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Abstract: Simultaneous Localization and Mapping (SLAM) technology is one of the best methods for
fast 3D reconstruction and mapping. However, the accuracy of SLAM is not always high enough,
which is currently the subject of much research interest. Panoramic vision can provide us with a wide
range of angles of view, many feature points, and rich information. The panoramic multi-view cross-
imaging feature can be used to realize instantaneous omnidirectional spatial information acquisition
and improve the positioning accuracy of SLAM. In this study, we investigated panoramic visual
SLAM positioning technology, including three core research points: (1) the spherical imaging model;
(2) spherical image feature extraction and matching methods, including the Spherical Oriented FAST
and Rotated BRIEF (SPHORB) and ternary scale-invariant feature transform (SIFT) algorithms; and (3)
the panoramic visual SLAM algorithm. The experimental results show that the method of panoramic
visual SLAM can improve the robustness and accuracy of a SLAM system.

Keywords: panoramic vision; SLAM; spherical imaging model; SPHORB; ternary SIFT

1. Introduction

Simultaneous Localization and Mapping (SLAM) is an advanced technology in the
area of robot navigation, pilotless driving, unmanned aerial vehicle surveying and map-
ping, and virtual reality (VR)/augmented reality (AR). It refers to the use of a sensor in an
unfamiliar environment, where the data observed by the sensor are used to estimate the
state of motion of the sensor itself, while building a map of the surrounding environment.
SLAM technology can be divided into LiDAR SLAM and visual SLAM. For historical
reasons, the research into LiDAR SLAM began earlier than research into visual SLAM,
and LiDAR SLAM technology is more mature than visual SLAM technology in theory,
algorithms, and landing products. However, LiDAR is more expensive than cameras,
and LiDAR has a limited range of detection. Cameras have no distance limit and cost
less. At present, the solutions for visual SLAM technology are mainly based on RGB-D
cameras and monocular, stereo, or panoramic cameras. The biggest difference between the
two schemes is that RGB-D cameras are equipped with depth sensors, whereas ordinary
monocular, stereo, and panoramic cameras are not. Since RGB-D cameras are generally
more expensive than ordinary cameras, it is of great significance to study visual SLAM
technology based on ordinary cameras (like monocular, stereo, or panoramic cameras with-
out depth sensors), to reduce the cost. Among the ordinary cameras, panoramic cameras
have gradually become one of the hotspots in the field of visual SLAM research because of
their wide range of information perception and fast and complete information acquisition.

The common monocular camera has a horizontal angle of view of about 60 degrees and
a vertical angle of view of about 45 degrees. When a mobile platform moves continuously,
because of the small field of vision, the extracted feature points only stay in the field of
vision for a short period of time. As a result, mobile platforms cannot observe the feature
points continuously and effectively, which limits the development of SLAM based on
visual sensors. The longer the continuous observation time of the feature points, the more
conducive this is to system state correction and updating [1]. Davison and Murray [2]
also noted that the longer the time of continuous feature observation, the faster the error
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convergence, and the shorter the time of continuous feature observation, the more difficult
it is to effectively reduce the system uncertainty and positioning error. Therefore, compared
with a limited FOV camera, using a panoramic camera with a full view is a better way.

2. Related Works

The earliest real-time monocular visual SLAM system was MonoSLAM [3], proposed
by Professor Davison in 2007. The system uses an extended Kalman filter (EKF) as the
back-end and tracks very sparse feature points on the front-end. It is considered the
birthplace of a lot of work. In the same year, Klein and others proposed the PTAM [4]. This
system realizes the parallelization of tracking and mapping. It is the first solution to use
nonlinear optimization instead of using traditional filters as the back-end. This solution
is also the main solution for later SLAM systems. The Oriented FAST and Rotated BRIEF
(ORB)-SLAM [5,6] proposed by Mur-Artal et al. inherited the advantages of PTAM. It
extended the two-thread structure to a three-thread structure (tracking, mapping, loop
detection), and achieved good tracking and mapping effects. ORB-SLAM [5,6] is the peak
of SLAM based on the feature point method. Many systems use it as the basic framework,
such as PL-SLAM [7,8], fisheye-SLAM [9], multicol-SLAM [10], and so on. This paper
is also based on its framework and expands the imaging model of panoramic spherical
images. The above mentioned is SLAM based on the feature point method (also known
as the indirect method). The opposite of the indirect method is the direct method. This
method does not need to extract the feature points of the image, and directly tracks the
optical flow on the image. Representative works include large-scale direct monocular
SLAM (LSD-SLAM) [11] and direct sparse odometry (DSO) [12]. Compared with the
indirect method, the direct method has advantages in weak texture areas. However, it also
has disadvantages, such as sensitivity to camera parameters and exposure, and it cannot be
used in wide-baseline shooting modes or scenes with large viewing angle changes. The fast
semi-direct monocular visual odometry (SVO) [13] proposed by Forster et al. in 2014 is a
visual odometry based on the sparse direct method (also known as the semi-direct method),
which uses a mixture of feature points and the direct method. It neither requires calculating
descriptors nor processing the massive information of dense or semi-dense maps, so the
processing speed of SVO is extremely fast. However, it is mainly for the top view scene of
the UAV platform, and there is no back-end optimization and loop detection part.

Due to the shortcomings in the narrow viewing angle of monocular cameras, more and
more research has tended to use fisheye and panoramic cameras with larger viewing angles
to achieve a more robust SLAM system. In 2007, Kangni et al. [14] proposed a panoramic
image pose calculation method. It uses paired basic matrices to restore the position of the
panoramic camera in the scene, and optimizes the pose through bundle adjustment [15].
The articles [16–19] propose better methods for some theories of panoramic images (such as
calibration, synthesis, imaging models, etc.). These methods lay a good foundation for the
researchers in this field. In 2010, Rituerto et al. [20] implemented a panoramic vision SLAM
system based on the EKF algorithm, and verified that its positioning accuracy is better
than monocular SLAM. In 2011, Gutierrez et al. [21] introduced a new computation of
the descriptor patch for catadioptric omnidirectional cameras that aimed to reach rotation
and scale invariance. In 2015, Gamallo et al. [22] proposed a SLAM algorithm (OV-
FastSLAM) for omnidirectional cameras operating with severe occlusions. The three
works of Valiente et al. [23–25] are all related to panoramic visual SLAM and based on
the EKF algorithm. Li et al. [26] presented a SLAM system based on a spherical model
for full-view images in indoor environments in 2018. Seok et al. [27] presented robust
omnidirectional visual odometry for wide-baseline wide-FOV camera systems (ROVO) in
2019. The hybrid projection model in their paper combines the perspective and cylindrical
projection to maximize the overlap between views and minimize the image distortion
that degrades feature matching performance. There are also some excellent open-source
works (or studies based on open-source works) that relate to fisheye or panoramic visual
SLAM. For example, fisheye-SLAM [9], ORB-SLAM3 [28,29], and PAN-SLAM [30] are
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based on ORB-SLAM2 [6]. Fisheye-SLAM [9] and ORB-SLAM3 [28,29] implement fisheye
visual SLAM. PAN-SLAM [30] implements a panoramic visual SLAM based on a multi-
camera system. Caruso et al. [31] proposed large-scale direct SLAM for omnidirectional
cameras based on LSD-SLAM. Liu et al. [32] and Matsuki et al. [33] respectively proposed
fisheye-stereo DSO and omnidirectional DSO based on DSO [12]. Forster et al. [34] and
Heng et al. [35], respectively, proposed multi-camera system SVO and fisheye-stereo SVO
based on SVO [13]. OpenVSLAM [36] implements a versatile visual SLAM framework
with high usability and extensibility. The system can deal with various types of camera
models, such as perspective, fisheye, and equirectangular.

The main aim of this work is to make full use of the omnidirectional perspective of
panoramic vision and SLAM technology to achieve a higher positioning accuracy than
monocular visual SLAM, while focusing on the spherical imaging model and the problems
in feature extraction and matching. The main contributions of this paper are as follows.

(1) The panoramic imaging model. We study the pixel expression method for spherical
images, and derive the formula between the pixel coordinates and camera coordinates.

(2) Feature extraction and matching of panoramic images. Because panoramic images are
seriously distorted and the imaging model differs from that of an ordinary monocular
camera, we compare and analyze the feature extraction effects of various algorithms.
The Spherical Oriented FAST and Rotated BRIEF (SPHORB) feature extraction algo-
rithm is identified as being the most suitable for a panoramic visual SLAM positioning
system. In addition, we propose improvements to the scale-invariant feature trans-
form (SIFT) algorithm, and realize binary SIFT and ternary SIFT. These improvements
to SIFT greatly increase the speed of SIFT while ensuring sufficient accuracy.

(3) Research into a SLAM algorithm for panoramic vision and the implementation of a
location system. The ORB-SLAM2 [6] algorithm is improved, via front-end odometry
and back-end optimization, to realize a SLAM positioning system that is suitable for
panoramic vision.

3. Overview of Our Method

Mobile panoramic visual imaging mainly adopts three modes: multi-lens combination,
rotation, and refraction [16,37]. The current mainstream approach is to capture panoramas
through multi-lens combinations, such as Point Grey’s Ladybug series. It consists of six
fisheye lenses with very high resolution, but it is too expensive and this has reduced its
popularity. Ricoh is a consumer-grade panoramic camera. It is composed of two fisheye
lenses, which are sufficient for the experimental resolution of this paper.The experimental
data in this paper include two parts: the simulation data of the InteriorNet dataset [38] and
the measured data collected by a Ricoh camera.

This paper proposes a SLAM method based on panoramic vision and its overall flow
chart is shown in Figure 1. Our system is based on ORB-SLAM2 [6] for development
and improvement. We extended it for a spherical image. Firstly, the collected data are
transformed by the spherical imaging model (please refer to Section 4) to synthesize a
360-degree panoramic image. The SPHORB algorithm is then used as the front-end of
the SLAM system to extract features of panoramic images and realize panoramic visual
odometry. Next, the position and pose of the panoramic camera are optimized at the
back-end with g2o [39]. Loop closure detection is carried out at the same time. The
experimental results show that the proposed method is more efficient, accurate, and robust
than monocular vision for pose estimation.
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Figure 1. Flow chart of panoramic visual Simultaneous Localization and Mapping (SLAM).

4. The Spherical Imaging Model

Unlike monocular cameras, the image distortion of fisheye and panoramic cameras is
very serious. The traditional perspective model is no longer applicable. Many researchers
have proposed unique models based on the imaging principles of fisheye and panoramic
cameras, while other researchers have proposed imaging models that can describe perspec-
tive, fisheye, and panoramic images with a unified model. In 2000, Geyer et al. provided
a unified theory for all central catadioptric systems [40]. This model was extended by
Barreto et al. in 2001, which was known as the spherical camera model [41]. It can model
central catadioptric systems and conventional cameras. In 2015, Khomutenko et al. further
extended the model and proposed an enhanced unified camera model (EUCM) [42]. The
new model applies to catadioptric systems and wide-angle fisheye cameras. It does not
require additional mapping to model distortions, and it takes just two of the projection
parameters using a simple pinhole model to represent radial distortion. This model was
used in fisheye-SLAM [9] and achieved good results. In 2018, Usenko et al. propose the
double sphere camera model [43], which fits well with large field-of-view lenses. It is
computationally friendly and has a closed-form inverse.

In this paper, we use a spherical imaging model called “longitude and latitude expres-
sion”. This method avoids complicated description parameters. It compares the panoramic
spherical image to the Earth, and the pixel coordinates to the latitude and longitude.
As shown in Figure 2, O− xyz is the camera coordinate system. The pixel coordinates of
the projection points of object point P(Xw, Yw, Zw) in a planar image are p(u, v). The pro-
jection point on the spherical image is ps, which can be expressed in latitude and longitude
as ps(θ, ϕ).
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Figure 2. Spherical imaging diagram.

P(X, Y, Z) is the object point, which is equivalent to the P(Xw, Yw, Zw) mentioned
above. ps(x, y, z) is the corresponding projection point on the sphere. p(u, v) is the corre-
sponding point on the plane.

We let α be the angle between the projection of vector
−→
Ops on plane O− yz and the

z-axis, and β be the angle between vector
−→
Ops and plane O− yz. In real images, u and

v correspond to the rows and columns of the image pixels, respectively, which are finite

values. So α, β ∈ [−π

2
,

π

2
]. According to the spatial geometric relations, a formula can

be derived: 
α = arctan

v− v0

f

β = arctan
u− u0√

f 2 + (v− v0)2

(1)

where f is the focal length of the camera, and (u0, v0) are the pixel coordinates of the
principal point. Equation (1) expresses the mapping relationship between the panoramic
planar image and the panoramic spherical image.

Panoramic spherical image means that the panoramic image acquired by the camera
is mapped to a virtual spherical surface in space, which emphasizes the imaging process of
the image. Panoramic planar image is the image output by the camera, which is similar to
the planar image we see on paper, and emphasizes the appearance of the image in front of
us. In this paper, spherical images refer to panoramic spherical images, and panoramic
images refer to panoramic planar images. Generally speaking, there is no difference, but
the emphasis is different.

When the spherical image is mapped to the plane completely, the aspect ratio of the
planar image must be 2:1 (see Figure 3). The mapping relationship between the planar
image and spherical image is just like that between a map and the Earth. The latitude
and longitude (θ, ϕ) in the spherical image correspond to the rows and columns (u, v)
of the planar image. The latitude θ ∈ [0, π] is divided into H number of equivalents,
corresponding to row u ∈ [0, H] of the planar image. The longitude ϕ ∈ [0, 2π] is divided
into W number of equivalents, corresponding to column v ∈ [0, W] of the planar image.
In this way, the spherical image is mapped to a planar image with a resolution of W × H.
According to this, we can construct a two-dimensional array to express the spherical pixels.
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Figure 3. Panoramic spherical image and panoramic planar image.

According to Equation (1), ps can be expressed as ps(α, β). Therefore, ps(α, β) can be
used to express p(u, v) and ps(x, y, z) (see Equations (2) and (3)). In the formulas, W and
H respectively represent the width and height of the panoramic image.

u = r(α + π)

v = r(
π

2
− β)

r =
W
2π

=
H
π

(2)


x = r cos β cos(

π

2
− α)

y = r cos β sin(
π

2
− α)

z = r sin β

(3)

We let Pc(Xc, Yc, Zc) be the camera coordinates of P(X, Y, Z). Because the optical center
O and spherical projection points ps and Pc are collinear, Equation (4) can be obtained, and
Equation (5) is then established, where R is the distance between the object square point
and the optical center of the camera.

Xc

x
=

Yc

y
=

Zc

z
(4)

X2
c + Y2

c + Z2
c = R2 (5)

According to Equations (2) and (3), the relationship between the panoramic spherical
coordinates and the pixel coordinates can be derived, as shown in Equations (6) and (7).

x = r cos(
π

2
− π

v
H
) cos(

3π

2
− 2π

u
W

)

y = r cos(
π

2
− π

v
H
) sin(

3π

2
− 2π

u
W

)

z = r sin(
π

2
− π

v
H
)

(6)


u =

3W
4
− W

2π
arctan

y
x

v =
H
2
− H

π
arcsin

z
r

(7)
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By combining Equations (4) and (7), the relationship between pixel coordinates p(u, v)
and camera coordinates Pc(Xc, Yc, Zc) can be derived, as shown in Equation (8).

u =
3W
4
− W

2π
arctan

Yc

Xc

v =
H
2
− H

π
arcsin

Zc√
X2

c + Y2
c + Z2

c

(8)

5. Feature Extraction and Matching of Spherical Images

A few feature extraction algorithms have been designed for use with spherical images,
such as spherical SIFT [44], PCA-SIFT [45], etc. Although, to a certain extent, the influence
of spherical image distortion on feature extraction is solved, the speed of the feature extrac-
tion is not ideal. The main concern of this paper is panoramic visual SLAM positioning
technology, which requires the system to output the real-time pose information of the
camera. Therefore, the algorithms with poor real-time performance are not discussed.

In a real-time visual SLAM system, in order to ensure that the speed of the feature
extraction matches that of the system, it is usually necessary to reduce the quality of the
feature extraction. One solution for monocular vision SLAM systems is to use the Oriented
FAST and Rotated BRIEF (ORB) algorithm [46] to complete the feature extraction and
matching. However, in panoramic vision, because of the influence of the image distortion,
and the fact that the camera imaging model differs from that of monocular vision, the ORB
algorithm is not ideal for the feature extraction of panoramic images.

The SPHORB algorithm stems from the geodesic grid and can be considered as an
equal-area hexagonal grid parametrization of the sphere used in climate modeling. It has
been proved in topology that any surface can be approximated by triangulation. Therefore,
a sphere can also be approximated by triangles, which can be combined into hexagonal
meshes (and may contain a small number of pentagons). The idea of the SPHORB al-
gorithm is to approximate the spherical image and obtain a hexagonal spherical mesh
(similar to a football). The fine-grained and robust features are then directly constructed
on the hexagonal spherical grid, avoiding the time-consuming computation of spherical
harmonics and the related bandwidth constraints, thus enabling a very fast performance
and high descriptive quality (the specific process is shown in Figure 4). We therefore use
the SPHORB algorithm for the feature extraction.

Figure 4. Spherical Oriented FAST and Rotated BRIEF (SPHORB) algorithm flow chart.

6. The Panoramic Visual SLAM Algorithm

The SLAM problem can be described by two equations: the motion equation (Equation (9))
and the observation equation (Equation (10)).

xk = f (xk−1, uk, wk) (9)

zk,j = h(yj, xk, vk,j) (10)

In the motion equation, subscript k denotes the current time serial number, and k− 1
denotes the last moment. uk is the sensor’s reading and wk is the noise. xk represents the
position of the sensor at the current time. xk is a three-dimensional vector. xk−1 represents
the position of the sensor at the last moment.
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In the observation equation, subscript j represents the ordinal number of the currently
observed landmarks. yj is the landmark observed by the sensor at position xk, which is
also a three-dimensional vector. zk,j denotes the observation data corresponding to the
landmarks yj. vk,j is the measurement noise.

These two equations are the most basic equations in the SLAM problem. They describe
the motion and observation models of the sensor in the SLAM problem. Therefore, the
problem can be abstracted as follows: how to solve the location problem (estimate x)
and the mapping problem (estimate y) when we know the reading data of the motion
measurement and the reading data of the sensor. At this time, we model the SLAM problem
as a state estimation problem, i.e., how to estimate the internal and hidden state variables
by measuring data with noise [47].

In this paper, we mainly address the location problem of panoramic SLAM, i.e., how
to solve the x-vector in the above-mentioned state estimation problem, the position and
attitude of the panoramic camera, and how to make full use of the wide-range perspective
of the panoramic camera to optimize the vector x.

The algorithm framework of classical visual SLAM is shown in Figure 5. Firstly,
the data of the visual sensor, including the video and image data, are input. Secondly,
feature extraction and matching of the image data are carried out. The transform matrix T
(including rotation matrix R and translation vector t) is calculated according to the principle
of reprojection error minimization, and the pose change of the camera is estimated. At
the same time, a local map and the initial pose map are constructed. Next, in the back-
end optimization, considering the loop information, the transformation matrix T and
the three-dimensional coordinate X of the landmark are optimized simultaneously by
using the non-linear optimization method. Finally, sparse three-dimensional point clouds
are generated.

Figure 5. Framework of classical visual SLAM algorithms.

6.1. Front-End Visual Odometry

Compared with the classical SLAM algorithm framework, the SLAM algorithm based
on panoramic vision faces some problems: (1) the distortion of the spherical image makes
the feature extraction and matching difficult; (2) the mapping relationship between the pixel
coordinates and camera coordinates of the planar image is not applicable to a spherical
surface; and (3) the method of solving pose with a polar constraint of the planar image is
not applicable to a spherical surface.

Therefore, in view of the panoramic visual SLAM positioning problem, we need
to improve the front-end visual odometry part of the classical visual SLAM framework.
The improvement process is shown in Figure 6. To deal with the distortion of spherical
images, the SPHORB algorithm, which can directly extract and match the features of a
spherical surface, is adopted to effectively reduce the influence of image distortion on
feature extraction and matching. From the pixel coordinates to the camera coordinates,
the planar image is described by an internal reference matrix, while the panoramic image
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is a sphere. The mapping relationship between the pixel coordinates (u, v) and camera
coordinates (θ, ϕ) needs to be described by a latitude and longitude expression.

Figure 6. Framework of panoramic visual SLAM algorithms. Improvements to the classical framework are shown in blue.

6.2. Back-End Optimization

Since the polar geometric relationship of a spherical panorama is consistent with that
of a planar image, the essential matrix E between two spherical coordinate systems can be
calculated directly using the coordinates of standard spherical panoramic image points.
Therefore, the polar-constrained relationship of the planar image xT

2 Ex1 = 0 can be ex-
tended to the sphere. x1, x2 are the panoramic spherical coordinates (x1, y1, z1), (x2, y2, z2),
which represent a pair of namesake points p1, p2. The panoramic spherical coordinates can
be directly calculated by Equations (6) and (7).

In this study, the back-end optimization algorithm in ORB-SLAM2 [6] was improved
to enable it to handle the spherical model. In the optimization process of the back-end of
the sphere, we still use the pixel reprojection error, and the error function can be expressed
as shown in Equation (11). x p̂ is the pixel coordinate of the point after reprojection, and xp
is the pixel coordinate of the matching point.

e =
1
2

n

∑
i=1
||x p̂ − xp||22 (11)

In order to optimize the overall reprojection error, the least-squares problem is con-
structed. All the positions are adjusted to minimize e. By combining Equations (8) and (11),
the Jacobian matrix of the reprojection error point Pc(Xc, Yc, Zc) can be obtained as shown
in Equation (12). The Jacobian matrix of pose ξ is shown in Equation (13).

We let R =
√

X2
c + Y2

c + Z2
c , a =

√
X2

c + Y2
c .

J =
∂e

∂Pc
= −


WYc

2πa2 −WXc

2πa2 0

HZcXc

πR2a
HZcYc

πR2a
− Ha

πR2

 (12)

J =
∂e
∂ξ

= −


WYc

2πa2 −WXc

2πa2 0
WZcXc

2πa2 −WZcYc

2πa2 −W
2π

HZcXc

πR2a
HZcYc

πR2a
− Ha

πR2 −HYc

πa
HXc

πa
0

 (13)

where e represents the reprojection error, Pc represents the camera coordinates of the object
points, and ξ represents the Lie-algebraic form of the pose.

So far, we have derived the Jacobian matrix of the observation equation of the
panoramic camera from the camera pose and feature points, which are an important
part of the back-end optimization. They are also the unique part that distinguishes a
panoramic camera from a monocular camera in the process of back-end optimization.
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7. Experiments and Analysis
7.1. Experimental Data

In order to test the robustness and accuracy of panoramic visual SLAM in different
environments, four datasets were selected (see Figure 7a). The first two groups were
from our measured data, while the latter two groups were from InteriorNet data. The
trajectory of our measured data was roughly a rectangle, and the movement of the camera
was relatively stable. InteriorNet data were simulated by a computer. It could arbitrarily
change the viewpoint to generate a panoramic image, so its trajectory was irregular. We
used these two different types of data to evaluate the robustness of the algorithm. The
InteriorNet data were generated by Li et al. [38] in a simulated environment. Each
InteriorNet dataset contains panoramic data, plus corresponding monocular data and
fisheye data (as shown in Figure 7b), each with 1000 frames of images. The movement
of the measured data was relatively stable, while the data generated in the simulated
environment showed more violent movement. In this paper, the robustness and accuracy
of panoramic visual SLAM and monocular visual SLAM are evaluated through the data of
various scenes and motion states.

(a) Four groups of experimental data

(b) Three types of InteriorNet data: top is monocular; middle is fisheye; bottom is panoramic

Figure 7. Experimental image data.

7.2. Matching Experiment
7.2.1. SIFT, Binary SIFT, and Ternary SIFT

Because SIFT has good robustness to scale and rotation, and its accuracy is high
but its speed is slow, we attempted to improve its speed so that it could be used in
SLAM. The main improvement was to quantize the 128-dimensional floating-point vector
(128 × 32 = 4096 bits) of SIFT with the median as the bound, and to binarize the original
floating-point numbers. The numbers greater than the median were recoded to 1, and the
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numbers less than the median were recoded to 0, so that the data were compressed into
128 bits. This can greatly reduce the memory consumption and improve the matching
speed, while maintaining the robustness of SIFT.

Similarly, in order to quantify the original 128-dimensional floating-point vector more
accurately, we implemented “ternary” SIFT. At the same time, taking the values at 1/4 and
the median as the boundaries, the encoding from small to large was 00, 10, and 11. The
original 32-bit floating-point numbers were compressed into 2 bits, with a total of 256 bits.

In the experiments, because the parts of feature extraction and descriptor calculation
were the same, the time taken for the quantization descriptor could be ignored, so that
the matching speed and accuracy of the three methods could be compared. The coarse
matching was screened by a ratio test, for which the threshold was 0.8. The fundamental
matrix was calculated by random sample consensus (RANSAC), and a reprojection error of
3 pixels was used for the fine matching. After several groups of experiments, three pairs of
typical panoramic images were selected for analysis. The first pair was made up of indoor
images with more feature points, without too large a rotation angle, which is a common
situation in SLAM. The second pair was made up of images with a 90 degree rotation. The
third group was made up of outdoor images with fewer feature points. The experimental
results are shown in Figure 8. The left, middle, and right are the results of SIFT, binary
SIFT, and ternary SIFT, respectively.

Figure 8. (left) sift; (middle) binary scale-invariant feature transform (SIFT); (right) ternary SIFT.

The evaluation of matching results for different kinds of SIFT are listed in Table 1.
For the case of more feature points, as in the first group of data, the matching data and
fine matching rate of the three methods are almost the same, but the speed of SIFT is



Sensors 2021, 21, 705 12 of 18

significantly slower than that of binary SIFT and ternary SIFT. The matching result of
ternary SIFT is better, and even better than SIFT in the case of rotation, and the speed is
also faster, as shown in the second group of data. For the case of fewer feature points,
the matching results of binary SIFT and ternary SIFT are worse than that of SIFT. The
reason for this may be that the number of matching points is small, and the proportion
of wrong matches in the coarse matching is high, which leads to the increase of iterations
in RANSAC.

Table 1. Evaluation of matching results for different kinds of SIFT.

Data
Type

Matching
Method

Rough Matching
Number

Fine Matching
Number

Fine Matching
Rate

Matching Time
(s)

Group 1
(Indoor, More Feature Points)

SIFT 1196 475 39.72% 1.104
binary SIFT 1212 460 37.95% 0.731
ternary SIFT 1075 439 40.84% 0.698

Group 2
(Rotate 90 degrees)

SIFT 1397 365 26.13% 1.578
binary SIFT 1403 354 25.23% 1.007
ternary SIFT 1295 389 30.04% 0.979

Group 3
(Outdoor, Fewer Feature Points)

SIFT 191 92 48.17% 0.319
binary SIFT 267 82 30.71% 0.224
ternary SIFT 196 68 34.69% 0.214

In general, the matching speed of ternary SIFT is the fastest. In the case of more feature
points, a superior matching result can be obtained, even if the image has rotation.

7.2.2. SPHORB and ORB

The ORB algorithm is one of the fastest feature extraction algorithms available, and
has good matching accuracy, but it is mainly used for processing planar images. For
spherical images, the ORB algorithm does not work as well. The SPHORB algorithm is a
feature extraction algorithm used to process spherical images, and is an improvement of
the ORB algorithm based on the features of a spherical image (please refer to Section 5),
ensuring faster processing speed and higher accuracy.

In the panoramic image-matching experiments, the three datasets described in
Section 7.2.1 were again used. The feature points calculated by ORB and SPHORB were
used for the matching in the three experiments. Figure 9 shows the matching result of the
ORB algorithm on the left and the SPHORB algorithm on the right.

As shown in Figure 9, in the first and third groups of experiments, the matching
lines of the SPHORB have better consistency and fewer crossover lines. The figure shows
that the matching quality was better than ORB. In the second experiment, because the
image was rotated 90 degrees, the ORB algorithm only matched the central part of the
image, but the feature with the same name on the edge was not matched. However, the
SPHORB algorithm could match most of the eponymous feature points in both the center
and the edge.

The evaluation of matching results for ORB and SPHORB are listed in Table 2. The fil-
tering rules for the rough matching and fine matching are consistent with those described
in Section 7.2.1. However, the results from the first and second sets of data experiments
showed that the ORB algorithm had a higher matching precision than the SPHORB al-
gorithm. Notably, in the second set, SPHORB had a fine matching rate of only 24.86%,
which is clearly not true. The reason for this is most likely the removal of a large number of
correct matches during the RANSAC process. As described in Section 7.2.1, the RANSAC
algorithm in OpenCV was adopted, which is mainly used for planar images. For panoramic
images, the effect of removing mismatches is often not good, especially when a pair of
panoramic images has a large rotation angle (as in the second group of data). Therefore, a
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special spherical RANSAC method is needed to obtain a reliable and precise matching rate.
This will be addressed in our future research.

In summary, the matching results show that the accuracy the SPHORB algorithm is
higher than the ORB algorithm. Because the current filtering rules for the precise matching
of spherical images are unreliable, the data results in Table 2 do not reflect the true accuracy
of SPHORB.

Figure 9. (left) Oriented FAST and Rotated BRIEF (ORB); (right) SPHORB.

Table 2. Evaluation of matching results for ORB and SPHORB.

Data
Type

Matching
Method

Rough Matching
Number

Fine Matching
Number

Fine Matching
Rate

Matching Time
(s)

Group 1
(Indoor, More Feature Points)

ORB 1458 978 67.08% 1.868
SPHORB 1323 826 62.43% 1.895

Group 2
(Rotate 90 degrees)

ORB 2162 1190 55.04% 3.791
SPHORB 4860 1208 24.86% 4.099

Group 3
(Outdoor, Fewer Feature Points)

ORB 350 166 47.43% 3.263
SPHORB 267 165 61.80% 3.695
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7.3. Panoramic Visual SLAM Experiment

According to the data characteristics, the experiments were divided into two groups.
The first group of data was made up of measured data without the true values of the
trajectories. These data were used to evaluate the mapping effects of ORB and SPHORB
in SLAM, including the initialization speed, the number of matches per frame, and the
tracking time of each frame. The initialization speed was measured by the ID of the frame
where the initialization was successful. We recorded the number of successful matching
points in each frame and calculated their mean value. The greater the number of matching
points, the better the accuracy of SLAM. Finally, the average tracking speed in each frame
were recorded. The second group of data was made up of the InteriorNet simulation
data, and because the data provided the true values of the trajectories, they could be
used to evaluate the accuracy of the trajectories. The data also provided the monocular
image corresponding to the panoramic image (see Figure 7b), which could highlight the
advantages of using panoramic images in SLAM.

The experimental results for the first group of data are shown in Figure 10 and listed
in Table 3. It can be seen from the figure that the common view of SLAM when using
SPHORB is much denser than when using ORB. This is due to the fact that the number of
matching points of SPHORB is higher, which makes the constraint between frames stronger
and the final accuracy higher.

(a) Running screenshot of measured data 1.

(b) Running screenshot of measured data 2.

Figure 10. SLAM using ORB and SPHORB.
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Table 3. Comprehensive evaluation of ORB and SPHORB.

Data Type Matching Method Initial Frame ID Mean Matches Per Frame Mean Time Per Frame (s)

Measured
Data 1

ORB 108 191 0.102
SPHORB 11 329 0.483

Measured
Data 2

ORB 238 150 0.102
SPHORB 204 204 0.49

The experimental results for the second group of data are shown in Table 4. The
two groups of InteriorNet simulation data were used to complete three groups of experi-
ments. Panoramic images were used for the SLAM with the SPHORB and ORB algorithms,
and monocular images were used for the SLAM with the ORB algorithm. Due to the
violent movement in the simulated data, tracking failure occurred in the monocular im-
ages, whereas no tracking failure occurred in the SLAM experiments with the panoramic
images. These comparative experiments proved the advantage of SLAM in respect of
panoramic images.

Table 4. Comprehensive evaluation of monocular ORB, panoramic ORB and SPHORB.

Data
Type

Matching
Method

Initial
Frame ID

Mean Matches
Per Frame

Mean Time Per
Frame (s)

Lost
Frame IDs

Simulation
Data 1

Monocular ORB 12 236 0.027 167-876
Panoramic ORB 55 802 0.143 None

SPHORB 4 855 0.525 None

Simulation
Data 2

Monocular ORB 4 205 0.029 449-574, 692-873
Panoramic ORB 4 327 0.12 None

SPHORB 2 589 0.484 None

In Table 4, except for “Monocular ORB”, which experimented with monocular images,
the other entries all experimented with panoramic images. The results show that in the
column of SPHORB, the initial effect, the average number of matches per frame, and the
total number of final map points, are the best among the three groups of experiments, but
its shortcomings are also very obvious, and the speed is slow.

Table 5 and Figure 11 show the results of the evaluation with the EVO Python pack-
age [48]. The headers max, mean, min, rmse, and std in Table 5 represent the maximum,
average, minimum, root mean square error, and standard deviation of the positioning
error, respectively. From the experimental results for the simulation 1 data, it is clear
that the rmse of SLAM with the SPHORB algorithm is the lowest. The trajectory of the
SPHORB algorithm is closest to the true value of the trajectory. In contrast, the trajectory
of monocular ORB is not complete, because it lost many frames, resulting in only a short
tracking result.

The scene of simulation 2 data is more complex, so the three groups of experiments
did not obtain good results. As shown in Table 4, the monocular ORB had tracking failures,
so its results are not comparable with the other two groups. In Table 5, we put the symbol
(%) on the corresponding row. The accuracy of panoramic SPHORB was slightly better
than that of panoramic ORB, but the time consumed by SPHORB was about four times that
of ORB. It can be seen that, for the case of a complex scene, the accuracy of SPHORB does
not show a great advantage over ORB, and it does take more time.
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Table 5. EVO evaluation of monocular ORB, panoramic ORB and SPHORB. (%) means there exist tracking failures.

Data Type Matching Method Max Mean Min Rmse Std

Simulation Data 1
Monocular ORB % % % % %
Panoramic ORB 0.874 0.576 0.158 0.597 0.155

SPHORB 0.075 0.035 0.008 0.036 0.011

Simulation Data 2
Monocular ORB % % % % %
Panoramic ORB 1.589 0.868 0.062 0.937 0.354

SPHORB 1.409 0.825 0.089 0.885 0.319

(a) Trajectories of simulation data 1.

(b) Trajectories of simulation data 2.

Figure 11. Trajectories drawn by EVO.

8. Conclusions

In this paper, we have studied the spherical imaging model and a method of panoramic
visual SLAM. We have developed a SLAM positioning system suitable for panoramic vision.
Through the research of this paper, the following conclusions can be drawn:

(1) For the spherical model, we compared the spherical surface to the Earth. The pixel
coordinates on the sphere were expressed in latitude and longitude. The equations de-
rived by this method are concise and easy to understand, which provides convenience
for the back-end optimization part of panoramic SLAM.

(2) Experiments show that most of the time, ternary SIFT outperforms binary SIFT and
SIFT in accuracy and efficiency. The precision of ternary SIFT is slightly less than SIFT
only when the number of feature points is very small (i.e., less than 500), but this is
acceptable.

(3) Spherical images have a higher resolution and more feature points, which has greater
advantages than monocular images. However, the distortion of spherical images is
serious. After weighing the relationship between accuracy and speed, it was found
that the SPHORB algorithm is the most suitable among the feature extraction and
matching algorithms mentioned in this paper for panoramic visual SLAM positioning
systems.
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