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Abstract: Prefabricated buildings are widely used because of their green environmental protection
and high degree of industrialization. However, in construction process, there are some defects such as
small wireless network coverage, high-energy consumption, inaccurate control, and backward blind
hoisting methods in the hoisting process of prefabricated components (PC). Internet-of-Things (IoT)
technology can be used to collect and transmit data to strengthen the management of construction
sites. The purpose of this study was to establish an intelligent control method in the construction
and hoisting process of PC by using IoT technology. Long Range Radio (LoRa) technology was used
to conduct data terminal acquisition and wireless transmission in the construction site. The Inertial
Measurement Unit (IMU), Global Positioning System (GPS), and other multi-sensor fusion was used
to collect information during the hoisting process of PC, and multi-sensor information was fused
by fusion location algorithm for location control. Finally, the feasibility of this method was verified
by a project as a case. The results showed that the IoT technology can strengthen the management
ability of PC in the hoisting process, and improve the visualization level of the hoisting process of
PC. Analysis of the existing outdated PC hoisting management methods, LoRa, IMU, GPS and other
sensors were used for data acquisition and transmission, the PC hoisting multi-level management
and intelligent control.

Keywords: IoT; LoRa; PC; hoisting; IMU

1. Introduction

In recent years, prefabricated buildings developed rapidly with the advantages of
industrial component production, convenient site installation, and green construction
environment [1]. With the increase of prefabricated buildings, the safety problems of
construction process are now more prominent. Prefabricated building construction site has
the challenges of backward construction management and a low level of visualization [2,3].
Domestic and foreign scholars conducted extensive research on assembly construction
management. Dave et al. [4] developed a communication framework based on the IoT,
to strengthen lean construction management, and used tracking technology for Radio
Frequency Identification (RFID), GPS, and other key components of the IoT, to track the
whole process status of workers, materials, and equipment. Ko et al. [5] proposed a
cost-effective material management and tracking system based on integrated RFID cloud
computing services, which realized the omni-directional automatic tracking of materials.
Xuetong Wang et al. [6] proposed a conceptual framework of an Intelligent Construction
System for Prefabricated Buildings based on the IoT (ICSPB-IoT), and proved the feasibility
of the realization of ICSPB-IoT through case studies. Zhiliang and his team, on the basis
of overall building information management, also conducted research on prefabricated
buildings, and put more emphasis on intelligence, on the basis of informatization [7]. He
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established an intelligent production planning and control system for residential parts
and built a material management system based on mobile terminals for the construction
site [8]. Zhao et al. [9] proposed a method based on the combination of cloud computing,
Building Information Modeling (BIM), and IoT, to solve the problem of delayed information
transmission on the construction site. Xu et al. [10] proposed a cloud-based IoT integration
platform in view of the insufficient adoption of information technology in prefabricated
buildings, which impedes the improvement of their efficiency. The integrated platform
enables Small and Medium Enterprises (SMEs) to adopt IoT technology economically
and flexibly. The above research aimed at the production of PC and construction site
management, combined with RFID technology, BIM technology, cloud computing and GPS,
and other information technologies; conducting a construction management framework of
prefabricated buildings; tracking from production of PC to construction site and full cycle
information management. However, there are few experimental applications of the latest
technology of the IoT in prefabricated buildings. Moreover, the research on the automated
construction management of the IoT is in the initial stage.

Meanwhile, with the rapid development of new technologies in the IoT, the research
and application of LoRa and other Low Power Wide Area Network WAN (LPWAN) are
gradually increasing. Knoll et al. [11] applied LoRa technology to directly monitor the air
pollution value, which solved the problems of high monitoring cost and low precision at
present, and conducted the test in downtown Graz. Mohammed et al. [12] developed and
tested the service model of “intelligent street lamp” based on LoRa. Catherwood et al. [13]
proposed a biomedical stripe diagnosis system where the adoption of LoRa based e-reader
could provide the next generation of community-based intelligent diagnosis and disease
management. Polonelli et al. [14] in Italy designed LoRaWAN-based wireless components
for human structural health monitoring to measure and track cracks in concrete and
other building materials. Shinan et al. [15] applied the Narrow Band Internet of Things
(NB-IoT) technology in prefabricated building construction, created specific application
plans, strengthened the management of PC on the construction site, and provided a strong
reference for the application of the IoT technology in the construction industry. LPWAN,
represented by the LoRa technology, was studied and applied in environmental monitoring,
medical treatment, intelligent street lighting, building monitoring, and other fields [16–18].
However, there is a lack of relevant research on the application of LPWAN in the field
of intelligent management of building construction and building automation. Moreover,
there is a lack of research on the intelligent control of PC hoisting, based on LPWAN.
Aiming at the lack of intelligent control of PC hoisting, this study used LoRa technology
to integrate multiple sensors to strengthen intelligent control of PC hoisting. This study
analyzed the application of information technology in the field of architecture, studied the
fusion method of LPWAN and multi-sensor information integration, introduced the key
role of IoT technology in realizing the intelligent control of PC hoisting, and analyzed the
realization effect of multi-information fusion processing.

The remainder of the paper is organized as follows. Section 2 presents a literature
review about previous work in related areas. Section 3 describes in detail the proposed
multi-sensor sensing hoisting control method. Section 4 presents a sensor test and a field
test of the proposed method applied to a real project. Section 5 discusses the results and
concludes the paper.

2. Literature Review
2.1. IoT Analysis

IoT technology has developed rapidly, such as LoRa, NB-IoT, Ultra Wide Band (UWB),
RFID, and other technologies, strengthening the connection between things and the In-
ternet and between things [19,20]. IoT technology includes the intelligent application of
transmission technology, sensors, actuators, and other internet-enabled devices in various
fields [21]. The development of IoT technology provides a new opportunity for the up-
grading and transformation of the construction industry [22]. At present, WiFi, Bluetooth,
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Zigbee, and other IoT technologies are widely used. These are characterized by convenient
configuration, high security, and stability. However, the energy consumption and cost
of WiFi technology are high, and the communication distance is short, so that WiFi tech-
nology is suitable for transmitting large files. The communication distance of Bluetooth
technology is only about 10 m, so it cannot meet the needs of the extensive construction
site. Zigbee’s biggest characteristic is ad-hoc network, with tens of thousands of network
nodes. But Zigbee has the disadvantage of having very short transmission distances [15,23].
Therefore, the above IoT technologies are not suitable to be used in the large-scale and
multi-component prefabricated building construction.

Compared to the above traditional IoT technology, LPWAN transmission distance
is longer, energy consumption is lower, and is more suitable for prefabricated building
construction. LoRa technology and NB-IoT technology are the two technologies that attract
the most public attention in LPWAN. Comparing LoRa technology with NB-IoT technology,
the conclusion that LoRa technology is more suitable for prefabricated building construction
sites is drawn on the basis of the following advantages. (1) The network is flexible, and the
construction unit can deploy the network by itself, without relying on operators. (2) The
LoRa network has the advantages of lower cost, better transmission performance and longer
transmission distance. (3) The power consumption of LoRa technology is lower in practical
application [24,25]. Moreover, the information acquisition of PC in the construction site is
characterized by multiple terminal nodes and small amount of data. In addition, extensive
coverage, low energy consumption, and low-cost network technologies are needed, as
information changes with the construction process. Therefore, LoRa technology has more
applied advantages in the construction site of prefabricated buildings. LoRa technology
is an information transmission technology based on LoRaWAN. Its essence is a spread
spectrum modulation technology, combined with forward error-correcting coding, and
digital signal processing technology. The LoRa technology adopts star network architecture
with strong scalability, and has the lowest latency and lower network maintenance cost,
as compared to the common network architecture [26,27]. Traditional LoRa technology is
mainly applied in environmental monitoring, medical treatment, intelligent street lighting,
and building monitoring. In recent years, the IoT technology is under constant innovation
and many new breakthroughs were achieved.

2.2. IMU Application Analysis

IMU is widely applied in many fields such as automatic driving and robotics. IMU is
generally a unit composed of three accelerometers, three gyroscopes, and magnetometers.
Acceleration sensors can measure acceleration in three directions, and triaxial angular
velocity can be measured by gyroscopes [28]. The IMU unit can be used to collect and
monitor attitude data, and the object can be located by integrating twice with acceleration.
However, due to the accumulated error of integration, the IMU has serious drift problem in
long-distance positioning [29], which is caused by the accumulated drift of accelerometer
error and gyroscope error in the long distance. After two times of integrations, the displace-
ment would drift and the positioning would be inaccurate [30,31]. Aiming to solve this
problem, Jimenez et al. [32] proposed a zero-velocity correction algorithm, which realized a
multi-condition attitude detection algorithm, using information sources (accelerometer and
gyroscope) and a low-pass filter. Meanwhile, aiming to solve the problem of long-distance
position migration in IMU active positioning, IMU is mainly integrated with GPS, Beidou,
GNSS, and other positioning methods for precise positioning of moving objects [33–36].
Chen proposed a fusion algorithm based on the Kalman filter for accurate positioning by
integrating IMU and GPS algorithm for pedestrian positioning tracking [30]. This paper
explored the integration of IMU and multi-sensors and the real-time upload and feedback
of on-site information through the LoRa network, to strengthen the intelligent management
of assembly building construction and hoisting.
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2.3. Research Emphasis and Novelty

Although there are many applications of IoT in the field of prefabricated building
construction, few studies were performed on the application of LoRa technology in PC
construction management. Moreover, because of the backwardness of the communication
in the operation of the PC, the communication on the swing and position of the PC in the
process of hoisting is still in the form of megaphone and walkie-talkie [37]. Additionally,
the performance of data acquisition and transmission on the construction site is backward,
because more advanced transmission technology is not used in the field information
acquisition and transmission [38], thus, there is no reliable information collection and
transmission method in the hoisting process of PC, and the visual control of PC in the
construction process is insufficient. Reliable information collection and transmission
methods are lacking in the field of PC hoisting, which causes the obvious lack of visual
control of PC during construction.

Through the above analysis, LoRa, IMU, and other multi-sensor fusion is used to estab-
lish the intelligent PC hoisting control method in this study. The method was employed to
conduct meaningful investigations as follows. (1) Hoisting process data collected according
to the IoT, and realizing real-time transmission of different types of data. (2) Based on the
analysis of the comprehensive hoisting data, a hoisting construction management method
of PC was proposed to guide the site construction personnel to conduct the hoisting con-
struction. (3) The fusion positioning algorithm of IMU and GPS based on the Kalman
filter was verified in the feasibility of hoisting positioning. (4) The site management and
control of the PC hoisting was realized to help the hoisting operators and managers to
quickly understand the status of the PC during hoisting. This innovative method, which
integrated technologies like LoRa, IMU, GPS, integrated positioning, and others, improved
the management level of PC hoisting, and is of great significance for future research on
prefabricated building construction.

3. Proposed Method
3.1. LoRaWAN Architecture for Hoisting

LoRa technology networking is simple and flexible. The LoRaWAN network architec-
ture includes four parts—LoRa chip, LoRa gateway, cloud server, service platform, and
software; as is shown in Figure 1.
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The LoRa chip is used to collect real-time information about the hoisting of PC,
including IMU, GPS, and barometers. LoRa gateway is used to receive the information
transmitted from LoRa chip and wirelessly transmit it to the cloud server. The server



Sensors 2021, 21, 980 5 of 17

analyzes and processes the information, then transfers it to the application service platform.
The application platform is the final aggregation point of data, presenting data according
to user requirements.

According to the LoRaWAN network architecture, the application scheme architecture
framework of the LoRa technology in PC hoisting control is established. As is shown in
Figure 2, IMU, GPS, barometer, RFID, and other sensors are used to collect data in the
construction and hoisting process. Real-time upload of data through the LoRa terminal
and the LoRa gateway. The construction site only needs to set up the LoRa gateway at
a predetermined location, according to the construction site requirements, and the LoRa
gateway can transmit the information collected from the LoRa module to the cloud server.
The information uploaded to the cloud server is processed in the application layer, mainly
including component information, attitude information, location information, etc.
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Figure 2. Application functional architecture.

Aiming to solve the problems existing in the hoisting of PC, in this paper, the applica-
tion of IoT technology to strengthen the control of prefabricated parts hoisting is proposed.
As is shown in Figure 3, the attitude information, including acceleration, velocity, and
Euler Angle in the hoisting process of PC is collected through IMU attitude control unit. At
the same time, the information collected by IMU is combined with GPS and barometer for
fusion positioning to accurately monitor the real-time position of the PC in the hoisting
process. The data collected by the above sensors are uploaded to the information layer
through the LoRa technology, and real-time information transmission on the construction
site is conducted through the LoRa technology.
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3.2. IMU Information Collection

Acceleration sensors can measure acceleration in three directions. Gyroscopes can
measure angular velocity in three axes. When IMU collects data, it generally first outputs
the AD value, then converts the AD value to quaternion through transformation algorithm,
and then calculates quaternion to Euler Angle through the transformation algorithm.
The above introduces attitude control algorithm. However, the existing attitude sensing
module, such as MPU6050, has a built-in program that can directly output quaternions
instead of AD values. Moreover, a magnetometer is attached to the IIC interface to directly
output an attitude packet, and get the attitude of the object under tests. The IMU unit
is used to monitor the swinging attitude of components in the hoisting process in real
time so as to distinguish the risks of hoisting. The IMU element consists of a built-in axis
(coordinate) and a relative coordinate system whose vertical direction is the positive Z
axis. By measuring the angle of the IMU data object in the hoisting process, the deflection
angle in the hoisting process is calculated. By monitoring the attitude of components in the
hoisting process, operators can judge whether the hoisting process would be dangerous
due to the actual situation during the hoisting process, so as to terminate the hoisting
process before something dangerous occurs.

3.3. Sensors Date Fusion Processing

Through IMU and GPS integrated positioning, the positioning accuracy is higher than
that of the single GPS, and it is more suitable for building construction, which can better
reduce the influence of GPS errors caused by field environmental factors. According to
the characteristics of the construction site, based on the original IMU and GPS fusion algo-
rithm [30], this study optimizes the design for the construction hoisting situation, and expands
its application scenarios and methods. As the fusion algorithm due to the GPS height data
is not accurate in the vertical direction (the Z axis) correction, fusion might not apply to the
hoisting of the improved construction of the algorithm and the introduced barometer moni-
toring vertical height data. In this study, the algorithm is applied to make vertical location
data more accurate, in order to meet the needs of the construction hoisting position.
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3.3.1. IMU Positioning Algorithm

The experimenters took due east as the X-axis and due north as the Y-axis, and took
the vertical ground upward as the z-axis of the absolute coordinate system, to establish the
absolute coordinate system W, according to the right-hand rule. The built in coordinate
system of IMU is a relative coordinate system R, and the data of the relative coordinate
system is converted into an absolute coordinate system through a transformation matrix.
The transformation matrix is expressed as a unit quaternion:Q = (qw, q1, q2, q3). Using
state space representation, the system’s state vector can be given as

Xk = (Pk, Vk, Ok)
T

where Pk = (xk, yk, zk) is the displacement vector at time K, Vk = (x′k, y′k, z′k) is the
velocity vector at time K, and Ok = (ϕk, θk, ψk) is expressed as the Euler angle at time K.
aw

k is defined as the absolute acceleration at time K, and ar
k is the relative acceleration at

time K, then:
aw

k = Qk × ar
k ×Q′k − G (1)

where Qk = (qw,k, q1,k, q2,k, q3,k) is the rotation transformation matrix between the relative
coordinate system R and the absolute coordinate system W is represented by quaternions.
G = (0, 0, g) is expressed as the gravitational acceleration vector.

Quaternions are converted to Euler angles by the conversion function Q2Euler(Q):

Ok = Q2Euler(Q) =

 atan2(2(qwq1 + q2q3), 1− 2(q2
1 + q2

2))
arcsin(2(qwq2 − q3q1))

atan2(2(qwq3 + q1q2), 1− 2(q2
2 + q2

3))

 (2)

Pk = P(k−1) + I × Ts ×V(k−1) + 0.5T2
s × I × aw

(k−1) (3)

Vk = V(k−1) + Ts × I × aw
(k−1) (4)

(Pk, Vk)
T =

(
I I × Ts
0 I

)
(P(k−1), V(k−1))

T +

(
T2

s
2 × I

Ts × I

)
aw
(k−1) (5)

In the equation, Ts represents the sampling time interval of the sensor, and I represents
the identity matrix.

3.3.2. Zero-Velocity Stage Judgment

Condition 1:
|ak| =

√
ar

k(1)
2 + ar

k(2)
2 + ar

k(3)
2 (6)

C1 =

{
1, thrhdamin < |ak| < thrhdamax

0, others

}
(7)

In the equation, thrhdamin and thrhdamax , respectively, represent the minimum threshold
and the maximum threshold.

Condition 2:

σ2
ar

k
=

1
2s + 1

k+s

∑
j=k−s

(ar
k − ar

k
2
) (8)

C2 =

{
1, σ2

ar
k
< thrhdamax

0, others

}
(9)

Condition 3:
|ωk| =

√
ωr

k(1)
2 + ωr

k(2)
2 + ωr

k(3)
2 (10)

C3 =

{
1, |ωk| < thrhdωmax

0, others

}
(11)
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Through the above three conditions, the logical value of zero speed detection Cstop =
C1&C2&C3, where C1, C2, C3 are represented in Condition 1, 2, 3.

3.3.3. Fusion Positioning

When considering the logical value of zero velocity test, the state matrix is expressed as:

X̂k = (P̂k, V̂k, Ôk)
T
= A× Xk−1 + C× aω

k + Ok (12)

A =

 I I × Ts 0
0 I × Cs 0
0 0 0

 (13)

C = (
T2

s
2
× I, Ts × I, 0)

T

(14)

Qk = (0, 0, Q2Euler(Qk))
T (15)

GPS height and speed data are not accurate, longitude and latitude is used as the
actual measurement, and the latitude and longitude are converted into global coordinates
using the conversion equation given by Dupree:

Xgps = cos(ϕ)

√√√√ 1(
sin(ϕ)

a

)2
+
(

cos(ϕ)
c

)2

[
(lon1− lon0)× π

180

]
(16)

ygps =

√√√√ 1(
sin(ϕ)

a

)2
+
(

cos(ϕ)
c

)2

[
(lat1− lat0)× π

180

]
(17)

ϕ= 2π−0.5(lat1− lat0)
π

180
(18)

In the equation, (lon0, lat0) is the original point of geographical coordinates, (lon1,
lat1) is the geographical coordinates of a specific point. (xgps, ygps) measured by GPS can
be obtained through the above equation, and combined with the barometer (zb), then
Dk =

(
xgps, ygps, zb

)T , defines the measurement matrix as:

Hk =

 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1

 (19)

Next, Kalman filtering is performed. Calculated state prediction:

Xk = X̂k + Kk(Dk − HX̂k) (20)

Kk =
ˆ∑ k HT(H ˆ∑ k HT + Rk)

−1
(21)

ˆ∑ k = A∑ k−1 AT + Nk (22)

∑ k = (AI − Kk H) ˆ∑ k(I − Kk H)T + Rk (23)

The error of quaternion would cause the drift error of acceleration in the global frame.
For this problem, the quaternion is modified to:

Qk = ∆Qk−1 ×Qk (24)

∆Qk−1 = Euler2Q
(
0, 0, Kk × (Dk − HkX̂k)) (25)
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The measurement model is:

Zk = HkX̂k + nk (26)

Zk represents the predictive measurement, nk represents environmental noise, and the
covariance matrix is Rk = E(nk, nT

k ).
When one of GPS with a barometer is unavailable, then x̂k using the Kalman filter,

directly to the next iteration calculation. The algorithm logic is shown in Figure 4.
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4. Case Study of the Proposed Method
4.1. Case Background and Scenario Simulation

In this study, the example of the assembled floor construction and hoisting was used
to analyze the practical application of the assembled floor construction and hoisting. The
construction area of the second stage of Jintang Yuan was 71,172.43 square meters, including
buildings 10~18, and its prefabricated structure was concrete shear wall structure. The PC of
the project included prefabricated stairs, prefabricated wall panels, and prefabricated laminated
floors. The total number of prefabricated members was 6174, including 656 prefabricated wall
panels, 5224 prefabricated composite floors, and 294 prefabricated stairs. The number of PC
in each building is shown in Table 1. In the table, Building No. 15 and Building No. 18 are
divided into two parts due to their different floors, as is shown in Figure 5.
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Table 1. Precast component details.

Building
Number

Total
Floors

Start
Layer

End
Layer

Assembly
Layer

Single Wall
Panels

Wallboards
Total Number

Number of Single
Floor Slab

Number of
Single Stairs

10 15 4 14 11 16 176 96 4

11 11 4 10 7 4 28 50 4

12 11 4 10 7 6 42 78 6

13 11 4 10 7 4 28 52 4

14 11 4 10 7 8 56 76 4

15(1) 11 4 10 7 4 28 38 2

15(2) 8 3 7 5 8 40 76 4

16 18 4 17 14 8 112 46 2

17 18 4 17 14 8 112 46 2

18(1) 11 4 10 7 2 14 26 2

18(2) 8 3 7 5 4 20 52 4

4.2. Hardware Selection and Development

In this study, the power consumption of the IoT terminal is optimized at the level of
hardware and algorithm system, and the optimization ideas mainly include three levels.
The first level is the use of a more efficient DC–DC power management circuit. The second
level is from the algorithm and embedded system program to maximize the sleep time,
reduce the system empty running time, i.e., the use of long sleep, timing, and short time
wake up mode, to minimize the power consumption of the system. The third level is the
selection and update of the RFIC chipset, replacing the original SX1278 chipset with the
lower power consumption SX1268 chipset, so as to further reduce the power consumption
of the system.

The hardware selection is shown in Table 2, including the LoRa chip, MCU, etc. The
IoT positioning terminal with improved DC–DC power supply and embedded system
and its architecture analysis are shown in Figure 6. Meanwhile, the positioning module is
added on the basis of the system. The system uses a modular addition approach, using
a plug, where the positioning module is used when needed, to improve the positioning
accuracy of the entire system. In the low power mode, the positioning module is not
started, and the overall power consumption is reduced to the ideal state.

Table 2. Hardware models and parameters used.

Hardware Types Module Selection Introduction of Module

Lora chip Semtech SX1268 Semtech’s new long-range, low-power sub-GHz
wireless transceiver chip

MCU STM32F103ZET6 ST company under a commonly used enhanced
series of microcontrollers

GPS N305-3V Professional level dual mode navigation and

Barometer BMP180 A high-precision, low-power digital pressure sensor
for mobile phones, GPS navigation devices.

IMU JY901B Intelligent attitude information measurement
module developed by Witter
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Figure 6. LoRa transmission terminal.

LoRa Gateway, located at the highest point of a tower crane on the construction site,
collects perceptual data. The data collected from the sensor is transmitted to the gateway
through LoRaWAN. The LoRa gateway can transmit the data to cloud servers and transfer
the LoRaWAN protocol to TCP/IP protocol. LoRaWAN protocol to the TCP/IP protocol.
In China, LoRa operates in the 470/510 M, which allows long-range coverage, with a
bit rate ranging from 0.37 and 46.9 kbps [38]. The important parameters of the LoRa
communication are shown in Table 3 and the prototype of the LoRa gateway used is shown
in Figure 7.

Table 3. The properties of LoRaWAN.

LoRaWAN Parameter LoRa Values

Channel Bandwidth 125 to 500 kHz

Uplink data rate 29–50 kbps

Downlink data rate 7–50 kbps

Spreading factor 27to 212

Link budget BMP180156 dB

Doppler sensitivity Up to 40 ppm

Sensors 2021, 21, x FOR PEER REVIEW 12 of 17 
 

 

SX1268

STM32F103ZET6GPS
module

Download 
port

power 
supply 

Sensor 
interface

Sensor
module

IMU 
module

SX1268
N305-3V

MCU

Power supply

Micro USB 
interface

RS485
Sensor interface

SWD download 
port

 
Figure 6. LoRa transmission terminal. 

LoRa Gateway, located at the highest point of a tower crane on the construction site, 
collects perceptual data. The data collected from the sensor is transmitted to the gateway 
through LoRaWAN. The LoRa gateway can transmit the data to cloud servers and transfer 
the LoRaWAN protocol to TCP/IP protocol. LoRaWAN protocol to the TCP/IP protocol. 
In China, LoRa operates in the 470/510 M, which allows long-range coverage, with a bit 
rate ranging from 0.37 and 46.9 kbps [38]. The important parameters of the LoRa commu-
nication are shown in Table 3 and the prototype of the LoRa gateway used is shown in  
Figure 7. 

Table 3. The properties of LoRaWAN. 

LoRaWAN Parameter LoRa Values 
Channel Bandwidth 125 to 500 kHz 

Uplink data rate 29–50 kbps 
Downlink data rate 7–50 kbps 

Spreading factor 27to 212 
Link budget BMP180156 dB 

Doppler sensitivity Up to 40 ppm 

 
Figure 7. LoRa gateway installed on the construction site. 

The leysight power analyzer was used to conduct a complete power test and analysis 
of the improved positioning terminal; the instrumental analysis interface is shown in Fig-
ure 8. The power supply voltage was 3.3 V, and the current of on-chip temperature and 
humidity sensor was 39.7 mA under working conditions. In the case of single-point pulse 
signal transmission, its power consumption was 79.8 mA. The power consumption in the 
sleep mode was 53.7 uA. The data transmission efficiency of th eLoRa network is shown 
in Figure 9. 

Figure 7. LoRa gateway installed on the construction site.

The leysight power analyzer was used to conduct a complete power test and analysis
of the improved positioning terminal; the instrumental analysis interface is shown in
Figure 8. The power supply voltage was 3.3 V, and the current of on-chip temperature and
humidity sensor was 39.7 mA under working conditions. In the case of single-point pulse
signal transmission, its power consumption was 79.8 mA. The power consumption in the
sleep mode was 53.7 uA. The data transmission efficiency of th eLoRa network is shown
in Figure 9.
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4.3. Analysis of the Hoisting Process

RFID tags are attached to the PC, which contain the corresponding PC number and
other information for information verification. As is shown in Figure 10, the hoisting
process of PC mainly included the following aspects of the gateway layout, device installa-
tion, component stacking, equipment sleep, determining the hoisting sequence, equipment
activation, monitoring the hoisting process, information uploading, and module recovery.
Through intelligent management of multiple sensor information collected in the hoisting
construction process, the intelligent management of information checking, construction
simulation, hoisting process monitoring, information uploading, and other aspects can
be realized. The corresponding LoRa gateway were arranged in combination with the
stacking of materials in the construction site, based on the LoRaWAN network architecture,
and the LoRa information transmission network established in the construction site.
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Figure 10. Control flow of PC hoisting.

After the construction personnel confirms the hoisting, the active control module of
the handheld device enters into the working state for real-time information transmission.
Researchers select the appropriate spreader according to the prefabricated floor information,
check whether the embedded hoisting ring on the assembly is firm, and lift it directly from
the flat car after confirmation.

According to the attitude information collected by the active module, the tower crane
operator monitors the deflection, tilt angle, and sling deflection angle of the PC, during the
hoisting process.

Through the information collected by the integrated module, the operator of the tower
crane checks the real-time location information of the PC on the equipment.

The path of PC in the hoisting process is composed of vertical movement, horizontal
radial movement, and horizontal tangential movement. There are horizontal radial move-
ment and horizontal tangential movement in the vertical hoisting of PC. The position of
the PC is adjusted so that the PC is approximately directly above the installation point
through the operator’s luffing and turning operation during the hoisting process, and then
the vertical landing is conducted. It can be obtained through multi-sensor information
fusion and algorithm processing, as shown in Figure 11. The path of the PC presents
advanced path motion in the projection of the X-Y plane, and then tangential motion was
conducted, and the corresponding tangential motion was adjusted in the process, and the
deflection was conducted to the inside of the tangential motion. From the projection of
the X-Z plane and the Y-Z plane, it could be seen that the vertical movement of the PC
was accompanied by alternating tangential movement and radial movement, gradually
shifting to the installation position. Meanwhile, it could be seen from the three-dimensional
trajectory diagram of X-Y-Z that the PC presents a complex trajectory with three kinds of
motions, continuously combined and alternately adjusted in the traveling path. The results
presented in the figure are basically consistent with the pre-hoisting planning and the usual
hoisting trajectory, which reflects the timely visual display and intelligent control effect of
the multi-sensor fusion processing and transmission method, on the response of the PC in
the hoisting process.
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Figure 11. Hoisting track diagram of PC.

In the process of installation, the flatness of PC is corrected and the tilt angle infor-
mation of PC is observed to avoid human error such as plumb line measurement. After
the installation of PC is completed, field workers confirm through handheld devices and
upload to the cloud server database for preservation, so as to facilitate subsequent review
and acceptance. After uploading the information, workers reset the module information
for subsequent hoisting.

5. Discussion and Conclusions

The rapid development of new generation technologies such as the IoT and artificial
intelligence led the construction industry to upgrade to digital and intelligent construction.

IoT technology is the key technology to realize the transformation and upgrading of
prefabricated building construction, as well as an efficient method for the management
and control of PC hoisting system. This study analyses the construction hoisting status and
the application of information technology, investigates the fusion method of LPWAN and
multi-sensor information integration, introduces the key role of IoT technology in realizing
intelligent control of PC hoisting, and analyses the realization effect of multi-information
fusion processing. This method has the following advantages:

(1) Aiming for the application of IoT technology in the construction stage, the integra-
tion mechanism of LPWAN and multi-sensor was explored. The real-time data feedback
provided a new idea for the realization of “real-time perception, intelligent analysis and
intelligent decision” in PC construction.

(2) To apply the LoRa technology and multi-sensor fusion mechanism to hoisting of
PC, we first performed the deep fusion of LoRa technology and multi-sensor to realize
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real-time perception and upload information, which lay a foundation for the deep visu-
alization, real-time feedback, intelligent control, and accurate execution of prefabricated
building construction. Meanwhile, the ability of depth information fusion to improve the
optimization control of PC during the hoisting process is discussed.

(3) Improving the intelligentization of PC hoisting construction is a system engineering
of multidisciplinary integration. This study took the intelligent control of PC hoisting based
on the multi-information fusion transmission of the IoT as the core, realizing the multi-
information fusion transmission and processing mechanism in the hoisting process, and
continuously improving the ability of intelligent control of PC hoisting.

(4) Aiming at the problem of intelligent hoisting control of PC, an integrated method
driven by intelligent sensing technology and intelligent algorithm was conducted, to
improve the intelligent level of hoisting construction and realize real-time interaction in
the hoisting process. The integrated data visualization display realized the virtual control
of the hoisting process and effectively improved the management level.

Generally, the advantages of the LoRa technology, such as long distance, mass nodes,
high security, low energy consumption, and flexible networking, makes it suitable for
application scenarios of prefabricated building construction. This study showed that
the application of multi-sensor information fusion method driven by the IoT to realize
the intelligent hoisting control of prefabricated components is feasible and has a broad
application prospect. However, at present, the research on intelligent hoisting construction
of PC is still in the primary stage, and the research on intelligent hoisting equipment and
management system is still in the primary stage. Improving the actual effect of information
interaction and fusion and communication technology transmission analysis, and realizing
the deep integration of IoT devices and other intelligent technologies to promote digital
display of the whole life cycle of intelligent construction and operation of buildings would
be the focus of further research and exploration.
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