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Abstract: In type 1 diabetes management, the availability of algorithms capable of accurately
forecasting future blood glucose (BG) concentrations and hypoglycemic episodes could enable
proactive therapeutic actions, e.g., the consumption of carbohydrates to mitigate, or even avoid,
an impending critical event. The only input of this kind of algorithm is often continuous glucose
monitoring (CGM) sensor data, because other signals (such as injected insulin, ingested carbs, and
physical activity) are frequently unavailable. Several predictive algorithms fed by CGM data only
have been proposed in the literature, but they were assessed using datasets originated by different
experimental protocols, making a comparison of their relative merits difficult. The aim of the
present work was to perform a head-to-head comparison of thirty different linear and nonlinear
predictive algorithms using the same dataset, given by 124 CGM traces collected over 10 days with
the newest Dexcom G6 sensor available on the market and considering a 30-min prediction horizon.
We considered the state-of-the art methods, investigating, in particular, linear black-box methods
(autoregressive; autoregressive moving-average; and autoregressive integrated moving-average,
ARIMA) and nonlinear machine-learning methods (support vector regression, SVR; regression
random forest; feed-forward neural network, fNN; and long short-term memory neural network).
For each method, the prediction accuracy and hypoglycemia detection capabilities were assessed
using either population or individualized model parameters. As far as prediction accuracy is
concerned, the results show that the best linear algorithm (individualized ARIMA) provides accuracy
comparable to that of the best nonlinear algorithm (individualized fNN), with root mean square errors
of 22.15 and 21.52 mg/dL, respectively. As far as hypoglycemia detection is concerned, the best linear
algorithm (individualized ARIMA) provided precision = 64%, recall = 82%, and one false alarm/day,
comparable to the best nonlinear technique (population SVR): precision = 63%, recall = 69%, and
0.5 false alarms/day. In general, the head-to-head comparison of the thirty algorithms fed by
CGM data only made using a wide dataset shows that individualized linear models are more
effective than population ones, while no significant advantages seem to emerge when employing
nonlinear methodologies.

Keywords: glucose sensor; time series; signal processing; data-driven modeling

1. Introduction

Type 1 diabetes (T1D) is a metabolic disease characterized by an autoimmune de-
struction of the pancreatic cells responsible for insulin production and thus compromises
the complex physiological feedback systems regulating blood glucose (BG) homeostasis.
As a consequence, T1D people are requested to keep their glycemia within a safe range
(i.e., BG of 70–180 mg/dL). In particular, concentrations below or above this range (called
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hypo- and hyperglycemia, respectively) can represent a risk to the patient’s health, with the
possibility of causing severe long-term complications.

The management of T1D therapy, which is mainly based on exogenous insulin infu-
sions, requires the frequent monitoring of BG concentrations. Today, such monitoring is
performed using continuous glucose monitoring (CGM) sensors, which allow collecting
and visualizing glucose concentrations almost continuously (e.g., every 5 min) for several
days [1,2]. All commercial CGM devices are labeled as minimally invasive since they
require either a microneedle or a small capsule to be inserted in the subcutis, and they
represent an important innovation because they allow reducing the burden of performing
multiple daily invasive self-monitoring tests of BG concentrations. Of note, in recent years,
there has been a great effort in investigating noninvasive glucose monitoring technologies
(see [3–6] for reviews on the topic). Noninvasive CGM devices represent a further step in
reducing the burden related to the daily management of T1D, but unfortunately, they are
all still prototypes.

CGM devices have proved to be useful in improving insulin therapy and, in general,
T1D management [7–9], and they are currently accepted as standard tools for glucose
monitoring. Most of these devices usually provide alerts that warn the subject when the
CGM values exceed the normal glucose range. Furthermore, the employment of CGM to
provide short-term predictions of future glucose values or to forecast forthcoming hypo-
/hyperglycemic episodes could lead to a further improvement, since targeted preventive
measures—such as preventive hypotreatments (fast-acting carbohydrate consumption) [10]
or correction insulin boluses [11]—could be taken to reduce the occurrence and impact of
these critical episodes. Therefore, the availability of an effective BG predictive algorithm
becomes of primary importance for present and future standard therapies.

In the last two decades, several algorithms for the short-term prediction of future
glucose levels have been developed, using both CGM data only (to mention but a few
representative examples, see [12–16]) and CGM data plus other available information such
as the amount of ingested carbohydrates (CHO), injected insulin, and physical activity (see,
for example [17–21] ). While the use of these additional datastreams is expected to enhance
prediction performance compared to algorithms based on CGM data only [20], a nonnegli-
gible drawback is that their application in real-world scenarios requires supplementary
wearable devices (e.g., insulin pumps, mobile applications, and physical activity trackers)
and actions (e.g., the safe and reliable exchange of information from one device to the other,
and interactions with the user). Indeed, at present, these systems are not extensively used
by individuals with diabetes [22,23]. Consequently, the possibility of efficiently performing
the real-time prediction of future glucose levels with CGM data only remains, at the present
time, a practically valuable option. This is the reason why investigating the performance of
predictive algorithms fed by CGM data only is of primary importance.

In the last 15 years, many real-time predictive algorithms based on CGM data only
have been proposed in the literature [24–29]. However, it is very difficult to establish which
of them is the best performing one. Indeed, the mere comparison of performance indices ex-
tracted from different published papers could be unfair or misleading, because differences
in datasets, implementation, preprocessing, and evaluation can make it difficult to claim
that one prediction method is the most effective. The attempts to compare state-of-the-art
methods and literature contributions on the same dataset are, to the best of our knowl-
edge, very limited. A systematic review of glucose prediction methods was proposed by
Oviedo et al., in 2017 [19]. Nonetheless, the focus of [19] was on a methodological review
rather than on performing a head-to-head comparison on the same dataset. A recent com-
parison of different prediction algorithms on the same dataset was proposed by McShinsky
et al. in [30]. A difference with the present contribution is that McShinsky et al. included
both CGM-only prediction methods and algorithms relying on other signals and involved a
small population (12 subjects). To fill this gap and to offer a performance baseline for future
work, in this paper, we present a head-to-head comparison of thirty different real-time
glucose prediction algorithms fed by CGM data only on the same dataset, which consists
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of 124 CGM traces of 10-day duration collected with the Dexcom G6 CGM sensor. Notably,
this sensor is one of the most recently marketed, and its employment in the present paper
allowed us to also assess if some previous literature findings still held with more modern,
accurate CGM sensors. Specifically, we tested linear black-box models (autoregressive,
autoregressive moving-average, and autoregressive integrated moving-average), nonlinear
machine-learning (ML) methods (support vector regression, regression random forest,
and feed-forward neural network), and a deep-learning (DL) model: the long short-term
memory neural network. For the linear and ML methods, we considered both population
and individualized algorithms. The former are one-fits-all algorithms, designed to work
on the entire population; the latter are algorithms customized for each single patient based
on their previously collected data, in order to deal with the large variability in glucose
profiles among individuals with diabetes. Moreover, given the different nature of glucose
fluctuations during the day and night (larger in the former case due to meal ingestion and
less pronounced in the latter case) [14,20], we designed specific versions for these two time
periods. With regard to model training, we opportunely divided the dataset into training
and test sets, also performing a Monte Carlo simulation to avoid the possibility of the
numerical results being related to a specific training-test partitioning. The performance
of all the algorithms was evaluated on a 30 min prediction horizon (PH) focusing on both
prediction accuracy and the capability of detecting hypoglycemic events.

The results show that the prediction accuracy of the best-performing linear and non-
linear methods are comparable, while the first slightly outperforms the second in terms of
hypoglycemic prediction. In general, the results support the importance of individualiza-
tion, while no significant advantages emerged when employing nonlinear strategies.

2. The Considered Prediction Algorithms

Several options for creating the different variants of the considered classes of predic-
tion algorithms were investigated. In order of complexity, the first option was to consider
a population algorithm that computes the prediction of the future CGM value by using
the same model (i.e., structure and/or order) and the same parameter value for all the
individuals, i.e., without any personalization. This has the practical advantage that the
model training can be performed only once, e.g., when the algorithm is designed, and the
model learning procedure can leverage large datasets of CGM traces. The downside of
this approach is that the prediction algorithm is not customized according to individual
data [24]. Another option, with complexity higher than that of the previous one, is to
develop subject-specific algorithms, which allow taking into account the large interindi-
vidual variability characterizing T1D individuals. The drawback of this approach is that
the model training must be repeated for each individual in order to enable personalized
glucose predictions. A further level of complexity is to consider multiple models for each
individual, e.g., one for day time and one for night time. The key idea behind this choice
is that the “day-time” model should be able to learn the glucose dynamics perturbed
by all the external events (e.g., meals, insulin injections, and physical activity), whereas
the “night-time” model should be able to learn the smoother dynamics present at night
time [20]. Since no information on sleep time was available in our dataset, we decided to
define day time as the interval from 6:00 up to 23:00 and night time as that from 23:05 up
to 5:55. According to the rationale discussed above, the resulting categories of prediction
algorithms tested in this work are summarized in the tree diagram of Figure 1. For each
category, several different model classes were considered, for a total of 30 different predic-
tion algorithms. A detailed description of the prediction algorithms tested is provided in
the following two subsections.
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Figure 1. Schematic diagram of all the possibilities presented in this work.

2.1. Linear Black-Box Models

The linear prediction algorithms were based on a model of the CGM time series.
The models were derived by using the standard pipeline described in detail in [31]. The first
three steps, i.e., the choice of the model class, model complexity, and parameter estimation,
were related to the model learning. The last step was model prediction, which dealt with
the computation of the predicted value, starting from the model and past CGM data. These
four steps are described below.

2.1.1. Choice of the Model Class

Three linear model classes were considered: autoregressive (AR), autoregressive
moving average (ARMA), and autoregressive integrated moving average (ARIMA) models.
In the following sections, we use the notation AR(p), ARMA(p,m), and ARIMA(p,m,d),
indicating with p, m, and d the order for the AR, MA, and integrated (I) part, respectively.

2.1.2. Model Complexity

Once the model class was fixed, the model complexity, i.e., the number of parameters
to be estimated, had to be chosen. Common techniques used for this purpose are the
Akaike information criterion (AIC), the Bayesian information criterion (BIC), and cross
validation (CV) [31,32]. The model orders p and m were, respectively, searched in the sets
P = 1,2,. . . ,30 and M = 0,1,. . . ,15. After a preliminary analysis, showing that no significant
differences could be seen between these methods (not shown), the BIC was chosen as
the method for selecting the best model orders. Concerning the individualized linear
models, we investigated a partial personalization: the model complexity of the population
algorithms was maintained, but the parameter values were subject-specific (a model with
individualized parameters and population orders). Then, a complete personalization was
achieved by learning both the model complexity and the parameter values from patient
data (a model with individualized parameters and individualized orders).

2.1.3. Parameter Estimation

The first approach we used to estimate model parameters was the state-of-the-art
prediction error method (PEM) [31], based on the minimization of the one-step prediction
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error. Furthermore, since we focused on 30-min-ahead prediction, we also considered
the possibility of identifying the model parameters that minimized the 30-min-ahead
prediction error (30 min-specific) rather than the 5-min-ahead error as prescribed by the
standard pipeline.

With these estimation techniques, CGM time series were described by models with
fixed structures and time-invariant parameters. To better follow intrapatient variability,
we also investigated recursive least-squares (RLS) parameter estimation [33], which was
applied, without any loss of generality, only to the AR(1) model, since previous work
demonstrated the effectiveness of the AR-RLS(1) configuration [34]. Note that the RLS
estimation requires setting an additional parameter, the forgetting factor, which represents
a memory term for past input data [35]. This AR-RLS(1) falls into the category of a model
with a fixed structure but time-varying parameters. Another option we considered was
the regularized PEM approach, which considers AR models of elevated order (e.g., 100)
and adds to the standard PEM cost function a regularization term representing a suitable
prior on the unknown coefficients, which allows avoiding overfitting [32]. A suitable prior,
known as stable spline kernel, was adopted in this work [36].

To avoid unstable models being used for the forecasting, the choice of the model com-
plexity and the parameter-estimation steps were repeated until a stable model was identified.

2.1.4. Model Prediction

Once a linear model was available from the previous steps, the k-step-ahead prediction
could be derived from that model for any value of k. This was performed by applying
a standard Kalman filter framework [31]. We used this approach to derive the 30-min
(k = 6)-ahead prediction. We decided to focus on PH = 30 min only for two main reasons.
First, the literature work [10,25], and [37] has shown that efficient corrective actions (e.g.,
hypotreatments or pump suspension [25,37]) triggered 20–30 min before hypoglycemia are
effective in avoiding/mitigating the episodes. Second, it has been shown that PH = 30 min
is a good trade-off between limiting the error of the prediction outcome (the higher the PH,
the higher the error) and the effectiveness of the prediction [38].

2.2. Nonlinear Black-Box Models

A learning pipeline similar to that adopted for the linear models was employed for
ML and DL predictive algorithms. The main steps in the learning phase were the choice of
the model class, the tuning of hyperparameters (the counterpart of the model complexity),
and model training (i.e., parameter estimation). The last step consisted of computing the
30-min-ahead glucose prediction once the nonlinear model was obtained.

2.2.1. Choice of the Model Class

Three ML models, successfully used in a wide range of regression problems, were
considered: support vector regression (SVR) [39,40], regression random forest (RegRF) [41],
and feed forward neural network (fNN) [42]. In addition, we considered a DL model,
namely, long short-term memory (LSTM) network, which has shown promising results
in glucose prediction [43,44]. The key idea of the SVR model is to map CGM data into a
higher-dimensional feature space via a nonlinear mapping and, then, to perform a linear
regression in such space [45]. The goal of SVR is to find a function that has, at most, ε
deviation from the target in the training data. Moreover, the use of adequate kernels allows
dealing with linearities and nonlinearities in data [46].

RegRF is an ensemble learning method based on aggregated regression trees. A re-
gression tree is built by recursively top–down-partitioning the feature space (composed of
CGM values) into smaller sets until a stopping criterion is met. For each terminal node of
the tree, a simple model (e.g., a constant model) is fitted [47]. The prediction of RegRF is
obtained by combining the output of each tree.

The fNN model allows learning complex nonlinear relationships between input and
output values [48]. It is composed of a set of neurons organized in layers (input, hidden,
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and output layers). Each neuron is characterized by a nonlinear function, e.g., sigmoid,
which provides the input for the next layer, and by weights and biases. These parameters
are learned from the data and are determined in order to achieve the minimum value of
the cost function during the training phase. The output layer is a linear combination of the
output of the previous layers.

LSTM is a useful model when maintaining long-term information over time is relevant
to learn dependency and dynamics from data [49]. The key element of the LSTM model
is the memory cell composed of four gates (forget, input, control, and output gates) that
decide whether the information must be kept or removed from this cell at each time step.
Note that, given the large number of parameters needed by LSTM and the relatively short
CGM time series available for each subject in the dataset, in this work, it was not possible
to apply the individualized approach for LSTM. Thus, for the LSTM model, we limited the
analysis to the population approach only. In addition, since the focus of the paper is on a
predictive algorithm fed by CGM data, the LSTM features were lagged CGM samples only.

A detailed review of these methods is beyond the scope of this work, and we defer
the interested reader to the original work or to [50].

2.2.2. Input Size and Hyperparameter Tuning

For each ML model, the optimal input size (i.e., the number of consecutive CGM
readings) and other model-specific hyperparameters were chosen by using a grid search
approach combined with hold-out-set CV [31] to avoid overfitting. A list of the model-
specific hyperparameters and their values are reported in Table 1.

Concerning LSTM, given the dimensions of our dataset and the elevated number
of hyperparameters to be tuned, we decided to manually set some of them, such as the
number of layers, learning rate, and decay factor, on the basis of literature studies to avoid
the risk of overfitting [44,51]. This approach proved to be efficient in reducing such a risk in
even more complex and deep neural networks [15,16,21]. Moreover, to further strengthen
the learning phase, we added to our LSTM a dropout layer, which randomly ignored
neurons during the training. Finally, based on the results of the hold-out-set CV, we found
that the optimal LSTM structure consisted of a network composed of a single LSTM layer,
30 hidden nodes, and 10 lagged CGM values as input.

As for the individualized linear models, we also investigated a partial personaliza-
tion for nonlinear ones: the hyperparameters and optimal input size of the population
algorithms were maintained, but the parameter values were subject specific (a model with
individualized parameters and population hyperparameters). Then, a complete person-
alization was achieved by determining the model-specific hyperparameters, the optimal
input size, and the parameters based on individual data (a model with individualized
parameters and individual hyperparameters).

2.2.3. Model Training

Independently of the algorithm considered (i.e., population, individualized, or day/night
specific), the CGM data were standardized using z-score standardization [50]. Then,
parameter estimation was performed by minimizing the model-specific loss function
through the use of specific optimized versions of the stochastic gradient descent algorithm.
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Table 1. Nonlinear model hyperparameters.

Model Hyperparameter Range

SVR Error penalty term, kernel scale factor 10−3–103 (logarithmic scaled)

RegRF Number of trees 10–500

Number of leaves, max. number of splits 1-max(2,training samples)
(logarithmic scaled)

fNN

Number of layers 1–3
Number of neurons 5–20
Activation function Hyperbolic tangent, sigmoidal

Max. training epochs 500–1500

fNN

Number of layers 1–3
Number of neurons 5–20
Activation function Hyperbolic tangent, sigmoidal

Max. training epochs 500–1500

LSTM
Number of hidden units 20–100

Max. training epochs 50–1000
Dropout rate 0.01–0.7

2.2.4. Model Prediction

The three previous phases allow learning a model that can directly produce the
30-min-ahead-in-time prediction, once fed by a sequence of standardized CGM data.

3. Criteria and Metrics for the Assessment of the Algorithms

The algorithms were compared considering both the accuracy of the glucose value
prediction and the hypoglycemia event detection capability.

3.1. Glucose Value Prediction

The predicted glucose profiles were evaluated with three commonly used metrics.
First, we considered the root mean square error (RMSE) between the predicted glucose
values and measured CGM data:

RMSE =
1√
N
||(y(t)− ŷ(t|t− PH))||2 =

√√√√ 1
N

N

∑
t=1

(y(t)− ŷ(t|t− PH))2 (1)

where PH is the prediction horizon, N is the length of the subject CGM data portion in
the test set, y(t) is the current CGM value, and ŷ(t|t− PH) is its PH-step-ahead predic-
tion. By ||x(t)||2, we denote the Euclidean norm of the signal x(t), namely: ||x(t)||2 =√

∑N
t=1(x(t))2.
RMSE takes positive values, with RMSE = 0 corresponding to the perfect prediction,

and increasing RMSE values corresponding to larger prediction errors.
Furthermore, we also considered the coefficient of determination (COD):

COD = 100 · (1−
||(y(t)− ŷ(t|t− PH))||22
||(y(t)− ȳ(t))||22

) (2)

where ȳ is the mean of the CGM data. The COD presents the maximum value (i.e., 100%) if
the predicted profile exactly matches the target CGM signal. If the variance of the prediction
error is equal to the variance of the signal or, equivalently, if the prediction is equal to the
mean of the signal, the COD is 0%. There is no lower bound for COD values (they may
also be negative).
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Finally, the delay existing between the CGM signal and the predicted profile is defined
as the temporal shift that minimizes the square of the mean quadratic error between the
target and the prediction:

delay = arg min
j∈[0,PH]

[ 1
N

N−PH

∑
t=1

((ŷ(t|t− PH) + j)− y(t))2
]

(3)

Of course, the lower the delay, the prompter and more useful the prediction. A delay equal
to the PH means that the model prediction is not better than looking at the current glucose
level. Finally, in order to investigate if significant differences existed among the compared
algorithms, a one-way analysis of variance (ANOVA) was used to compare the RMSE val-
ues. A significance level of 5% (p-value < 0.05) was considered in all cases. The adjustment
for multiple comparisons was performed by using the Bonferroni correction.

3.2. Hypoglycemia Prediction

Concerning the assessment of the ability to predict hypoglycemic events, follow-
ing [38], we defined the occurrence of a new hypoglycemic event when a CGM value
below 70 mg/dL was observed and the previous six CGM readings were above 70 mg/dL.
An example of a hypoglycemic event is shown in Figure 2. Hypoglycemic alarms were
defined for the predicted CGM signal with exactly the same criteria used for hypoglycemic
event definition.

Figure 2. Example of real continuous glucose monitoring (CGM) data of hypoglycemic event onset.

Hypoglycemia Prediction Metrics

Considering a PH = 30 min and detection window (DW) of 40 min, we assigned:

• True positive (TP): if an alarm was raised at least 5 min before the hypoglycemic event
and at most DW+5 min before that episode, as shown in Figure 3 (top left panel).
According to this definition, alarms raised with a time anticipation larger than DW+5
min were not counted as TPs, because it was difficult to claim a match between the
alarm and the hypoglycemic event;

• False positive (FP): if an alarm was raised, but no event occurred in the following DW
minutes, as shown Figure 3 (top-right panel);

• False negative (FN): if no alarm was raised at least 5 min before the event and at most
DW+5 min before the event, as shown in Figure 3 (bottom-left panel);



Sensors 2021, 21, 1647 9 of 21

Finally, we defined as late alarms the alarms raised within DW minutes after the hy-
poglycemic event, as shown in Figure 3 (bottom-right panel). Late alarms were considered
neither TPs nor FPs, i.e., the events corresponding to late alarms were not counted (NC) in
the computation of the event prediction metrics. The calculation of true negatives (TNs)
was of limited interest [52], since we were dealing with an unbalanced dataset (only a few
hypoglycemic events in 10 days of monitoring).

Figure 3. Examples of true positive (top-left corner), false positive (top-right corner), false negative
(bottom-left corner), and not countable (bottom-right corner).

Once the TPs, FPs, and FNs were found, the following metrics were used to evaluate
the different models:

precision =
TP

TP + FP
(4)

recall =
TP

TP + FN
(5)

F1− score = 2 · precision · recall
precision + recall

(6)

The precision (4) is the fraction of the correct alarms over the total number of alarms
generated. The recall (5), also called the sensitivity, is the fraction of correctly detected
events over the total number of events. The F1-score (6) is the harmonic mean of the two
previous metrics. Since the dataset is strongly unbalanced, we also evaluated the daily num-
ber of FPs generated by the algorithm (FPs per day). We also evaluated the time gain (TG)
of the hypoglycemic alert as the time between the alert and the real hypoglycemic event.

Unlike the glucose prediction metrics, for which a different metric value was calculated
for each subject, the values of the hypoglycemia prediction metrics were obtained by
considering all the hypoglycemic events of the different subjects, as they belonged to a
unique time series.
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4. The Dataset and Its Partitioning

The data were kindly provided by Dexcom (Dexcom Inc., San Diego, CA, USA) and
taken from the pivotal study of their last commercial sensor (Dexcom G6 CGM sensor),
described at ClinicalTrials.gov (NCT02880267). This was a multicenter study, involving
11 centers. Each center obtained approval from the local IRB/ethical committee, as reported
in the main publication associated with the study [53]. The original dataset included
177 CGM traces collected in 141 T1D adults (aged 18+) by the Dexcom G6 sensor (36 subjects
wore two sensors in parallel). For the purposes of this work, we selected 124 CGM traces,
keeping only one CGM datastream for each subject and discarding subjects who wore the
CGM devices for less than 10 consecutive days. The sampling time was 5 min. In summary,
the dataset granted us 1240 days of CGM data, ~350,000 samples and more than 19,200 CGM
samples below 70 mg/dL (i.e., 5.4% of the total samples), with ~1600 hypoglycemic
episodes. It should be noted that, even though hypoglycemia was rather rare in the real
data, the large dataset adopted and the consequent abundant number of hypoglycemic
episodes allowed a solid assessment of the algorithm’s ability to predict a hypoglycemic
episode. Moreover, the number of hypoglycemic episodes present in our dataset was
significantly larger than those of other papers having the same aim [14,54]. A detailed
description of the clinical study can be found in [53].

4.1. Training and Test Set

A comparison of the proposed prediction algorithms was obtained by evaluating the
performance of each method on a same test set. A total of 20% of all the CGM traces (i.e.,
25 CGM time series) were randomly chosen from the original dataset and were candidates
as a test set for evaluating all the predictive algorithms. The remaining time series (i.e.,
99 CGM traces) were used to train the population algorithms. Concerning the training of the
individualized algorithms, the 25 CGM time series, the candidates as a test set, were split
into training and test sets. In a preliminary examination, we found that the dimension of
the training set should be approximately 7 days for nonlinear models. However, the linear
algorithms required 33 h of CGM data for the training phase only. Therefore, the test set,
identical for all the algorithms, was composed of the last 3 days (out of 10 days) of the
25 CGM time series initially chosen. By doing so, the CGM data of the training and test set
were completely independent.

Since during data acquisition, failures and missed data may occur, the CGM traces,
in the training set only, were preprocessed as follows: first, they were realigned to a uniform
temporal grid, and if there was a data gap and it was smaller than 15 min, missed values
were imputed via third-order spline interpolation. If the gap was longer than 15 min,
the CGM trace was split into different segments.

4.2. Monte Carlo Simulations

Splitting the dataset as described in the foregoing subsection had the advantage of
providing a test set that was the same for all the algorithms but had the issue that the test
set was small (about 75 days over the total 1240), thus containing a limited number of
hypoglycemic episodes (~90 over about 1600 total hypoglycemic events). Both the glucose
and hypoglycemic prediction performance were randomly affected by the choice of the
test set. In fact, one test set extraction might turn out to be particular advantageous for
algorithm A and penalizing for algorithm B, while another could result in the opposite.
This issue could be overcome by performing a Monte Carlo simulation: the procedure of
randomly splitting the dataset into training and test sets was iterated several times (i.e.,
100). For each iteration, a new training and test set was obtained, and then, the glucose
prediction analysis described in this work was performed.
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5. Results
5.1. Illustration of a Representative Training–Test Partitioning Example

Glucose prediction and hypoglycemic event detection performance with a representa-
tive training–test partition, chosen among the 100 Monte Carlo simulations, are shown in
Table 2 for linear models and in Table 3 for nonlinear models. In particular, in Table 2 and
Table 3, the glucose prediction metrics are reported as median value [interquartile range]
over the 25 CGM time series used as the test set. Finally, statistical analysis of the test set of
this representative training–test set extraction was performed.

5.1.1. Linear Black-Box Models

The population algorithms underestimated in hyperglycemia and overestimated in
hypoglycemia, as illustrated for a representative subject in Figure 4. In particular, the CGM
data (blue line) show a hypoglycemic episode before 18:00, an elevated blood glucose
peak (210 mg/dL) at 22:00, and another hypoglycemic event before 00:00. In these three
situations, the population ARMA(4,1) model (green dash-dotted line), for example, pro-
vided glucose prediction values quite distant from the target CGM data. In fact, the RMSEs
achieved with the population ARMA and ARIMA were, respectively, about 23.75 and
23.78 mg/dL. The early detection of hypoglycemic episodes was unsatisfactory even for
the population ARIMA algorithm, the best performing among the population approaches:
both the precision and recall were low, respectively, at around 63% and 48%. The median
TG was only 5 min.

Figure 4. CGM data (blue line): 30-min-ahead prediction obtained with population ARMA(4,1) (green
dash-dotted line) and individualized neural network (red dashed line). Hypoglycemic threshold is
shown by black dashed line.

Looking at the results in Table 2, we can note that the individualized models out-
performed the population ones: the RMSEs provided by the population AR and by the
individualized AR were, respectively, around 23.63 and 22.76 mg/dL. The detection of hy-
poglycemic events was also increased with the AR individualized models. Indeed, the recall
and precision were around 40% and 58%, respectively, with the individualized models and
around 48% and 46%, respectively, with the population models. The median TG improved
from 5 min with the population AR to 10 min with the individualized AR. In particular,
individualized ARIMA models allow mitigating the impact of slow changes in glucose
mean concentrations. Thus, the corresponding predicted profiles turned out to be more
adherent to the target signal, as visible in the representative subject of Figure 5 (individu-
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alized ARIMA(2,1,1), whose prediction is reported by the red dash-dotted line, provided
accurate predictions when the CGM data fell below the hypoglycemic threshold, i.e., from
8:00 to 10:00). These features make individualized ARIMA the best-performing linear
algorithm both for glucose value prediction, granting a median RMSE of 22.15 mg/dL,
and for hypoglycemic event prediction, with a recall of 82% and precision of 64%. One
might expect that the model derived by minimizing the 30-min-ahead prediction error
would achieve better performance than the model obtained following the standard PEM
pipeline, i.e., by minimizing the 5-min prediction error and then deriving the predictor.

However, this is not the case, and it can be seen that the 30-min AR model provides
similar performance (RMSE: 22.79 mg/dL, COD: 83.89%, recall: 21%, and precision: 42%)
to the individual models identified with the standard PEM approach (RMSE: 22.76 mg/dL,
COD: 84.53%, recall: 40%, and precision: 58%). This is in line with the theory in [31,32].

The day-and-night-specific algorithms provided higher RMSEs (24.22, 24.37, and
23.1 mg/dL for AR, ARMA, and ARIMA, respectively) than the algorithms described
previously. The hypoglycemic detection was comparable to that with the individualized
models. The extra complexity of the day-and-night-specific models does not seem to
be justified by better performance. The regularized models performed very similarly
to the individualized models (RMSE: 23.23 mg/dL, while the recall and precision were,
respectively, 50% and 60%) but require a more complicated identification procedure. Finally,
concerning AR-RLS(1), it allows rapidly tracking changes in glucose trends (Figure 5, black
dash-dotted line), but it can be very sensitive to noisy CGM readings, and the resulting
RMSE was higher than those for the other algorithms investigated (27.43 mg/dL). This
feature was also reflected in an increased number of false alarms generated (about one/day).
However, both the recall and precision were high: 86% and 55%, respectively. The median
TG was 15 min. In summary, the best linear model was given by individualized ARIMA.
Finally, statistically significant differences between the RMSE results obtained with the
population algorithm and the results obtained by the individualized algorithm are indicated
in Table 2 by asterisks.

5.1.2. Nonlinear Black-Box Models

Considering the population models, the best ML method for the detection of hypo-
glycemic events was SVR fed by 50 min of CGM data with a Gaussian kernel, which
presented TG = 10 min, recall = 69%, precision = 63%, and one false alarm every 2 days.
Despite the good results in terms of event detection, it should be noted that the RMSE
was around 22.85 mg/dL. The RegRF achieved the highest RMSE among the population
nonlinear models considered: 23.42 mg/dL. Furthermore, we noted by visual inspection
that the predicted profiles obtained by RegRF suffered from large delays, especially when
the target signal was rising. Moreover, RegRF tended to overestimate in hypoglycemia,
generating a recall around 20% and a precision of 36% only.

The minimum RMSE was achieved by an fNN fed by 50 min of CGM data, com-
posed of two hidden layers, each of them with 10 neurons, similar to what is described
in [42]. Despite the RMSE being the lowest among the nonlinear population methods (21.81
mg/dL), all the hypoglycemic detection metrics were not satisfactory: the recall was 27%,
the precision was 39%, and the TG was 5 min. The LSTM-predicted profile (the green
dash-dotted line in Figure 5) was similar to the one obtained with an fNN: it exhibited a
RMSE around 23 mg/dL, recall around 26%, and precision around 46%.
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Table 2. Performance of linear algorithms with a representative dataset partitioning (30-min partition horizon (PH)). The asterisks indicate p-values < 0.05.

Model Type Model Class
Glucose Prediction Metric Hypo Event Detection

Delay (min) RMSE
(mg/dL) COD (%) F1-Score (%) Precision (%) Recall (%) FP/Day TG (min)

Population

AR * 25 23.63 80.89 47 46 48 0.41 5
[ 23.75–25] [20.91–32.24] [72.39–86.59] [5–10]

ARMA * 25 23.75 81.23 46 45 47 0.31 5
[20–25] [20.75–32.15] [72.47–86.65] [5–10]

ARIMA * 25 23.78 81.21 55 63 48 0.33 5
[20–25] [20.75–32.15] [72.44–86.62] [5–10]

In
di

vi
du

al

Population order

AR 20 22.73 84.63 55 63 48 0.47 10
[20–25] [19.02–30.36] [80.98–87.9] [5–15]

ARMA 20 22.83 84.64 51 50 52 0.85 10
[20-25] [19.31–30.91] [77.01–88.36] [5–15]

ARIMA 25 23.12 83.36 67 64 71 0.67 10
[20–25] [20.22–28.65] [78.68–87.99] [10–15]

Individual order

AR 25 22.76 84.53 48 58 40 0.47 10
[20–25] [18.76–29.47] [80.79–88.1] [5–10]

ARMA * 25 22.55 83.71 36 48 29 0.51 10
[23.75–25] [20.16–30.46] [76.99–87.91] [5–15]

ARIMA * 25 22.15 84.64 72 64 82 0.76 10
[25–25] [19.8–28.87] [78.71–87.59] [5–15]

Individual order

AR 25 22.79 83.89 28 42 21 0.43 5
[20–25] [19.75–28.84] [76.7–88.36] [5–15]

30 min ARMA 25 22.89 83.37 24 39 17 0.44 5
specific [25–30] [20.54–29.81] [75.8–87.93] [5–15]

ARIMA * 25 22.39 84.47 64 56 75 0.57 10
[25–25] [19.97–29.31] [76.28–88.23] [5–10]

Individual order Day and night

AR 25 24.22 80.72 26 41 20 0.29 5
[25–25] [20.74–30.16] [76.37–84.87] [5–15]

ARMA 25 24.37 77.31 24 39 17 0.29 10
[25–26.25] [21.31–30.25] [75.49–84.72] [5–15]

ARIMA 25 23.1 82.2 67 70 64 0.44 10
[25–26.25] [20.47–29.76] [76.95–86.74] [5–15]

Regularized AR 20 23.23 82.52 54 60 50 0.55 10
[20–25] [19.85–31.01] [77.22–87.74] [5–20]

RLS AR 30 27.43 75.66 68 55 86 0.88 15
[25–30] [24.63–33.88] [67.77–81.16] [10–25]
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Table 3. Performance of nonlinear algorithms with a representative dataset partitioning (30-min PH).

Model Type Model Class
Glucose Prediction Metric Hypo Event Detection

Delay (min) RMSE (mg/dL) COD (%) F1-Score Precision Recall FP/Day TG (min)

Population

SVR 25 22.85 85.14 65 63 69 0.53 10
[25–25] [18.81–28.61] [79.35–88.15] [5–15]

RegRF 30 23.42 80.65 25 36 20 0.3 5
[30–30] [21.29–30.86] [72.83–84.91] [5–10]

fNN 20 21.81 86.19 31 39 27 0.36 5
[20–25] [18.65–27.86] [81.1–89.41] [5–11.25]

LSTM 25 23.1 82.31 33 46 26 0.3 5
[20–25] [20.26–28.75] [77.54–87.33] [5–10]

In
di

vi
du

al

Population hyperparameters

SVR 25 21.97 84.22 64 72 59 0.31 10
[25–25] [19.68–28.98] [78.78–87.39] [5–15]

RegRF 30 23.81 72.73 25 33 21 0.03 5
[30–30] [21.35–30.47] [67.85–79.93] [5–5]

fNN 20 21.76 83.98 47 59 40 0.45 10
[20–25] [18.89–28.97] [79.37–88.7] [5–18.75]

Individual hyperparameters

SVR 20 22.16 81.97 54 57 52 0.62 10
[20–25] [20.62–28.79] [65.89–87.45] [10–20]

RegRF 25 26.16 77.14 47 60 39 0.42 12.5
[25–25] [22.49–33.97] [69.79–82.47] [5–20]

fNN 20 21.52 85.37 47 57 40 0.47 10
[20–25] [19.12–28.29] [78.78–88.11] [5–18.75]

Individual hyperparameters Day and night

SVR 25 30.13 67.75 48 61 40 0.41 10
[20–25] [25.17–40.9] [57–76.34] [5–20]

RegRF 25 33.34 68.47 39 53 31 0.43 10
[25–25] [26.84–37.71] [62.71–74.49] [10–20]

fNN 20 24.4 82.11 33 53 24 0.34 10
[20–25] [20.88–29.89] [74.84–86.19] [5–17.5]
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Generally, the individualization of the model hyperparameters allowed reducing the
RMSE, e.g., the individualized SVR and fNN with individual hyperparameters achieved
median RMSEs of 22.16 and 21.52 mg/dL, respectively. In addition, the result obtained by
the individualized fNN outperformed all the 30 algorithms tested in this work. However,
the slight improvement in terms of the prediction of glucose values does not imply an
important improvement in hypoglycemic event prediction. In fact, the best individualized
ML model for hypoglycemia forecasting was the individualized SVR, whose performance
was similar to that of the population SVR model: the recall was about 59% vs. 63%,
the precision was 72% vs. 69%, and the median TG was 10 min in both cases (individualized
vs. population, respectively). The individual fNN provided a predicted profile that tended
to underestimate in hyperglycemia and overestimate in hypoglycemia as shown in Figure 4
(the prediction of the fNN with individual hyperparameters, the red dashed line, was more
adherent to the target when the CGM was inside the range 80–120 mg/dL).

Individualized RegRF provided the worst performance in terms of both glucose
and hypoglycemic event prediction: the RMSE was 26.16 mg/dL, the recall was 39%,
and the precision was 60%. The individualized day-and-night-specific ML algorithms
provided, in general, RMSEs higher (around 30 mg/dL) than those of the algorithms
described previously. The ability to detect hypoglycemic events was lower than that of the
individualized ML models.

Figure 5. CGM data (blue line) and 30-min-ahead prediction obtained by AR-RLS(1) (black dash-
dotted line), individualized ARIMA(2,1,1) (red dash-dotted line), and LSTM model (green dash-
dotted line). Hypoglycemic threshold (light blue dashed line).

It is interesting to note that all these nonlinear methods did not provide satisfactory
results in terms of hypoglycemia detection. It is worth noting that no statistically signif-
icant differences between the RMSE results obtained with the individualized nonlinear
algorithms with individual hyperparameters (SVR and fNN) and the individual linear ones
with individual orders (AR, ARMA, and ARIMA) can be observed.

5.2. Monte Carlo Analysis

The results for the glucose prediction and hypoglycemic event detection performance
of the 100 Monte Carlo simulations are shown in Table 4. For each metric, we report the
mean and standard deviation of all the simulations. It is worth noting that the numerical re-
sults described in the foregoing subsection were confirmed by this further analysis. Finally,
the statistical analysis performed for the Monte Carlo iterations shows that no significant
differences between the RMSE results obtained with the best-performing nonlinear and the
best-performing linear algorithms can be observed.
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Table 4. Performance of nonlinear algorithms with a representative dataset partitioning (30-min PH).

Model Type Model Class
Glucose Prediction Metric Hypo Event Detection

Delay (min) RMSE (mg/dL) COD (%) F1-Score Precision Recall FP/Day TG (min)

Population
AR 25 (0) 23.86 (2.44) 79.8 (3.18) 46.97 (6.04) 54.33 (6.8) 41.64 (6.45) 0.48 (0.12) 8.32 (2.21)

ARMA 25 (0) 23.75 (2.43) 79.86 (3.17) 47.17 (5.81) 54.77 (6.8) 41.69 (6.16) 0.47 (0.12) 8.09 (2.25)
ARIMA 25 (0) 23.96 (2.42) 80.06 (3.16) 50.27 (5.18) 58.24 (6.32) 44.51 (5.7) 0.44 (0.13) 9.18 (1.8)

In
di

vi
du

al

Population order
AR 21.45 (2.29) 22.79 (1.57) 84.83 (1.82) 44.12 (7.03) 51.99 (6.63) 38.58 (7.57) 0.48 (0.1) 9.59 (1.42)

ARMA 21.55 (2.33) 22.89 (1.59) 84.05 (1.84) 41.47 (6.31) 48.38 (6.03) 36.66 (7.22) 0.53 (0.15) 9.64 (1.89)
ARIMA 24.73 (1.15) 22.74 (1.8) 83.74 (1.64) 62.83 (5.6) 56.23 (6.12) 71.67 (6.8) 0.77 (0.19) 11.73 (2.4)

Individual order
AR 24.45 (1.57) 22.78 (1.67) 84.56 (1.86) 49.73 (7.45) 58.77 (7) 43.11 (7.78) 0,48 (0.11) 9.64 (1.31)

ARMA 25 (0) 22.83 (1.57) 83.79 (1.67) 32.5 (7.45) 44.25 (7.33) 25.98 (7.15) 0.44 (0.1) 9.95 (2.28)
ARIMA 25 (0) 22.13 (1.58) 84.36 (1.77) 70.5 (3.69) 61.04 (4.33) 83.64 (3.89) 0.73 (0.13) 10.18 (0.94)

Individual order
AR 25 (0) 22.97 (2.37) 83.4 (3.17) 28.96 (12.78) 42.07 (11.36) 23.05 (12.16) 0.39 (0.12) 8.64 (4.93)

30 min ARMA 25 (0) 23.04 (2.22) 82.7 (3.3) 24.25 (11.17) 37.49 (11.5) 18.85 (10.4) 0.4 (0.13) 9.55 (4.77)
specific ARIMA 25 (0) 22.45 (1.29) 84.26 (1.81) 66.63 (5.43) 60.54 (6.63) 74.08 (6.94) 0.58 (0.17) 10 (0)

Individual order Day and night
AR 25 (0) 24.15 (1.53) 78.87 (1.83) 27.12 (4.38) 37.31 (7.97) 21.31 (3.14) 0.32 (0.07) 10 (4.11)

ARMA 25 (0) 24.44 (1.59) 78.75 (2.18) 25.57 (4.96) 36.95 (10.63) 19.55 (3.39) 0.28 (0.08) 9 (4.04)
ARIMA 25 (0) 22.93 (1.31) 83.68 (1.56) 66.37 (5.09) 68.36 (5.64) 64.98 (7.33) 0.41 (0.13) 9.86 (0.75)

Regularized AR 21.82 (2.43) 22.87 (1.63) 83.1 (2.11) 43.53 (6.27) 48.5 (5.59) 39.72 (7.2) 0.57 (0.1) 11.36 (2.54)

RLS AR 29.82 (0.94) 27.67 (1.6) 76.12 (2.11) 63.89 (4.46) 51.43 (5) 84.32 (5.16) 1.01 (0.15) 16.36 (2.4)

Population

SVR 24.45 (2.99) 22.72 (2.75) 81.69 (8.39) 50.81 (13.21) 47.59 (11.73) 44.15 (12.83) 0.56 (0.33) 9.79 (3.03)
RegRF 25.09 (0.67) 23.35 (1.77) 80.91 (1.89) 19.57 (11.74) 23.99 (16.56) 12.24 (11.07) 0.43 (0.18) 8.47 (4.22)
fNN 21.36 (2.25) 21.74 (1.45) 85.93 (1.7) 26.15 (10.79) 37.6 (11.79) 20.58 (9.98) 0.43 (0.14) 6.91 (3.57)

LSTM 24.55 (1.45) 22.97 (1.99) 83.25 (2.28) 20.52 (13.13) 40.6 (15.03) 15.03 (12.46) 0.28 (0.15) 8.32 (6.16)

In
di

vi
du

al

Population
SVR 24.27 (3.52) 22.6 (4.62) 82.89 (11.77) 53.82 (12.75) 59.91 (11.02) 49.54 (12.67) 0.47 (0.35) 11.15 (3.26)

RegRF 25.55 (1.57) 23.38 (2.02) 78.23 (2.06) 31.37 (9.65) 47.11 (8.59) 24.42 (9.5) 0.36 (0.12) 11.91 (3.04)
hyperparameters fNN 20.18 (0.94) 21.78 (1.78) 84.78 (1.49) 38.58 (7.56) 47.95 (7.54) 32.89 (8.47) 0.48 (0.14) 10.59 (2.15)

Individual
SVR 23.64 (2.25) 22.21 (2.09) 81.32 (2.36) 53.63 (7.86) 58.21 (7.16) 49.71 (9.69) 0.55 (0.13) 12.36 (2.82)

RegRF 25 (0) 26.06 (2.02) 77 (2.31) 40.34 (6.68) 50.81 (7.04) 33.93 (7.24) 0.44 (0.11) 15.36 (3.38)
hyperparameters fNN 20.09 (0.67) 21.63 (1.69) 85.1 (1.45) 37.54 (7.59) 47.02 (8) 31.77 (8.14) 0.49 (0.13) 10.14 (2.12)

Individual Day and night
SVR 24 (2.02) 29.22 (2.33) 71.35 (4.33) 45.85 (6.85) 53.92 (7.98) 39.89 (7.04) 0.52 (0.12) 12.55 (3.25)

RegRF 25 (0) 29.72 (2.06) 69.69 (3.2) 34.49 (6.11) 45.47 (6.39) 28.28 (6.7) 0.45 (0.1) 14.41 (3.91)
hyperparameters fNN 20.73 (1.78) 23.54 (1.91) 82.11 (1.92) 32.25 (6.88) 48.69 (7.4) 24.5 (6.56) 0.35 (0.1) 11.18 (3.22)
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6. Discussion and Main Findings

Among the 30 glucose predictive algorithms tested in this head-to-head compari-
son, the linear algorithm granting the best future glucose prediction is the individualized
ARIMA (median RMSE of 22.15 mg/dL). The best nonlinear algorithm is individualized
fNN (median RMSE of 21.52 mg/dL). While the median RMSE of the individualized fNN
is slightly smaller than the median RMSE obtained using an individualized ARIMA, the dif-
ference among the two was not found to be statistically significant. When hypoglycemic
event detection is considered, individualized ARIMA achieved the best F1-score (72%),
outperforming SVR (F1-score = 65%), the best nonlinear method based on this metric.
All the algorithms exhibited TGs (i.e., the temporal distances between the hypoglycemic
events and the predictive alarms) that spanned from 5 up to 15 min, with the best results
for individualized ARIMA and SVR. The generation of preventive hypoglycemic alerts
5–15 min before the event could be clinically relevant. In fact, in the best-case scenario in
which a preventive hypotreatment is ingested 15 min before the hypoglycemic episode,
the rescue CHO will likely reach the blood before the hypoglycemic event, preventing or
drastically mitigating it. Even a 5-min anticipation, while probably insufficient to prevent
hypoglycemia, would still contribute to reducing both its duration and its amplitude.
The practical benefit of taking preventive actions before hypoglycemia with TGs similar to
those reported here has been shown in [25].

Two main findings are worth being highlighted. First, the individualized methods
slightly outperformed their population counterparts, confirming the positive impact of
model parameter individualization, which allows customizing models for each single
patient and dealing with the large variability in glucose profiles among individuals with
diabetes. Second, the use of advanced nonlinear techniques, substantially more complex
than their linear counterparts, did not majorly benefit the prediction performance. Clearly,
this last finding does not exclude that other nonlinear ML or DL techniques could change
the picture (an exhaustive exploration of nonlinear techniques is practically impossible,
also considering the number of new contributions constantly proposed in these fields),
but proves that linear methods are still highly valuable options that offer an excellent
trade-off between complexity and performance. It is worth noting that both the numerical
and statistical findings of this analysis seem to be in line with most of the literature
studies [14–16,33,38,41,42,51]. Nonetheless, we report a clear contrast with the findings in
some other contributions [43,55].

All the algorithms described in this work are focused on short-term prediction (i.e.,
30 min), which enables patients to take proactive/corrective measures to mitigate or to
avoid critical events. As a further exploratory analysis, we evaluated the prediction perfor-
mance of the best linear and nonlinear algorithms for several PHs. As shown in Figure 6,
the prediction error considerably increased for long-term prediction for both the linear
and nonlinear algorithms. This was expected: the larger the temporal distance, the larger
the number of factors that can influence the blood glucose concentration. This further
strengthens our motivation to limit the head-to-head comparison of glucose predictive
algorithms fed by CGM data to only a 30 min prediction horizon.



Sensors 2021, 21, 1647 18 of 21

Figure 6. RMSE (left) and COD (right) for the 3 best-performing algorithms out of the 30 tested in
this work. The black lines are the median RMSE and COD (left and right, respectively) obtained
using individual ARIMA with different prediction horizons. Blue triangles and green squares
indicate the same metrics for PH = 30, 60, 120, and 240 min for population SVR and individualized
fNN, respectively.

7. Conclusions and Future Work

The forecasting of future glucose levels and/or hypoglycemic episodes has the po-
tential to play a key role in improving diabetes management. Prediction algorithms using
CGM data only remain, at the present time, a highly valuable option, the acquisition and
synchronization of datastreams from other data sources (e.g., meal and insulin informa-
tion, physical activity, etc.) not being straightforward or even impossible in a real-time
setting. Several contributions in the literature have tackled this problem, but comparing
their findings is not trivial due to different data collection conditions (highly controlled
set-ups, such as inpatient trials, as opposed to real-life recordings), preprocessing methods,
and evaluation metrics. A head-to-head comparison, removing these confounding factors,
was missing. In this work, we filled this gap by systematically comparing several linear
and nonlinear prediction algorithms and exploring a number of degrees of freedom in
their design. Furthermore, where possible, we compared population vs. individualized
prediction approaches. In total, we considered 17 algorithms based on linear black-box
models and 13 based on nonlinear models. We tested all the prediction algorithms on a
dataset from the Dexcom G6 CGM, one of the newest and best-performing sensors on the
market. The availability of such a dataset represents an adjunctive contribution of this
work, since it allows verifying if previous literature findings, often obtained with older and
less-accurate sensors, remain valid on the most recent sensors on the market. The results
show that individualized ARIMA and individualized fNN are the best-performing algo-
rithms in terms of predictive performance: the median RMSEs were 22.15 and 21.52 mg/dL,
respectively. When considering hypoglycemia detection, individualized ARIMA is still
the best performing, and it outperformed the best nonlinear technique (population SVR),
with F1-scores of 72% and 65%, respectively. In general, this head-to-head comparison of
thirty algorithms fed by CGM data only made on a wide dataset shows that individualized
linear models are more effective than population ones, while no significant advantages
seem to emerge when employing nonlinear methodologies for a 30 min prediction horizon.

Among the limitations of this work, there is the fact that we did not consider tech-
niques formulating hypoglycemia detection as a binary classification task. In this regard,
it should be reported that a previous contribution [38], found that binary classifiers show
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worse performance compared to regression-based algorithms. Nonetheless, the systematic
comparison of these two approaches will be the object of future work.
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