yij, PSUS) (27)

where LSUS is the difference degree function [20] quantified by cross-entropy, which is
mainly mapped to the unlabeled data of the target domain through the label data of the
source domain, and then is mapped back to the source domain and distributed with
the label data of the source domain, to compare the degree of difference to quantify
the distance between the two domains. However, this round-trip mapping cannot
directly reflect the difference degree, so we further modify the ADA by dynamically
utilizing a different ratio of labeled data of the target domain to map back to the source
domain to obtain the difference degree. Since both parties have labels, the new defined
cross-entropy calculation, LLS, is performed through the conversion probability of PLS

ik
and the distribution probability Jij of the label data of the target domain mapped to the
source domain,

LLS = H(Jij, PLS) (28)

The i-th row of Jik is the probability of similarity between H̃t
i and all labeled data of the

source domain, where 1 ≤ i ≤ n. Assuming that the label mapped to Si relative to Lk
is unchanged, the label distribution of Yij can be expressed as,

Jik =

{ 1
Lk

class(Lk)=class(Si)

0 else (29)

The divergence between the two domains is,

Ldiv = max[H(Yij, PSUS), H(Jij, PLS)] = max[Q(Yij, PSUS), Q(Jij, PLS)] (30)

where Ldiv is the loss of the divergence of the two domains. Two different mapping
functions are referenced to illustrate the distance degrees.

S3. The difference loss function of two domains is only to correlate the simple and easily
correlated data in the unlabeled target domain, a visit loss, followed by [20], is needed
and given.

Lvis = Q(T, Pvis)

subject to


Pvis

j = ∑
j′

PSU
ij′

Tj =
1
| Uj |

(31)

where PSU
ij is calculated by adding up the columns in line units, and to calculate the

cross-entropy with Tj. It is unreasonable that the calculation of Lvis under the data
distribution must be balanced [20]. This is because the number of unlabeled data is
unknown before training. To provide the data imbalance capability and release the
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limitation of Lvis, our DADA scheme replaced traditional Lvis [20] with a new loss
function of synchronization, denoted Lsyn, as follows:

Lsyn = Q(PUS
j , PSU

j )

subject to


PSU

j = ∑
j′

PSU
ij′

PUS
j = ∑

j′
SMcolumns(PSU

ij′
T
)

(32)

where PSU
j adds up the columns in line units and PUS

ij
T adds up the columns in line

units to make sure that both PSU
j and PUS

ij
T are still kept in the same distribution. This

work measured the correlation which can only avoid correlating the simple and easily
correlated data in the unlabeled target domain, under the data distribution of Uj, which
is imbalance. Finally, Lsim(Ds, Dt) is obtained by

Lsim(Ds, Du, Dl) = βLdis + (β− 1)Lsyn. (33)

where β is the hyper-parameter of the combined targets. Lsim is represented as the
combined loss, Ldiv and new constructed Lsyn.

As shown in Figure 11, the source domain Ds = {H̃s
i , ys

i }(i=1,. . . ,ns)
and the target

domain, Dt = {H̃t
i , yt

i}(i=1,. . . ,n) ∪ {H̃t
i }(i=n+1,. . . ,nt)

, are mapped into the same space
using a DNN embedder, while the similarity matrix is calculated to have the association
probability matrix process as shown in Figure 12, by obtaining PSU ,PUS, PSL and PLS. The
first row of PSU is the possibility of Hs

1 to all unlabeled data of the target domain. The first
row of PUS is the possibility of Ht

n+1 to all data of the source domain. The first row of PSL

is the possibility of Hs
1 to all labeled data of the target domain. The first row of PLS is the

possibility of Ht
1 to all data of the source domain. Figure 13 provides the calculating process

of the divergence loss by calculating the cross-entropy between the possibility matrix
and the true value matrix. The domain difference is calculated through the unlabeled
data of the target domain and the data of the source domain. The key improvement of
our DADA is that we additionally utilize the labeled data of the target domain for the
association calculation. The first row of matrix Y is the truth value of Hs

1. By calculating the
cross-entropy with the estimated value of PSUS, the similarity score is obtained between
data of the source domain and unlabeled data of the target domain. The last row of matrix
J is the truth value of Ht

nt . By calculating the cross-entropy with the estimated value of
PLS, the similarity score is also obtained. Figure 14 illustrates the calculating process of
the synchronize loss, and synchronize loss is improved by the assistance of the visit loss
proposed by ADA. The synchronize loss is calculated by the cross-entropy between PUS

j

and PSU
j . It is noted that our proposed DADA can overcome the data imbalance issue of

the target domain, while ADA is assumed that the data balance issue is required.
The time complexity of step 1 is ns × nt , and the time complexity of step 2 is ns + nt,

the time complexity of step 3 is ns, where ns is the number of source data, and nt is the
number of target data. Since the number of categories is a fixed value, the overall time
complexity of Algorithm 2 is O(ns × nt).
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Algorithm 2: The dynamic associate domain adaptation phase.

Input: The source domain label data Ds = {H̃s
i , ys

i }i=1...ns , the target domain label
data Dt = {H̃t

i , yt
i}i=1...n and the target domain unlabelled data

Dt = {H̃t
i }i=n+1...nt .

Output: Similarity loss Lsim.
- - - - - - - - - - - - - - - - - - - - - - - Step 1 - - - - - - - - - - - - - - - - - - - - - -
Mapped the data to same space by φ.
Si = φ({H̃s

i }i=1...ns), Uj = φ({H̃t
i }i=1...n), Lk = φ({H̃t

i }i=n+1...nt)
Calculate similarity matrix Fij and Gik by dot product.
Fij = Si ×Uj, Gik = Si × Lk
Calculate conversion probability matrix of the similarity matrix Fij and Gik by
softmax function SM.

PSU
ij = P(Uj|Si) = SMcolumns(F)ij =

exp(Fij)

Σj′ exp(Fij′ )

PUS
ji = P(Si|Uj) = SMrows(F)ij =

exp(Fij)

Σi′ exp(Fi′ j)

PSL
ik = P(Lk|Si) = SMcolumns(G)ik =

exp(Fik)
Σk′ exp(Fik′ )

PLS
ki = P(Lk|Uj) = SMrows(G)ik =

exp(Fik)
Σi′ exp(Fi′k)

- - - - - - - - - - - - - - - - - - - - - - - Step 2 - - - - - - - - - - - - - - - - - - - - - -
Calculate LSUS by conversion probability,PSUS is the round-trip probability and
the label distribution Yij.

PSUS = (PSU PUS)ij = ΣnPSU
in PUS

ni

Yij = {
1
Si

class(Si)=class(Sj)

0 else
LSUS = Q(Yij, PSUS) Calculate LLS by conversion probability, PLS is the
conversion probability and the label distribution JiK.

Jik = {
1

Lk
class(Lk)=class(Si)

0 else
LLS = H(Jij, PLS)
- - - - - - - - - - - - - - - - - - - - - - - Step 3 - - - - - - - - - - - - - - - - - - - - - -
Combine LSUS and LLS as divergence loss Ldiv.
Ldiv = max[LSUS,LLS]
Calculate synchronize loss Lsyn.
Lsyn = H(PUS

j , PSU
j ) PSU

j = Σj′PSU
ij′

PUS
j = Σj′PUS

ij′
T

Lsyn = Q(PUS
j , PSU

j )

Combine Ldiv and Lsyn as Lsim.
Lsim = βLdiv + (β− 1)Lsyn

4.4. Associate Knowledge Fine-Tuning Phase

In the last phase, the learned features are transferred through the HAR of the image
with domain-invariant characteristics, and the shallow weights of the source domain
learned through the pre-training phase are frozen as common features, and knowledge
transfer is performed on the deep layer of the model. The combined loss Lsim of the
dynamic associate domain adaptation phase is used to fit the feature distributions of the
two domains as follows.
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Figure 12. The association between source and target domains.
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Figure 14. The process of synchronize loss.

S1. The labeled data of the source domain and both of the labeled and unlabeled data of
the target domain are trained simultaneously. To preserve the features learned in the
pre-training phase, the stable layers are frozen, and the output, before the flattening
layer, is expressed as zP

o . The maximum pooling operation MP is applied to the feature
to extract the maximum near-row flattening. This operation is expressed as:

mo = MP(zp
o ) (34)

where mo is the set of data features from the source domain Ds and domain domain Dt,
and is used as a flattened feature, and mo passes through the k-layer fully connected
layer to calculate the similarity of the k-layer feature Lsim, given as:

l= f1

∑
fk

Lsim(Dl
s, Dl

t) (35)
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where l is the current number of layers. The similarity values of the k-layer features
are accumulated as part of the loss.

S2. The final feature is obtained by d = ds ∪ dt, which is used for the final activity
prediction through the fully connected layer with the activation function of softmax,
where ps

i = Wo× ds + bo, pt
i = Wo× dt + bo, where Wo and bo are trainable parameters,

and ps
i is the predicted value of H̃s

i , and pt
i is the predicted value of H̃t

i . Finally, the
total loss can be represented as:

arg×min L f

L f = λLc + (1− λ)
fk

∑
l= f1

Lsim(Dl
s, Dl

t)

= λ×max

[
1
ns

ns

∑
i=1

Q(ys
i , ps

i ),
1
n

n

∑
i=1

Q(yt
i , pt

i)

]
+ (1− λ)

fk

∑
l= f1

Lsim(Dl
s, Dl

t)

(36)

where Q
(
ys

i , ps
i
)

and Q
(
yt

i , pt
i
)

are used to solve the classification of the source domain
and the target domain, respectively. Note that ns and n are the numbers of labeled
data of the source domain and the target domain, respectively, m is the number of
classification categories, ys

i,j and yt
i,j are denoted as the i-th labeled data in Ds and

Dt, respectively, and the data should belong to j-th category, and ps
i,j and pt

i,j are

the predicted probabilities of Ds and Dt, respectively. Let ∑
fk
l= f1
Lsim

(
Dl

s, Dl
t

)
be the

similarity between two domains of the fully connected layer. The final goal is to
minimize L f , which L f is the combined function of Lsim and Lc, where λ is the
hyper-parameter of the hybrid objective function, which 0 ≤ λ ≤ 1.

As shown in Figure 15, the weights before the flatten layer are frozen and the similarity
loss with all the data of both domains are calculated. The backpropagation operation is
done to update the weights of the fully connected layer. For instance, as shown in Figure 15,

∑
f3
l= f1
Lsim

(
Dl

s, Dl
t

)
has similarity loss under max

[
1
ns

∑ns
i=1 Q

(
ys

i , ps
i
)
, 1

n ∑n
i=1 Q

(
yt

i , pt
i
)]

,
where f3 denotes an example of three fully connected layers in our work.

The time complexity of step 1 is ns × nt , and the time complexity of step 2 is ns + nt,
where ns and nt are the numbers of data of the source and target domains. The the number
of categories is a fixed value, and the overall time complexity in Algorithm 3 is O(ns × nt).
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Figure 15. Example of the associate knowledge fine-tuning phase.
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Algorithm 3: The associate knowledge fine-tuning phase.

Input: The source domain label data Ds = {H̃s
i , ys

i }i=1...ns , the target domain label
data Dt = {H̃t

i , yt
i}i=1...n and the target domain unlabelled data

Dt = {H̃t
i }i=n+1...nt .

Output: Prediction probability ps
i and pt

i .
while epoch do

- - - - - - - - - - - - - - - - - - - - - - - Step 1 - - - - - - - - - - - - - - - - - - -
zC = σC(H̃s)
zD

1 = σDenseblock(zC)
for o = 2; o ≤ n; o++ do

zT
o = σECAT(zD

(o−1))

zD
o = σDenseblock(zD

o )

M = GAP(zD)
zF

1 = FC(M)
for o = 2; o ≤ f ; o++ do

zF
o = FC(zF

(o−1))

The value of prediction ps
i = W × zF

o + b.
zC = σC(H̃t)
zD

1 = σDenseblock(zC)
for o = 2; o ≤ n; o++ do

zT
o = σECAT(zD

(o−1))

zD
o = σDenseblock(zD

o )

M = GAP(zD)
zF

1 = FC(M)
for o = 2; o ≤ f ; o++ do

zF
o = FC(zF

(o−1))

- - - - - - - - - - - - - - - - - - - - - - - Step 2 - - - - - - - - - - - - - - - - - - -
The value of prediction pt

i = W × zF
o + b.

The model uses the gradient densent to update weights W by L f ,where
L f = λLc + (1− λ)Lsim(Ds, Dt)

Lc = max[Q(ys
i , ps

i ), Q(yt
i , pt

i)]
for h = 1; o ≤ l; h++ do

Wh = W(h−1) − λ
∂L f (W)

∂Wh−1

5. Experimental Result

The experimental setup is described in Section 5.1 and the performance evaluation is
then discussed in Section 5.2.

5.1. Experimental Setup

The environment setup is described, mainly including the model parameter settings
for our experimental results. In our experimental, the AI GPU utilizes NVIDIA RTX 3080,
and the AI framework adopts pytorch version 1.4.0. The programming environment is
the Python 3.8 version under Windows 10. The WiFi CSI data acquisition framework
uses the Intel IWL 5300 NIC tool [27], two computers installed with Ubuntu 14.04.4
equipped with the Intel 5300 NIC are used as the interface programming environment. The
recognition activity patterns in our experimental are: jumping, squatting, sitting, standing,
and falling. The experimental parameters are given in Table 1, and the data size of each
data is 90× 3000 pixel. In the source domain, as shown in Figure 16a where the size of
the source environment is 5 m × 4 m, we have collected 5000 data, and is divided into a
4000 training set and a 1000 testing set. Two different sizes of target domains are shown,
denoted as target domain A with sizes of 10 m × 4 m, as shown in Figure 16b and target
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domain B with sizes of 3 m × 4 m, as illustrated in Figure 16c; each one had collected 2000
data, and is divided into a 1500 training set and a 500 testing set. We collected 5000 data
from the source domain and 4000 data from two target domains, which are obtained by
11 participants in the laboratory, with a height of about 160 to 180 cm and a weight of about
65 kg to 100 kg.

In the experiment, we use source, target (A), and target (B) to represent the source
domain, target domain A, and target domain B. The data augmented dataset is 1.5 times
than that of the original training set by adopting the rotate, map, and mask techniques. To
illustrate the effect of environment-independent human activity recognition, the source
domain is used to train the pre-trained model, and the pre-trained model is used to transfer
trained knowledge to target (A) and target (B). The experimental environment with three
pairs of WiFi transmitter and receivers is illustrated in Figure 17.

There are many recent works of environment-dependent HAR. In general, the distance
between the transmitter and receivers as it increases, the lower human activity recognition
accuracy will be. In our work, we mainly investigate the problem of environment-independent
HAR. To more easily understand the effects and our contribution of environment-independent
HAR, we fixed some parameters; the number of WiFi transmitters and receivers and distance
between the transmitter and receivers when moving to the new target domains, and only focus
on the parameters under consideration of the different ratios of labeled/unlabled datasets
and under the consideration of the data imbalance problem are as follows.

To investigate the effect of the data imbalance problem, we use various data number
ratios of the target domain, denoted as target data ratio and represented as number of
training data of squat pattern: number of training data of sitting pattern: number of training
data of stand pattern: number of training data of jump pattern: number of training data of
fall pattern. In our experiment, three kinds of target data ratio; (1:1:1:1:1), (1:1:0.5:1:0.5),
and (1:1:1:1:0.1), are considered. Specially, there is no data imbalance condition if target
data ratio (1:1:1:1:1) is assumed. The data imbalance issue is investigated if target data
ratios (1:1:0.5:1:0.5) and (1:1:1:1:0.1) are assumed.

To investigate the effect of the dynamic ADA issue, the ratios of labeled data to the
unlabeled data of the target domains, target (A), and target (B) are 0%, 25%, 50%, 70%, and
100%, where the ratio value = 0% represented all of the data of unlabeled target domains,
and the ratio value = 100% represented all of the data of labeled target domains. Therefore,
we will have 15 combination cases under various target data ratios and various ratios of
labeled data.

5.2. Performance Analysis

This subsection discussed the performance analysis, and the performance metrics of
our experiment to be observed are:

(1) Pre-training accuracy (PTA) is the recognition accuracy to predict the correct HAR
pattern from five kinds of HAR patterns in the same source environment, while the
pre-trained model is trained from a source domain.

(2) Recognition accuracy (RA) is the recognition accuracy to predict the correct HAR
pattern from five kinds of HAR patterns in the new target environment, under a
given pre-trained model that is trained from a source domain, which is quite different
from the source environment.

(3) Time cost (TC) is the total time cost, which is the sum of the processing time, pre-
training time, and fine-tuning time.

An efficient HAR scheme using WiFi CSI signals is achieved with a high PTA, high
RA, and low TC. Efforts will be made in this paper to improve the PTA, RA, and reduce
the TC.
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Table 1. Experiment parameter.

Environment Source Target (A) Target (B)

Sampling frequency 1000 Hz

Transmit antenna 1 antenna

Receiving antenna 3 antenna

Sampling time 3 s

Subcarriers per link 30 subcarriers

Source dataset 4000 1500

Target dataset 1500 500

Data expansion factor 1.5

Weight adjustment λ 0.5

Compression factor θ 0.5

Weight adjustment β 0.5

Learning rate 0.001

Drop out 0.5

Tx

Rx1

Rx3

Rx2

Tx

Rx1

Rx3

Rx2

Tx

Rx1

Rx3

Rx2

Target(A)

Target(B)

Source

(a)

(b)

(c)

Figure 16. Layout of three experimental areas; (a) the source domain with the size of 5 m × 4 m, (b) the target domain A
with big size of 10 m × 4 m, (c) the target domain B with the small size of 3 m × 4 m.
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Figure 17. The experimental environment with three pairs of WiFi transmitter and receivers.

5.2.1. Pre-Training Accuracy (PTA)

The experimental results of the pre-training accuracy (PTA) vs. epochs are shown in
Figure 18. The PTA is the ratio of the number of correct classification prediction to the total
number of predictions. In Figure 18a, the solid line represents the prediction with the data
augmentation, and the dashed line represents the prediction without data augmentation.
The data augmentation expanded the training data 1.5 times. In the pre-training result, the
red line represents as our attention-based DenseNet (AD) scheme, the blue line represents
the HAR-MN-EF scheme [19], the green line represents the DANDR scheme [25], and the
orange line represents the WiLlSensing scheme [24]. Figure 18a illustrates that the PTA
of AD is better than that of other schemes due to the advantage of the feature attention
and reuse strategy. The DANGR scheme does not use the feature enhancement, which
leads to poor learning efficiency. All of the other schemes adopt the feature enhancement,
but lead to the huge differences in PTA. In general, feature enhancement is helpful for
pre-training. The experimental result also shows that the PTA of pre-training schemes with
data augmentation and attention mechanisms is higher than that of pre-training schemes
without data augmentation and an attention mechanism.
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Figure 18. PTA vs. epoch for (a) data argumentation in different methods. (b) different number of antennas in different
methods.
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The PTA of pre-training with the different number of antennas vs. epoch is illustrated
in Figure 18b. The number of antennas affects PTA. The greater the number of antennas,
the higher PTA will be. With the same number of antennas, the PTA of our AD scheme is
better than that of other schemes. It supports that the feature extraction of our proposed
AD scheme is also better than that of other schemes. Tables 2 and 3 show the confusion
matrices of our proposed AD scheme and HAR-MN-EF scheme [19]. The result shows that
our proposed AD scheme actually improves the accuracy.

Table 2. Confusion matrix of AD.

Jump Stand Sit Squat Fall

Jump 1 0 0 0 0

Stand 0 0.97 0.01 0.02 0

Sit 0 0 0.99 0 0.01

Squat 0 0.01 0.02 0.965 0.005

Fall 0.005 0 0 0 0.995

Table 3. Confusion matrix of HAR-AF-DLN.

Jump Stand Sit Squat Fall

Jump 0.995 0 0 0 0.005

Stand 0.005 0.92 0.04 0.03 0.005

Sit 0.005 0.01 0.98 0.005 0

Squat 0 0.085 0.02 0.885 0.01

Fall 0.005 0.005 0 0 0.99

5.2.2. Recognition Accuracy (RA)

Given the pre-training from the source domain, the performance results of RA for
target (A) and target (B) under the various ratios of labeled data = 0%, 25%, and 100% vs.
epoch are given in Figure 19. Initially, if the target data ratio is (1:1:1:1:1), the proportion
of each activity in the training dataset is equal. When the pre-training knowledge is
transferred to target (A) or target (B), the weight before the flattening layer is frozen as a
common feature. Therefore, RA of the 0th epoch is not 0. The accuracy of the pre-training
knowledge affects RA results, our pre-training knowledge adopting the AD model is higher
than other models. Figure 19a,b show the performance of RA vs. epoch under ratios of
labeled data = 0% and target data ratio = (1:1:1:1:1) for moving from the source domain
to target (A) and target (B). To make a comparison, when we apply the AD scheme for
some models as the same pre-training model, we observed that the average RA of our
AD-DADA scheme > that of AD-ADA [20] scheme > that of AD-MK-MMD [25] scheme
> that of AD-MMD [32] scheme. In addition, the average RA of our AD-DADA scheme >
that of DANDR [25] scheme > that of HAR-MN-EF [19] scheme from the perspective of
epoch. Figure 19c,d show the performance of RA vs. epoch under ratios of labeled data =
25% and target data ratio = (1:1:1:1:1) for moving from the source domain to target (A) and
target (B). We observed that the average RA of our AD-DADA scheme > that of AD-ADA
scheme > that of AD-MK-MMD scheme > that of AD-MMD scheme > that of DANDR
scheme > that of HAR-MN-EF scheme from the perspective of epoch. Figure 19e,f show
the performance of RA vs. epoch under ratios of labeled data = 100% and target data ratio =
(1:1:1:1:1) for moving from source domain to target (A) and target (B). We observed that the
average RA of our AD-DADA scheme > that of AD-ADA scheme > that of AD-MK-MMD
scheme > that of AD-MMD scheme > that of DANDR scheme > that of HAR-MN-EF
scheme from the perspective of epoch. In addition, we also investigate RA under various
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ratios of labeled data = 50% and 70% in Table 4. Figure 20 shows RA vs. various ratios
of labeled data for (a) target (A) and (b) target (B) under target data ratio = (1:1:1:1:1). In
general, the higher the ratio of labeled data is, the higher RA is. We also observed that the
average RA of our AD-DADA scheme > that of AD-ADA scheme > that of AD-MK-MMD
scheme > that of AD-MMD scheme > that of DANDR scheme > that of HAR-MN-EF
scheme from the perspective of ratios of labeled data. The improvement of RA for target
(B) is better than that of target (A). This is because target (B) is a small area.
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Figure 19. RA vs. epoch under ratios of labeled data = 0% and target data ratio = (1:1:1:1:1) for (a) target (A) and (b) target
(B). RA vs. epoch under ratios of labeled data = 25% and target data ratio = (1:1:1:1:1) for (c) target (A) and (d) target (B). RA
vs. epoch under ratios of labeled data = 100% and target data ratio = (1:1:1:1:1) for (e) target (A) and (f) target (B).
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Figure 20. RA vs. various ratios of labeled data for (a) target (A) and (b) target (B) under target data ratio = (1:1:1:1:1).

The performance of RA vs. epoch is given under ratios of labeled data = 0% (Figure 21a,b),
ratios of labeled data = 25% (Figure 21c,d), and 100% (Figure 21e,f), under the target data
ratio sets to (1:1:0.5:1:0.5) for target (A) and target (B). For the data imbalance of the target
domain, we have the general results that the RA of our AD-DADA scheme > that of
AD-ADA scheme > that of AD-MK-MMD scheme > that of AD-MMD scheme > that of
DANDR scheme > that of HAR-MN-EF scheme from the perspective of epoch. This is
because the ADA scheme is limited by its balance distribution of the target domain, and
DADA, MK-MMD, and MMD schemes are not subject to this limitation. Figure 22 provides
the experimental result of RA vs. various ratios of labeled data for (a) target (A) and (b)
target (B) under target data ratio = (1:1:0.5:1:0.5). Figure 23 offers the experimental result of
RA vs. various ratios of labeled data for (a) target (A) and (b) target (B) under target data
ratio = (1:1:1:1:0.1). Similarly, we have the general results that the RA of our AD-DADA
scheme > that of AD-ADA scheme > that of AD-MK-MMD scheme > that of AD-MMD
scheme > that of DANDR scheme > that of HAR-MN-EF scheme from the perspective of
various ratios of labeled data. In addition, we also provide recall and precision, as shown
in Figure 24, under various target data ratios for target (A) and target (B). We observed
when the target data ratio is more imbalanced, the recall is higher than the precision, which
means that a class with data imbalance will be more easily judged as other classes.

To illustrate the effect of data augmentation, Table 4 provides the RA result with
data augmentation, and Table 5 offers the RA result without data augmentation when
performing the associate knowledge fine-tuning phase. In general, the RA of the associate
knowledge fine-tuning phase without data augmentation is higher than that of the associate
knowledge fine-tuning phase with data augmentation. It is not useful to adopt the data
augmentation technique for the target domain when executing the associate knowledge
fine-tuning phase. Consequently, Table 6 summarizes all of the RA results of AD-DADA,
AD-ADA, AD-MK-MMD, and AD-MMD schemes under the various target data ratio sets,
and the various ratios of labeled data for target (A) and target (B). Under a fixed ratio of
labeled data, the greater the data imbalance, the low the value of RA will be. Under a
fixed target data ratio set, the greater the ratio of labeled data, the higher the value of RA
will be. For instance, we observed that if the ratio of labeled data = 25%, the RA can be
improved, especially if the data imbalance problem has occurred. In general, our proposed
AD-DADA can provide a general adjustment scheme to dynamically increase the ratio of
labeled data if a user is encountering a new poor target environment.
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Figure 21. RA vs. epoch under ratios of labeled data = 0% and target data ratio = (1:1:0.5:1:0.5) for (a) target (A) and (b)
target (B). RA vs. epoch under ratios of labeled data = 25% and target data ratio = (1:1:0.5:1:0.5) for (c) target (A) and (d)
target (B). RA vs. epoch under ratios of labeled data = 100% and target data ratio = (1:1:0.5:1:0.5) for (e) target (A) and (f)
target (B).
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Figure 22. RA vs. various ratios of labeled data for (a) target (A) and (b) target (B) under target data ratio = (1:1:0.5:1:0.5).

0 25 50 75 100
0.6

0.7

0.8

0.9

1.0

 AD-DADA          AD-MMD
 AD-ADA             DANGR
 AD-MK-MMD     HAR-MN-EF

Re
co

gn
iti

on
 A

cc
ur

ac
y 

(%
)

Target label data size (%)
0 25 50 75 100

0.6

0.7

0.8

0.9

1.0

 AD-DADA
 AD-ADA
 AD-MK-MMD
 AD-MMD
 DANGR
 HAR-MN-EF

Re
co

gn
iti

on
 A

cc
ur

ac
y 

(%
)

Target label data size (%)

(a) (b)

Figure 23. RA vs. various ratios of labeled data for (a) target (A) and (b) target (B) under target data ratio = (1:1:1:1:0.1).
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Figure 24. Recall and precision vs. various ratios of labeled data for (a) target (A) and (b) target (B) for AD-DADA scheme.
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Table 4. Recognition accuracy (RA) with data augmentation.

Model Schemes
Target (A) Target (B)

0% 25% 0% 25%

AD

DADA 88.7% 93.1% 89.9% 95.2%

ADA 87.8% 90.4% 87.9% 91.9%

MK-MMD 85.3% 88.4% 86.2% 89.9%

MMD 76.9% 80.1% 80.8% 84.0%

Table 5. Recognition accuracy (RA) without data augmentation.

Model Schemes
Target (A) Target (B)

0% 25% 0% 25%

AD

DADA 94.4% 96.7% 95.1% 97.4%

ADA 93.5% 94.9% 94.8% 95.6%

MK-MMD 91.9% 92.3% 93.3% 93.9%

MMD 83.2% 83.9% 87.6% 88.7%

Table 6. Recognition accuracy (RA) of all cases for encountering for target (A) and target (B).

Model
Target Data Ratio 1:1:1:1:1 1:1:0.5:1:0.5 1:1:1:1:0.1

Domain Scheme 0% 25% 50% 75% 100% 0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

AD

target (A)

DADA 94.4% 96.7% 96.8% 96.9% 97.1% 93.9% 96.0% 96.1% 96.2% 96.4% 89.5% 91.2% 91.7% 92.8% 93.1%
ADA 93.5% 94.9% 95.5% 95.4% 95.2% 88.1% 89.7% 91.7% 93.3% 94.2% 87.2% 89.7% 89.2% 88.5% 88.3%

MK-MMD 91.9% 92.3% 93.8% 95.9% 96.9% 91.1% 91.7% 93.8% 95.1% 96.3% 87.0% 88.9% 90.5% 91.8% 93.1%
MMD 83.2% 83.9% 85.1% 89.3% 97.0% 83.7% 85.1% 87.7% 91.3% 96.2% 84.9% 85.7% 88.2% 90.7% 93.0%

target (B)

DADA 95.1% 97.4% 97.6% 97.8% 98.1% 94.7% 96.8% 97.6% 97.8% 97.9% 92.1% 93.7% 94.0% 94.7% 95.4%
ADA 94.9% 95.6% 96.3% 95.9% 95.5% 89.3% 90.9% 93.3% 95.1% 96.1% 89.3% 90.5% 93.7% 93.4% 92.9%

MK-MMD 93.3% 93.9% 94.4% 96.1% 97.5% 92.8% 93.1% 94.4% 96.1% 97.5% 89.4% 91.5% 92.1% 93.6% 95.4%
MMD 87.6% 88.7% 91.0% 94.8% 97.4% 86.6% 87.6% 91.0% 94.8% 97.1% 85.1% 86.6% 89.1% 92.2% 95.4%

5.2.3. Time Cost (TC)

The experimental results of the time cost (TC) of AD-DADA, AD-ADA, AD-MK-
MMD, AD-MMD, DANGR, and WiLlSensing schemes are shown in Table 7. The total
time cost is the sum of the processing time, pre-training time, and fine-tuning time, where
the processing time is the time required in the data collection and processing phase. The
pre-training time is the time required per epoch in the pre-training phase. The fine-tuning
time is the time required per epoch in the fine-tuning phase. In general, the AD-based
model utilizes the feature reuse strategy, so the time cost is higher than that of the DANGR
and WiLlSensing schemes, as illustrated in Table 7. However, our AD-DADA scheme has
the least time cost for all AD-based schemes, as shown in Table 7.
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Table 7. Time cost of all schemes.

Schemes Processing Time (s)
Time Cost per Epoch (s)

Pre-Train Fine-Tuning Total

AD-DADA

97 162

102 264

AD-ADA 97 259

AD-MK-MMD 147 309

AD-MMD 111 273

DANGR 41 101 84 185

WiLlSensing 59 84 69 153

6. Conclusions

This paper addresses the problem of recognizing human activity independent of
the environment, also known as domain adaptation. This work uses the channel state
information (CSI) of WiFi signals. We have proposed semi-supervised transfer learning
with dynamic adaptation of the associate domain in order to recognize human activity.
To improve the recognition accuracy at the data pre-processing stage, missing packet
filling, noise removal, background estimation, feature extraction, and feature enhancement
are performed. The pre-trained model is trained from the source domain by collecting a
complete set of labeled data for all of the human activity patterns of the CSI. The pre-trained
model is then transferred to the target environment through the semi-supervised transfer
learning stage. We proposed an algorithm for dynamically adapting the associated domain
called DADA. The advantage of DADA is that it provides a dynamic strategy to remove
different effects in different environments. An attention-based DenseNet (AD) model is
developed as a training network, which is modified from the existing DenseNet by adding
the attention feature. The proposed solution (DADA-AD) has been tested for five types
of human activities (falling, standing, squatting, jumping, and sitting). The experimental
results illustrate that the recognition accuracy of these activities in the test environment
is 97.4%.

The automatic recognition of human activities is an important area for providing
personalized care, mainly through human—computer interaction analysis in medicine and
sociology, to achieve a better cost performance, making it easy to implement in the actual
architectural environment. The five types of human activities considered in this paper are
a coarse-grained human activity model, not a fine-grained human activity model. The
disadvantage is that the proposed WLAN sensing scheme is not suitable for recognizing
fine-grained HAR. In addition, the setup locations of the transmitter and receiver of the
WLAN-sensing solution are different, and the measured distance is limited. This limits
the HAR applications and the implementation in a real building environment, under the
requirement of a low cost–performance ratio.

To recognize the fine-grained human activity patterns, future work will extend these
research experiences to an mmWave sensor network for automatic recognition of human
activities with cost-effective and easy installation in a real building environment.
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