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Abstract: Correct regulation of meteoric surface and subsurface flow waters is a fundamental goal for
the sustainable development of the territories. A new system, aimed at real-time monitoring of the
rainfall and of the cumulated rainfall, is introduced and discussed in the present paper. The system
implements a Sensor Network based on the IoT paradigm and can cover safety-critical “hot spots”
with a relatively small number of sensors, strategically placed, in areas not covered by traditional
weather radars and rain gauges, and lowering the costs of deployment and maintenance with respects
to these devices. A real application case, based on the implementation of the pilot plant at the Monte
Scarpino landfill (Genoa, Italy), is presented and discussed. The system performances are assessed
on the basis of comparisons with data provided by a polarimetric weather radar and by a traditional
rain gauge.

Keywords: rainfall monitoring; meteoric flow waters; nowcasting; sensor networks

1. Introduction

Nowadays, the risks deriving from extreme weather conditions is constantly increas-
ing and a growing number of people, as well as their available resources, are significantly
exposed to flash flood events, all over the planet. Furthermore, the correct regulation of
surface and subsurface rain waters must be considered a fundamental objective for the
sustainable development of territories subjected to environmental transformation and
reclamation processes, such as urban landfills. To cope with these events, it would be
highly desirable to have an early warning [1] service that is able to validate meteorological
data and promptly alert the civil protection offices, while providing real-time data on the
progress of rainfall.

The management of devices and systems for the transfer and collection of rainwater
must follow criteria consistent with the principles of permanent site safety. To achieve recla-
mation, it is necessary to ensure, in particular, the isolation of any contaminating sources as
well as the geotechnical stability of the soils and to have efficient environmental monitoring
systems. In this sense, the fundamental parameters for the design and management of
rainwater regeneration systems are the intensity and duration of rainfall.

At present, the most often used rain sensors are the rain gauge (RG) with the tipping-
bucket measuring technique [2] and the weather radar (WR) [3,4]. The first one provides a
precise datum at given point-scale locations (how much rain has fallen in the place where
it is installed) while the second one provides real data at low resolution (typically of the
order of 1 km). The WRs have also significant constraints, concerning both implementation
(as they need to be installed in isolated areas with particular features, usually on the top of
a mountain) and functional operation (e.g., remote monitoring, shadow areas).

Satellite-based remote sensing techniques based on passive microwave sensors and
geosynchronous Earth orbit (geo) infrared (IR) estimates are becoming a relevant alternative
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in rainfall monitoring since they can provide global coverage and multi-satellite near real-
time products. The satellite remote sensing precipitation datasets are made available by
national services (e.g., the Integrated Multi-satellitE Retrieval for GPM [5]) and results
from combined estimation algorithms maps (such as those developed by NOAA/CPC for
CMORPH) provide rainfall maps with a 30-min time resolution on a grid with a spacing
of 8 km [6]. However, currently, the usage of such satellite remote sensing products for
monitoring convective precipitation events over small-medium sized hydrologic basins
and urban environments is still difficult, as finer spatial resolutions and updating time
are needed.

To deal with such issue, in recent years, research efforts have been dedicated to the
evaluation of the optimal RGs density necessary to retrieve the high spatial variability of
the rainfall field [7] through the development and testing of dedicated spatial interpolation
techniques such as ordinary Kriging and conditional merging with WR products [8]. Once
again, these studies highlighted the need for using high spatial resolution rainfall maps to
correctly retrieve the strong variability of convective precipitation events that may occur in
limited, and often highly populated, catchments for flash flood risk mitigation [9]. This is
particularly necessary in a complex orography composed of small catchments that have to
be monitored singularly for flash flood now-casting (it is the case in Mediterranean areas
such as southeast France or Alps-Apennines catchments in Italy), in urban drainage waters
management or for landfill runoff waters systems (the case showed in our letter) where the
use of highly dense RG networks may not be a practicable solution because of its costs of
deployment and maintenance.

In this paper, a case study based on the application of an innovative system for rainfall
monitoring in limited areas, such as small hydrologic basins and urban environments,
is presented. This system (Smart Rainfall System (SRS)) is the result of collaboration
about innovation in rainfall monitoring between the start-up Artys and the University
of Genoa. By means of proper interpolation techniques, the system allows the real-time
reconstruction of the rainfall intensity distribution with spatial and temporal resolutions
comparable to or higher than the WR located at Monte Settepani [10], whose data will
be used in the following for comparison. Moreover, the SRS has low implementation
requirements. The system could allow for early warning and, in principle, also for a
now-casting [11,12] service in the monitored area. In this paper, after a short resume of SRS
features, the case study involving an urban landfill, located on the hills in the neighborhood
of the city of Genoa (Monte Scarpino 44◦28′03.9′′ N 8◦51′17.3′′ E), in Italy, is presented
and discussed. The system’s performances are assessed on the base of data provided by a
polarimetric WR and by a traditional RG located at Monte Gazzo (the nearest one to the
test site, at 44◦26′48.3′′ N 8◦49′49.1′′ E).

2. The Smart Rainfall System (SRS)

Smart Rainfall System (SRS) is an innovative, patented technological solution for
estimating and pinpointing rainfall in real-time and providing short-term forecasts of
hydrogeological risk [10,13–15]. SRS exploits the signal transmitted by commercial geo-
stationary Digital Video Broadcasting Satellites (DVB-S, DVB-S2) to evaluate the quantity
of rain falling over the area to be monitored and to provide continuous observation of
atmospheric conditions. Suitable sensors have been developed to analyze the intensity
of the microwave signal received from common parabolic antennas aligned with selected
satellites, mostly operating in the Ku band. Each sensor belongs to an infrastructure im-
plementing the Internet of Things (IoT) paradigm. Actually, the whole monitoring system
consists of a network of satellite microwave links (SML) realized through the installation of
measurement stations (composed by a parabolic antenna and SRS sensor) in the area to be
monitored in a potentially extensive and widespread manner; each station continuously
send small packets of data to the SRS data center. The latter, hosted on special cloud
platforms, analyzes them and derives pluviometric information.
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2.1. Satellite–Earth Link Model

It is well known that rainfall scatters microwaves, and the Ku band used for most of
DVB-S/S2 transmissions is particularly sensitive to this phenomenon [16,17]. To describe
this phenomenon, the radiation emitted by a geostationary satellite can be modeled as a
plane wave at the earth station thanks to the far-field condition [18]. Thus, the electric E
and the magnetic H fields can be locally described as

E(rrx) = E0(rrx, rtx)e−jkk̂·(rrx−rtx)p̂ (1)

H(rrx) =
1
η0

k̂× E(rrx) (2)

where rrx and rtx are the position vectors for the receiving antenna and the satellite, respec-
tively, k̂ = (rrx − rtx)/||rrx − rtx||2 is the unit vector indicating the direction of propagation,
p̂ is the unit vector for the polarization, k = ω

√
µ0ε0 is the vacuum’s wavenumber (with

µ0 and ε0 magnetic permeability and dielectric permittivity of the vacuum, respectively,
and ω = 2π f angular frequency), η0 =

√
µ0/ε0 is the vacuum’s intrinsic impedance,

and E0 is the wave’s complex amplitude. The time factor ejωt has been omitted to simplify
the notation. The power gathered by the antenna can be formulated as [18]

PR = Ae pinc(rrx) = epel
λ2

0
4π

Grx pinc(rrx) = epel
λ2

0
8πη0

Grx|E0(rrx, rtx)|2e−2αrain l = P0
Re−2αrain l (3)

where Ae is the antenna’s effective area; pinc is the incident power density; ep and el are
the polarization and load mismatch efficiencies, respectively, λ0 is the wavelength in the
vacuum; Grx is the antenna’s gain; αrain is the rain’s attenuation constant; P0

R is the received
power in case of clear sky; and l is the distance, taken along the wave’s path, between the
receiving antenna’s focus and the melting layer, whose altitude h0 is here assumed to
coincide with the zero-degree isotherm level. The latter is here estimated by means of a
linear extrapolation on the base of environmental temperature measurements gathered
by two weather stations located at a small geographic distance from the SRS sensors (this
approach relies on the assumption of a linear vertical temperature profile). About the
quantity l, the following relation holds,

l =
h0 − hant

sin(ϑ)
(4)

where hant and ϑ are the receiving antenna’s altitude and the elevation angle, respectively.
Figure 1 exemplifies the considered configuration. It is important to highlight that αrain
explains the rain contribution only; any other attenuation terms can be included in E0.
Moreover, in writing the Equation (3), it is assumed that the rain’s effect is constant along
l. Passing to a logarithmic representation, the total attenuation due to the meteorological
perturbation is given as

L[dB]
rain = P0,[dBm]

R − P[dBm]
R = 20αrainllog10(e) = γrainl[km] (5)

where P0,[dBm]
R and P[dBm]

R are P0
R and PR expressed in dBm, respectively, γrain = 2 ·

104αrainlog10(e) is the rainfall specific attenuation given in dB/km, whereas l[km] is l
expressed in km. Thanks to the semi-empirical model ITU-R P.838-3 [19], the specific
attenuation can be related with the rainfall intensityR [mm/h] as

γrain = βRα (6)

The quantities α and β can be computed as follows,

β =
1
2
[βH + βV + (βH − βV)cos2(ϑ)cos(2τ)] (7)
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α =
1

2β
[βHαH + βVαV + (βHαH − βVαV)cos2(ϑ)cos(2τ)] (8)

where τ evaluates to 0, π/2 or π/4 when the polarization is horizontal, vertical, or circular,
respectively. The terms βH , βV , αH , and αV are frequency-dependent; their values can be
found in [19] for the working frequency f = 12 GHz considered in the following. Given
a measurement of γrain, the relation in Equation (6) can be inverted to get an estimate of
R. However, if higher local accuracy is needed, more sophisticated models can also be
adopted (see, e.g., in [20–24]).

hant

h0

l

ϑ

Figure 1. Measurement segment for the rain estimation by evaluation of the DVB-S/S2
signal’s attenuation.

2.2. The RF Front-End

Summarizing, the system is composed of a network of microwave sensors, each of
which measures the signal intensity received from a satellite thanks to a parabolic dish
antenna and an Low Noise Block (LNB) converter [25].

In particular, the RF part of a sensor can be schematized according to the block diagram
shown in Figure 2. Each sensor receives the signal from a commercial antenna, already
converted to L band by the LNB, and operates through four fundamental devices:

1. directional coupler,
2. L-band Low Noise Amplifier (LNA),
3. L-band band pass filter, and
4. logarithmic power detector.

The directional coupler is used to spill a calibrated portion of the received power
for the subsequent processing, while most of the signal can still be used in a TV decoder,
so that the system can also be used at home as an opportunistic measurement station.
The signal portion obtained by the coupler is then amplified by a low-noise amplifier
(in the present implementation, an Avago MGA-86563), duly filtered and the resulting
power is transformed in a DC signal by a detector having a logarithmic characteristic
(Analog Devices AD8314). The DC signal is then converted into digital representation and
processed “on-board” by means of a low-cost low-power micro-controller unit (Microchip
PIC18F14K22 (MCU)), which generates raw data and provide local input–output as well as
access to the internet, through a proper network interface.
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to TV decoder

(optional)

L−Band signal from antenna

to ADC and processing

2

1

3 4

Figure 2. Schematic diagram of the RF front-end of a Smart Rainfall System (SRS) sensor.

2.3. High Level Post-Processing

In order to provide more comprehensive information, the SRS system can incorporate
measurements taken by traditional sensors (RGs, water gauges, anemometers, CCTV
cameras, infrared systems, etc.), making the most of existing investments.

Based on the information analyzed, SRS creates real-time interactive and high-resolution
rainfall maps (resolution of the order of 100 m can be expected) of the entire monitored
area following the methodology described in Colli et al. [10] and makes them available to
its users, via an online service.

SRS is currently provided as a tool for Decision Support System (DSS) for hydro-
meteorological risks mitigation, allowing for faster and more efficient hazard analysis
compared to traditional monitoring techniques. Decision-makers can predict the conse-
quences of rainfall by monitoring whether critical rainfall levels have been exceeded in the
catchment and applying hydrologic/hydraulic models for short-term runoff forecasting
(e.g., by adopting semi-distributed or distributed continuous hydrologic algorithms).

SRS also stands out for its low implementation requirements: as a matter of fact,
SRS measurement stations use already active infrastructures (satellite telecommunications,
internet, and mobile networks) and are made up of off-the-shelf, low-cost components.
In addition, each SRS sensor has been designed to optimize power consumption: a set of
four sensors co-located can be operated autonomously by a 50 W solar panel with proper
battery storage.

For SRS, the Italian patent was recognized in 2014 [26], and it has been extended at
the European level in 2019 [27].

3. The Monte Scarpino Landfill and the SRS Test-Bed

The case of the Monte Scarpino landfill in Genoa is of particular importance in relation
to the monitoring of areas subject to environmental risk protection. The solid urban waste
disposal plant covers an area of about half a million square meters (Figure 3a). Established
in 1968, the landfill is located on the heights of Sestri Ponente, in the Metropolitan City
of Genoa. The waste disposal plant is about 600 m above sea level and is composed of
two modules that today are no longer in operation as the maximum allowed volume for
filling has been reached. The over 10 million cubic meters of waste disposed of in the
landfill continue to feed a biogas transformation system for the production of electricity (on
average 60 million kWh per year entered into the national grid). The Liguria Region and
the Metropolitan City of Genoa required AMIU (Azienda Multiservizi e d’Igiene Urbana),
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the company that operates the landfill, to increase and improve its monitoring through
different environmental matrices that influence incoming and outgoing flows of matter
and energy.

(a) (b)

Figure 3. (a) Orthophotograph of the Monte Scarpino landfill [28]. (b) Map of the geographical loca-
tions of the SRS stations in the Monte Scarpino landfill and of the related satellite connection tracks.

In this context, particular attention has been paid to the problem of water
pollution [29,30]. In the event of sudden, intense and highly localized precipitation phe-
nomena, it is necessary to measure rainfall in real time, identifying the “hot spots” in which
the events occur. There is a distance of 1.3 km and an elevation of about 300 m between
the entrance to the landfill, to the north, and the borders to the south of it, where the
containment tanks of the percolate are located [29]. The levels in the tank and the inflows
must be constantly monitored during the rains. A system that acquires data in real time can
also ensure greater safety for operators as well as it can generally allow for the activation
of emergency procedures based on nowcasting [11,12].

3.1. The SRS Test Bed

The planned network will be eventually composed of 18 sensors distributed in
6 different sites enclosed in the landfill’s perimeter. This would allow for an estimated
coverage of 9.8 km2, providing the capability to monitor the evolution of the rainfall also
on areas adjacent to the landfill. In Figure 3b, a map of the geographical location of the
SRS stations and of the satellite connection tracks is shown. At present, only eight sensors
are fully functional. Table 1 summarizes the set of sensors adopted for the analysis in the
following, with their population of satellites.

In Table 1, the name “Turksat 42E” refers to a constellation of two satellites (namely,
Turksat 3A and Turksat 4A), co-located at the 42◦ East orbital position in the Clarke Belt,
operated by the Türksat A.Ş. company (Gölbaşı, Turkey) [31]. In the same Table, “Astra
19.2E” refers to the constellation of Astra communications satellites co-located at the 19.2◦

East orbital position [32], owned and operated by SES S.A., based in Betzdorf, Luxembourg.
At present such group consists of four satellites, namely, Astra 1KR, Astra 1L, Astra 1M,
and Astra 1N. Both constellations broadcast plenty of channels in the Ku band on strong
beams directed towards Europe.
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Table 1. Site’s name, reference satellite, antenna’s pointing elevation and altitude, and Ku sub-band for the SRS sensors
available at the Monte Scarpino landfill.

Site Channel A Channel B
Satellite ϑ [◦] h0 [m] Sub-Band Satellite ϑ [◦] h0 [m] Sub-Band

Stazione S2 Torcia Turksat 42E 29.1 475 High Astra 19.2E 37.7 475 High
PZS1 Turksat 42E 29.1 560 High Astra 19.2E 37.7 560 High

Pala Eolica Turksat 42E 29.1 600 High Astra 19.2E 37.7 600 High
Uffici Ingr Turksat 42E 29.1 590 High Astra 19.2E 37.7 590 High

To provide an example of the measurements provided by the SRS system we show the
behavior of the sensors operating at the “Pala Eolica” site (Table 1) during a typical event
(namely, the one occurred on 4–5 May 2019). In Figure 4, the one-minute rainfall intensity,
along with the corresponding signal strength and accumulated rain, are reported. The two
panels of Figure 5 show instead the spatial distributions of the accumulated daily rainfall
for the same rain event.
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Figure 4. Time series of signal strengths S [mV] (top panel), rainfall intensityR [mm/h] per minute
(middle panel), and accumulated rainfall RA [mm] (bottom panel) measured by the SRS sensors at
the “Pala Eolica” site in the days 4 May and 5 May 2019. Blue line: Turksat 42 E. Green line: Astra
19.2 E.

4 May 2019 5 May 2019

Figure 5. Daily rain accumulation maps produced by the SRS system for the event of 4−5 May 2019,
at the Monte Scarpino landfill. The landfill area is highlighted by the black contour. The unit of the
colorbar is [mm/h].
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3.2. Reference Rainfall Measurements

If global satellite remote sensing rainfall products are becoming more reliable and
accurate as research and development efforts in this field advance, on the other hand,
the today state-of-the-art literature suggests the use of RG and WR measurements to
perform evaluation analysis of microwave links performances in measuring rain (see, e.g.,
in [33–35]). The motivation is that the RGs are characterized by very low uncertainties [2],
especially when compared to remote sensing products [36], and are preferable to perform
comparison over small areas [37]. Ground-based WRs represent another valuable standard
system for this sort of comparative analysis as their maps provide a representation of
rainfall fields with a 1 km spatial resolution and at 10 min time intervals. Even if such
features are not fine enough to depict the time-space distribution of highly convective
rainfall over small hydrologic basins, like the one considered in the Monte Scarpino landfill
use case (torrent Chiaravagna catchment), the radar products constitute a valuable term of
comparison for other rainfall map retrieval techniques.

The rainfall measurements considered for analyzing and comparing the SRS results
are provided by the Monte Gazzo tipping-bucket RG (characterized by a 0.2 mm rainfall
sensitivity) and the Selex-Gematronik GPM250C C-band polarimetric radar, located on
Monte Settepani (44◦14′45.4′′ N 8◦11′50.5′′ E) in the province of Savona, at a distance of
about 57 km from the landfill. The radar and the RG are operated by the Environmental
Protection Agency of the Liguria Region (ARPAL), and also by the Italian Department of
Civil Protection.

A multiparameter, multirelationship algorithm based on a decision tree is imple-
mented in the Monte Settepani radar system and used for the estimation of rainfall intensity
from measurements of polarimetric variables. For interested readers, a detailed description
and validation of the algorithm used by the Monte Settepani radar can be found in [38].
The produced precipitation maps have spatial and temporal resolutions of 1× 1 km2 and
10 min, respectively. An example of a precipitation map is shown in Figure 6.

To quantitatively evaluate the proposed estimation method against the aforemen-
tioned reference approaches, the following error measures are considered:

ein
{r,g} = E(R−R{r,g}|t ∈W) (9)

eout
{r,g} = E(R−R{r,g}|t /∈W) (10)

whereRr andRg are the rain intensities returned by the radar and the RG, respectively; E
is the expectation operator; and W is the time window that strictly contains the rainfall.
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Figure 6. Example of precipitation map (a) provided by the GPM250C weather radar on 4 July 2018,
at 03:50 UTC. The radar position is indicated by the central white dot. The area containing the Monte
Scarpino landfill and the RG at Monte Gazzo is delimited by the white square, whose side length is
about 50 km. A zoomed view of this area is provided in subfigure (b), where the red cross is centered
on the landfill and the green plus sign indicates the RG.
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3.3. Estimation of h0

As mentioned above, to estimate the altitude h0 of the zero-degree isotherm, SRS
performs an extrapolation by assuming a linear vertical profile of the environmental
temperature based on the measurements collected by two weather stations located in the
neighborhood at two significantly different altitudes. In the specific test case, both of them
are operated by ARPAL, and are located respectively at Monte Gazzo (distance from the
top of the landfill 3.55 km, direction S (186◦), 419 m AMSL) and at Monte Penello (distance
4.29 km, direction E (280◦), 980 m AMSL).

4. Experimental Results

In this section, in order to test the systems against data provided by other measuring
devices, two different events are examined, both pertaining to summer 2018, one in July
and the other in August.

In particular, a comparison between the estimates of rainfall intensity returned by the
WR described in Section 3.2, a RG located on Monte Gazzo, and the proposed SRS sensors
is provided. The radar reference data for the comparisons carried out in the following are
obtained by evaluating the estimated rain intensity in the map’s pixel that contains the
Monte Scarpino landfill.

4.1. Event of 4 July 2018

In Figure 7, the received powers by the stations “S2−Torcia”, “PZS1”, “Ufficio Ingr”,
and “Pala Eolica” are shown along with the rainfall intensity estimated from the radar
and the RG for the event on 4 July 2018. In order to allow for an easy comparison of data,
the SRS measurements are shown as PR(t)− PR(t0), where PR(t) is the received power’s
time series and PR(t0) is the received power at the start of the displayed time window.
In Figure 8 the estimates of rainfall intensity returned by the stations “S2−Torcia”, “PZS1”,
“Ufficio Ingr”, and “Pala Eolica” are shown along with the ones returned by the radar and
the RG for the event on 4 July 2018. Finally, the estimation errors are reported in Table 2.
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Figure 7. Received power variation [dBm] at the sites (a) S2−Torcia, (b) PZS1, (c) Pala Eolica, and (d)
Uffici Ingr on 4 July 2018. The signal power variations for channels A and B refer to the right y-axis,
whereas the rain intensitiesR provided by the radar and the RG refer to the left y-axis.
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Figure 8. Time series of rainfall intensity R [mm/h] measured at the sites (a) S2−Torcia, (b) PZS1,
(c) Pala Eolica, and (d) Uffici Ingr on 4 July 2018. The vertical dotted lines delimit the time window W.

Table 2. Mean errors computed inside and outside the rainfall’s temporal windows achieved with
the SRS sensors available at the Monte Scarpino landfill on 4 July 2018.

Site Channel A Channel B
ein

r eout
r ein

g eout
g ein

r eout
r ein

g eout
g

Stazione S2 Torcia 3.08 0.01 2.21 0.01 2.07 0.06 1.40 0.06
PZS1 1.90 0 1.46 0 0.96 0.33 1.31 0.32

Pala Eolica 2.68 0.01 2.09 0.01 1.44 0.09 1.46 0.09
Uffici Ingr 2.61 0.01 1.93 0.01 1.74 0.06 1.38 0.06

4.2. Event of 14 August 2018

Results are presented as in the previous Section 4.1: in Figure 9, the received powers
by the stations “S2−Torcia”, “PZS1”, “Ufficio Ingr 1”, and “Pala Eolica” are shown along
with the rainfall intensity estimated from the radar and the RG for the event on 14 August
2018. In Figure 10, the estimates of rainfall intensity returned by the stations “S2−Torcia”,
“PZS1”, “Ufficio Ingr”, and “Pala Eolica” are shown along with the ones returned by the
radar and the RG for the event on 14 August 2018. Finally, the estimation errors are reported
in Table 3.
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Figure 9. Received power variation [dBm] at the sites (a) S2−Torcia, (b) PZS1, (c) Pala Eolica, and (d)
Uffici Ingr on 14 August 2018. The signal power variations for channels A and B refer to the right
y-axis, whereas the rain intensitiesR provided by the radar and the RG refer to the left y-axis.

0

10

20

R
[m

m
/
h
] Rain gauge

Radar

08:08 10:08 12:08 14:08
Time

0

10

20

R
[m

m
/
h
] SRS, Ch. A

SRS, Ch. B

0

10

20

R
[m

m
/
h
] Rain gauge

Radar

08:08 10:08 12:08 14:08
Time

0

10

20

R
[m

m
/
h
] SRS, Ch. A

SRS, Ch. B

(a) (b)

0

10

20

R
[m

m
/h

] Rain gauge
Radar

08:08 10:08 12:08 14:08
Time

0

10

20

R
[m

m
/
h
] SRS, Ch. A

SRS, Ch. B

0

10

20

R
[m

m
/h

] Rain gauge
Radar

08:08 10:08 12:08 14:08
Time

0

10

20

R
[m

m
/
h
] SRS, Ch. A

SRS, Ch. B

(c) (d)

Figure 10. Time series of rainfall intensityR [mm/h] measured at the sites (a) S2−Torcia, (b) PZS1,
(c) Pala Eolica, and (d) Uffici Ingr on 14 August 2018. The vertical dotted lines delimit the time
window W.
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Table 3. Mean errors computed inside and outside the rainfall’s temporal windows achieved with
the SRS sensors available at the Monte Scarpino landfill on 14 August 2018.

Site Channel A Channel B
ein

r eout
r ein

g eout
g ein

r eout
r ein

g eout
g

Stazione S2 Torcia 1.35 0.07 3.78 0.88 2.93 0.21 3.66 0.75
PZS1 1.13 0 3.95 0.44 0.79 0 4.03 0.37

Pala Eolica 0.91 0 4 0.46 1.06 0 4.17 0.41
Uffici Ingr 1.03 0 3.86 0.44 1.80 0 4.06 0.35

4.3. Comments

As can be seen in Figures 7 and 9, the rising of the perturbation causes a visible drop in
the power received by the SRS stations. This behavior is exploited to derive the estimated
rain intensities. According to the results shown in Figures 8 and 10, and the errors reported
in Tables 2 and 3, an overall good level of reliability of the system can be asserted. However,
a higher relative accuracy has been achieved for the event on 14 August 2018; the rainfall
has been significantly more intense on that date with respect to the 4 July, resulting in a
stronger effect on the captured signal.

Some of the differences among the estimates can be explained with the particular
features of the involved systems. First of all, the rain intensity returned by the radar is
based on an empirical model that aims to estimates the rainfall at the ground level on the
base of reflectivity measurements of the atmosphere (in [38] a detailed explanation of the
algorithm can be found); this can lead to some differences with the readings provided by
the RGs, which collect the rain at the terrain level. Moreover, the SRS stations at the Monte
Scarpino landfill are located about 3 km away from the ARPAL one at Monte Gazzo (the
SRS system and the ARPAL RG belong to different pixels of the radar precipitation map).

A more detailed analysis can be carried out focusing the attention on the evolution
of the involved meteorological perturbations. In particular, as for the event of 4 July 2018,
a time delay of about 20 min can be noted between the peak of the rain intensity sensed
by the polarimetric radar of Monte Settepani and the rain intensity’s peak measured by
the sensors network of the SRS. This behavior can be ascribed to the fact that SRS senses
the perturbation when it crosses the station–satellite links while the WR measurements are
referred to 1 km2 tiles of territory. To better understand this point, the rainfall intensity
Rmaps of the WR taken at 1:10 UTC, 2:00 UTC (corresponding to the rain intensity peak
according to the WR), 2:40 UTC, and 3:30 UTC are reported in Figure 11a–d for the event
on 4 July 2018. It can be noticed that the perturbation is traveling toward the landfill area
(represented by the red cross) coming from the north-west direction, whereas, as it can be
deduced from Figure 3b, the station–satellite links are located at the south of the landfill.
Therefore, the perturbation is not intercepted by the station-satellite links until it arrives
in the very proximity of the Scarpino landfill. Such an effect can be effectively mitigated
by considering satellite microwave links covering a larger portion of territory than the
monitored catchment in order to nowcast precipitation fronts approaching from the north
quadrants. Nevertheless, the delay of the rainfall’s peak perceived by the SRS with respect
to the RG is only 5 min.

As for the event on 14 August 2018, on the other hand, the perturbation was born at
the south of the landfill, and so it was detected by SRS with no delay. In Figure 12a–d, the
related rainfall intensityRmaps generated by the WR, at 8:00 UTC, 8:50 UTC, 9:50 UTC
(corresponding to the rain intensity’s peak according to the WR), and 10:50 UTC are shown.
About the RG’s data, two strong peaks are present that cannot be found in the WR and SRS’s
outputs; these differences are probably due to the distance of 3.55 km existing between the
RG and the landfill, which sometimes can lead to significantly different punctual readings.
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Figure 11. Precipitation maps provided by the GPM250C weather radar on the 4 July 2018 at (a) 1:10
UTC, (b) 2:00 UTC, (c) 2:40 UTC, and (d) 3:30 UTC. The red cross indicates the Monte Scarpino
landfill, whereas the green plus sign indicates the RG at Monte Gazzo.
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Figure 12. Precipitation maps provided by the GPM250C weather radar on the 14 August 2018
at (a) 8:00 UTC, (b) 8:50 UTC, (c) 9:50 UTC, and (d) 10:50 UTC. The red cross indicates the Monte
Scarpino landfill, whereas the green plus sign indicates the RG at Monte Gazzo.
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5. Conclusions

In this paper, a new system for real-time monitoring of rainfall and accumulated
rainfall has been presented and discussed. The system implements a Sensor Network
based on the IoT paradigm and can cover safety-critical “hot-spots” with a relatively small
number of strategically placed sensors in areas not covered by traditional weather radars
and rain gauges, with the advantage of lower costs of deployment and maintenance.

The Monte Scarpino experimental plant was used as a test-bed for the entire system.
The analysis of the sensors performance suggested that a dense measurement grid of
satellite microwave link could constitute a valuable complement to traditional monitoring
system, especially when the time-space variability of precipitation over small areas has to
be monitored in real-time and processed by hazard now-casting tools. The experimental
results, obtained by comparing the measurements at four different sites of the plant with
those of the WR located at Monte Settepani and a RG placed on the near Monte Gazzo, have
confirmed the effectiveness of the system. Therefore, it can be concluded that, although still
at an early stage of development, the project is very promising and goes in the right
direction to achieve a fast and reliable monitoring system, generally allowing for the
activation of emergency procedures based on nowcasting.

About possible future improvements, a study on the exploitation of satellite signals
with different polarization is scheduled, in order to gather more information about the
meteorological perturbations (e.g., presence of hail).
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