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Abstract: In optical metrology, the output is usually in the form of a fringe pattern, from which a
phase map can be generated and phase information can be converted into the desired parameters.
This paper proposes an end-to-end method of fringe phase extraction based on the neural network.
This method uses the U-net neural network to directly learn the correspondence between the gray
level of a fringe pattern and the wrapped phase map, which is simpler than the exist deep learning
methods. The results of simulation and experimental fringe patterns verify the accuracy and the
robustness of this method. While it yields the same accuracy, the proposed method features easier
operation and a simpler principle than the traditional phase-shifting method and has a faster speed
than wavelet transform method.

Keywords: phase extraction; U-net neural network; warped phase map; fringe pattern

1. Introduction

Optical metrology has been widely used in various areas, such as 3D sensing, machine
vision, intelligent robot control, industry monitoring, and dressmaking. In optical metrol-
ogy, the output is usually in the form of a fringe pattern, from which a phase map can be
determined. Once the phase map has been obtained, it can be converted into the desired
parameters, such as the shape of the object, and in-plane or out-of-plane deformation. For
instance, the fringe projection technique [1–4] is often used to measure the 3D-profile of
objects [2]. When the fringe pattern is projected on a measured free surface, the phase of
the fringe pattern is modulated by the height distribution of the object. A method to extract
the phase map from the deformed fringe pattern is thus needed.

Thus far, many methods for phase calculation have been developed, including tem-
poral phase-shifting [4,5], spatial phase-shifting [6,7], and Fourier transform [8]. The
phase-shifting is a pointwise technique and it is sensitive to noise such as CCD random
noise, environmental vibration, air disturbance, etc. The temporal phase-shifting method
requires four images in one stage, which is unsuitable for real-time measurement, and
the spatial phase-shifting method requires a complex optical path. The Fourier transform
technique, on the contrary, is a global transform method that is hence more tolerant to
noise. However, as the transform is global, an accurate frequency band containing effective
information of the measured object needs to be determined to avoid large calculation er-
rors. Some improvements have been proposed to overcome the shortcoming of the simple
Fourier transform method. A windowed Fourier ridges algorithm [9–11] and a windowed
Fourier filtering algorithm have been proposed to achieve a low standard deviation for local
frequencies and phase distributions in fringe pattern analysis. Morlet wavelet transform
has also been used for phase extraction on different types of fringe patterns [12–14].

In this research, we propose a fringe phase extraction method based on the neural
network. As an important part of machine learning, neural networks have been widely
used in various fields, such as object recognition [15–18], object segmentation [19], and
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speech recognition [20,21]. This method has also been introduced to optical measurement.
Liu et al. employed the backpropagation (BP) [22,23] artificial neural network to directly
build a nonlinear mapping relationship between the gray-gradient of speckle images
before and after deformation, and sub-pixel displacement in the digital image correlation
method. This method avoids the least squares analytical optimal solution of the correlation
coefficient. Horisaki et al. have used support vector regression (SVR) to recover the image
through the scattering layer [24]. This approach enables model-free sensing, where it
is not necessary to know the sensing processes/models. Guan et al. have introduced a
method of grating sub-division based on the radial-basis function (RBF) neural network.
It converts displacement into a digital measure that is transmitted to the microprocessor
of a neural network to obtain the sub-division value. This improves the accuracy of sub-
division and the tracking speed of the displacement [22]. Rivenson et al. have proposed
a holographic image reconstruction method based on the convolutional neural network
(CNN) that can reconstruct the phase and amplitude of images of objects using only a
hologram [25]. Pitkaaho et al. have employed the CNN to focus on automatic distance
calculation in holographic image reconstruction [26]. Wang et al. have proposed a one-step
end-to-end learning-based method for in-line holographic reconstruction that creates a
network called eHoIoNet to avoid phase shifting [27]. Deep-learning based temporal phase
unwrapping (DL-TPU) is introduced by Wei Yin [28], which can substantially improve the
unwrapping reliability compared with multi-frequency temporal phase unwrapping (MF-
TPU). These results show that challenging problems in optical metrology can be overcome
through machine learning, and provide new avenues for image analysis. Shijie Feng et al.
has introduced a machine-learning-based fringe analysis method, which employs two
convolutional neural networks (CNN1 and CNN2) to calculate phase information [29]. For
CNN2, the inputs are the fringe pattern and the background image predicted by CNN1, and
the outputs are the numerator and the denominator, which are then fed into the arctangent
function to calculate phase. Some improvement and simplification have also been made by
them. A micro deep learning profilometry using a single network is presented for high-
speed 3D surface imaging [30]. However, three fringe patterns are needed for correct phase
unwarpping. Haotian Yu et al. has introduced a novel phase retrieval method based on a
deep neural network called FPPnet [31]. The FPPnet only requires one single image and one
single network, and this network is used to achieve prediction of output fringes in the same
period and different periods. Then, the phase calculation and the phase unwrapping can
be achieved by these predicted fringes. However, these methods employ neural network to
obtain intermediate calculation parameters such as numerator or denominator or related
fringe pattern, not directly acquiring phase information. Furthermore, a deep-learning-
based approach is proposed by Sam to extract height information from single deformed
fringe patterns [32]. The fully CNN is trained on a large set of simulated height maps with
corresponding deformed fringe patterns, so phase results rely too much on the complexity
of these simulated height maps.

In this paper, we introduce a one-step deep-learning-based method to extract the
wrapped phase map directly from a single fringe pattern. This method employs the
U-net neural network to directly learn the correspondence between the gray level of
a fringe pattern and the wrapped phase map. Once a stable network model has been
obtained, the wrapped phase map of an arbitrary fringe pattern can be output directly, thus
simplifying the phase extraction further. The mathematics problem is transformed into
image processing problem, developing the advantage of neural network. Meanwhile, the
network can be saved and shared. More and deeper training contributes to the network
generalization ability, so as to solve more complex and different fringe patterns. Besides,
experimental results verified effectiveness on different fringe pattern whether coming from
fringe projection profilometry or interferometer. While it yields the same accuracy, the
proposed method features easier operation and a simpler principle than the traditional
phase-shifting method, and it owns faster computation speed and higher accuracy than
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wavelet transform method. Moreover, the results of simulated and experimental fringe
patterns verify the efficiency and the robustness of the proposed method.

2. Method
2.1. Principle

The U-net is an end-to-end deep neural network that takes an image of any size
(fringe patterns here) as input and outputs a specified image (corresponding wrapped
phase maps here). The process of forward propagation, the training method and output
principle used for the neural network are described in Sections 2.2–2.4, respectively. As our
ultimate goal is to obtain a stable network model with effective parameters, a large amount
of training data, including fringe patterns and corresponding wrapped phase maps, are
needed in advance. Once this stable network model has been obtained, the wrapped phase
map of an arbitrary fringe pattern can be obtained directly. The neural network method
was programmed in Python based on the Tensorflow framework, and run on a desktop
computer equipped with an Intel i5-4460 CPU and a GeForce GTX 1080 graphics card.

2.2. U-Net Neural Network

The size of the input fringe pattern is 512× 512 pixels and the output maintain the
same size. This network features a contracting path, a transition path and an expansive path.
The contracting path is used to extract features of the fringe pattern, and the expansive
path is applied for converting into corresponding warped phase map. With the deepening
of the contracting layers, low-dimensional features including gray gradient of every pixel
are changed into high-dimensional features including the location and the local gradient.
More layers of each path mean more connection parameters, so as to fit more complex
non-linear mapping relationship.

The principle of the contracting path is the same as that of the CNN [33]. The contract-
ing path includes four repeated down-sampling process. Every down-sampling contains
two convolution blocks and a pooling block. The feature channel doubles every two convo-
lution blocks, and the image dimensions reduce the half after a pooling operation because
the stride is two pixels.

The down-sampling operation is illustrated in Figure 1. As Figure 1 shows, the
convolution kernel shifting stride is (1, 1) along two dimensions. This means that the
convolution kernels shift 1 pixel along the x and y directions each time and multiple with
the image. The convolution consists of a convolution layer and an activation function, and
the principle [34] can be described by Formula (1):

vx,y
i,r2

= f

(
R

∑
r1=1

P−1

∑
p=0

Q−1

∑
q=0

wp,q
i,r2,r1

vx+p,y+q
i−1,r1

+ bi,r2

)
, (1)

where vx,y
i,r2

represents the value of the output at (x, y) for the r2-th feature channel map

of the i -th layer. vx+p,y+q
i−1,r1

represents the value of the result at (x + p, y + q) for the r1-th
feature channel map of the (i− 1) -th layer, and R is the total number of feature channel in
the (i− 1) -th convolution layer. bi,r2 is a common basic term for the r2-th feature channel
map of the i -th layer. wp,q

i,r2,r1
represents the weight of the convolution kernel at (p, q), and

P×Q is the size of the convolution kernels in terms of pixels, which is 3× 3 in all the
convolution blocks of the contraction path. f represents the activation function, which uses
rectified linear units (ReLUs) [33]. The principle of ReLU is described by Formula (2):

f (x) = RELU(x) = max(0, x), (2)
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Figure 1. Process of down-sampling.

The pooling block employs the max-pooling method, and the region of every pooling
operation is 2× 2 pixels, which is intended to obtain the maximum pixel value in this small
region. Additionally, the pooling stride is (2, 2) along the x and y directions so as to reduce
the image size by a factor of 2.

The expansive path includes four repeated up-sampling process, and it aims to enlarge
the image and decode the convolution process. The up-sampling operation including a
transposed convolution block, a merge block and two convolution blocks is illustrated in
Figure 2. This operation doubles the size of the image and reduces the number of feature
channel by half.

The transposed convolution operation is identical to the convolution operation, but it
enlarges the image from the previous block. Some zero-value pixels between neighboring
image pixels are inserted, and a convolution operation on the up-sampled image is em-
ployed. The stride of the transported convolution layer is 2× 2 pixels, which means that
it inserts one zero pixel between neighboring image pixels, doubling the image size. The
convolution kernel size in the transposed convolution layer is also 3× 3 pixels.

The merge block is an image mosaic process. Once the result of the transposed
convolution layer has been obtained, it is spliced into the feature image of the corresponding
procedure in the contracting path. The principle of two convolution blocks is the same as
the down-sampling operation, but it reduces the number of feature channel by half.

All the convolution kernel values are initialized with random numbers from a trun-
cated Gaussian distribution and the values of biases are initialized as constant.

The whole process of network propagation is shown in Figure 3. This process features
a contracting path (left), a transition path and an expansive path (right). The size of the
input fringe pattern is 512× 512 pixels. After once down-sampling operation, the size of
the image is changed to 256× 256 pixels and the number of feature channels to 64. By
repeating this process four times, the size of the image is reduced to 32× 32 pixels and the
number of feature channel changes to 512.

The transition path is consisted of two convolution blocks. Additionally, the feature
channel doubles after two convolution blocks. The size of the image maintains 32× 32
pixels and the number of feature channel changes to 1024.

Then, the result is subjected to the expansive path including four repeated up-sampling
operation. The size of image is 64× 64 pixels, 128× 128 pixels, 256× 256, and 512× 512
pixels after each up-sampling when the numbers of feature channels are 512, 256, 128, and
64, respectively. Finally, a convolution operation is applied, and the size of the convolution
kernel is 1× 1 pixels. The size of the image maintains 512× 512 pixels, and the number of
feature channel changes to 256.
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2.3. Network Training

Note that the warped phase results are periodic, when 1 output channel and MSE
loss function are used, the result is easily restricted to the local optimal solution, where all
output values tend to be 0. Thus, this problem is chosen to be converted into a classification
problem. The result of the network is a three-dimensional matrix, and the size is 512, 512,
256 along x, y, and feature channel directions, respectively. For every pixel, the values
along feature channel direction represent the possibility of being 0 to 255. A softmax
function is used to reset the result to meet the requirement of probability distribution, so
that cross-entropy [35] known as multi-class log loss can be used as loss function.

When the output of a pixel along the feature channel direction is q1, q2, · · · qn, the
result of the softmax function can be described by

softmax(q)i =
eqi

∑n
j=1 eqj

, (3)

where n represents the number of feature channels, and there is 256.
The probability distribution of reset q meets the following condition:

∀i; qi ∈ [0, 1];
n

∑
i=1

qi = 1, (4)
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The ground truth g of each pixel supposed to be -pi to pi is scaled up to between 0
and 255. The probability distribution of training label p is given according to the formula:

∀i; pi=g = 1; pi 6=g = 0, (5)

Cross-entropy is defined by [35]

H(p, q) = −
w

∑
x=1

h

∑
y=1

n

∑
i=1

pi(x, y) log qi(x, y), (6)

where p represents the training label and q represents the calculated result. The values of p
and q are explained in the next section. n represents the number of feature channels, and
w, h represents the width and height of the fringe pattern, respectively. The smaller the
cross-entropy, the higher the probability that the actual and the calculated results are closer.
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The backpropagation algorithm [36] is used to back-propagate the error into the
network, and adaptive moment estimation (Adam) [37]-based optimization is used to
optimize the weights of convolution kernels(w) and common basic terms(b) of all layers.
An input is first propagated through the network. Then, the difference between the
calculated and the desired output is backpropagated from the output layer to the first
layer of the network, thereby adjusting the network weights in the opposite direction of
the derivative of the network error with respect to each individual network weight. By
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repeating this procedure multiple times for each data in a training set, the network can be
taught to map the inputs on the correct outputs. The batch size was 10, and the epoch was
1000. The learning rate was 10−4.

2.4. Output Principle

The values of each pixel along feature channel direction represent the possibility of
being 0 to 255. As Figure 4 shows, the output is the position corresponding to maximum
possibility, so the output value is between 0 and 255. Note that the number of feature
channels in the last convolution operation can choose more than 256, corresponding to
higher resolution and more calculated time. At last, the output is restored to between -pi
and pi.
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3. Verification of Method
3.1. Simulation Image

Numerical simulations were carried out to test the performance of the proposed
algorithm. From simple to complex, we used three equations to simulate fringe patterns,
and the size of patterns was set to 512× 512 pixels.

The gray level of the first kind of patterns was determined by Equation (7). A total
of 1600 fringe patterns were obtained, in which the fringe number of a pattern was set
between three and 44, and the fringe interval decreased gradually.

I(t, x, y)= 255× cos(((44× pi/512− 3× pi/512)/1600× (t− 1)+3× pi/512))× y),t = 1, 2, · · · 1600; y = 1, 2, · · · 512, (7)

where t represents the series number of the pattern and y represents width in pixels.
The second and third kinds of fringe patterns were generated according to Equations

(8) and (9). The 1600 fringe patterns with different fringe shapes were obtained through
image cropping and rotation from a fringe pattern:

I(x, y) = 50 + 50× cos(peaks(1000) + 20× pi/1000× y),y = 1, 2 · · · 1000, (8)

I(x, y) = 50 + 50× cos(50−
(
(x− 200)2 − (y− 200)2

10, 000

)
), x = 1, 2, · · · 1000; y = 1, 2, · · · 1000, (9)

where x represents height in pixels and y represents width.
Figure 5 shows some simulation patterns. (a), (b), and (c) represent fringe patterns

generated according to Equations (7)–(9), respectively. Of all simulation patterns, 100 fringe
patterns were selected to evaluate the trained network and the rest were used to train the
model. The gray level of the fringe patterns was set as the input to the network, and the
wrapped phase data calculated by four-step phase-shifting method were set as the output.
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3.2. Experimental Image

The fringe projection technique is often used to determine the 3D-profile of an object.
When the fringe pattern is projected on a measured free surface, its phase is modulated by
the height distribution of the object. We used the fringe pattern captured from the fringe
projection experiment to verify the ability of the neural network to extract the phase map.
Figure 6a,b show schematic layout and physical diagram of the experiment, respectively.
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Figure 6. Fringe projection experiment: (a) Schematic layout; (b) physical diagram.

The optical path adopted oblique projection and vertical shooting. The digital fringe
projector chosen was Vivitek-D5158HD at a resolution of 1920× 1280 pixels. The camera
used was the Basler ace 1600-20 g, with a resolution of 1600× 1200 pixels. The optical axis
of the projection and the receiving end intersected at point O. Moreover, the camera and
the digital fringe projector were at the same height L. Due to modulation by the object’s
height, light that was supposed to obtain at point B was cast on point E, but the light point
recorded by the camera was A. Finally, the height information of the object was recorded
in the fringe pattern.

A 1-mm-thick disk was chosen as the measurement object. The position and angle of
the disk were altered to obtain different fringe patterns. To obtain a sufficient number of
images to meet the big data requirement of network training, such data extension as image
cropping, translation, and rotation were used. One thousand fringe patterns were obtained.
Figure 7 shows one of these and its corresponding phase-shifting fringe patterns.
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Another complex object, a facial mask from opera, was measured, as shown in Figure 8.
The same operations were performed as before to yield another 1000 experimental patterns.
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Figure 8. A fringe pattern from the mask experiment and its corresponding phase-shifting fringe patterns.

Michelson interferometry is widely used to measure out-of-place displacement. An
MI-based measurement system was setup to obtain different interferograms, and Figure 9
shows a schematic drawing of the measurement system. A light beam was emitted from the
He–Ne laser generator, and expanded as parallel light beams after going through a spatial
filter and convex lens. The parallel light beams were then divided into two identical parts by a
beam splitter (BS), and one each was introduced to the reference arm and the objective arm. In
the objective arm, the light beam propagated onto the surface of the object and was reflected.
The reference arm had a reflector coupled with a PZT used for phase-shifting. Finally, two
reflected light beams were returned to the BS and interference onto the surface of a CCD. The
phase of the captured interferogram recorded the out-of-place displacement information of the
object. By changing the fringe interval or the position of the reflector, 100 interferograms were
obtained directly, and the other 900 interferograms were obtained through data extension.
Figure 10a,b show physical diagram and some interferograms, respectively.
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The 100 fringe patterns from the fringe projection experiment and 100 interferograms
were selected to evaluate the trained network, and the remainder was used to training the
model. During the training, the wrapped phase dataset as the output of the neural network
was calculated by the four-step phase-shifting method.
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4. Results and Discussion
4.1. Computation Accuracy
4.1.1. Results on Simulation Image

The 100 simulation fringe patterns were used to test the accuracy and robustness of
the method. Figure 11 shows some simulated fringe patterns and corresponding calculated
wrapped phase maps. Figure 11b was calculated by the four-step phase-shifting method
and Figure 11c was obtained through the trained neural network. The results show that
the two types of measurement aligned well, and patterns with different fringe intervals and
types yielded the correct values. In order to further illustrate the accuracy of our proposed
method, wavelet transform method was used to make comparison. The two-dimension
wavelet transform was implemented according to approach proposed by Wang [38], and the
window-modifying parameter chose to be 2. The error maps coming from different methods
are shown in Figure 11d,e, respectively. The whole error level verified the high accuracy.

To evaluate the accuracy of this method, we defined two types of error: systematic
error (E) and standard deviation error (S) [31].

E is defined as

E =
1
N

1
M

M

∑
j=1

N

∑
i=1

∣∣∣djical
− djireal

∣∣∣, (10)

where djireal
represents the wrapped phase data of the i-th pixel in the j-th calculated image,

and djical
represents the calculated phase data of the i-th pixel in the j-th calculated image,

which was also warped. M represents the number of calculated images, and N represents
the number of pixels in an image. S reflects the average error, and its best possible score
was zero.
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S is defined as

S =

√√√√(
1
N

1
M

M

∑
j=1

N

∑
i=1

(djical
− djireal

− E)2), (11)

where S reflects the deviation in the measured displacement corresponding to the mean
value, and has is related to random error.

For the phase data of the simulation fringe patterns, the value of E was 0.03 rad and
that of S was 0.07 rad.
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4.1.2. Results on Experimental Image

The 100 fringe patterns obtained from the experiment on fringe projection were used
to test the accuracy and the robustness of the method. Figure 12 shows some patterns and
their results of wrapped phase maps. The patterns in Figure 12a were chosen from different
projection experiments that used an empty background, a disk, and different parts of a
mask as measured object. One hundred interferograms were also used to test the accuracy
and the robustness of the method. Some interferograms and their wrapped phase map
results are shown in Figure 13. The results shown in Figures 12 and 13b were calculated by
the four-step phase-shifting method, and those shown in Figures 12 and 13c were obtained
through the trained neural network. Through the comparison, we see that the results of
the two methods were consistent. They also show that both experimental fringe projection
patterns and interferograms yielded the correct results, and verified the robustness of the
trained neural network and the feasibility of the machine learning method. Additionally,
error maps are presented in Figure 12d,e and Figure 13d,e. Through contrast, errors of our
proposed method were reduced obviously, demonstrating its improved performance in
measuring complex objects under environmental noise. Thus, the proposed method owns
higher noise resistance ability compared with wavelet transform method.
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transform method, and (e) neural network.
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By referring again to the results of calculation of the four-step phase-shifting method,
we used E and S to evaluate the accuracy of the experimentally obtained fringe pattern. For
the wrapped phase data of the experimental fringe patterns, the value of E was 0.10 rad
and S was 0.08 rad. For the wrapped phase data of interferograms, the value of E was 0.22
rad and S was 0.24 rad. The results verified the precision of this trained neural network
and the accuracy of the learning-based method, as well as the system’s ability to resist
environmental noise. We also see that with decreasing quality of the fringe pattern, error
increased.

4.2. Computation Efficiency

In order to illustrate the computation efficiency of the proposed method, the wavelet
transform method was used to make comparison, which also only needed a single fringe
pattern. The wavelet transform method was also programming using python language. 10
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simulation patterns, 10 fringe projection patterns and 10 interferograms were calculated,
respectively, and the values of E and S were shown in Table 1. The average calculated time
of one pattern were recorded in Table 2.

Table 1. E and S of the proposed method and wavelet transform method.

Value E(rad) S(rad)

Patterns Simulation Fringe
Projection Interferograms Simulation Fringe

Projection Interferograms

The proposed method 0.03 0.10 0.22 0.07 0.08 0.24

Wavelet transform
method 0.05 0.15 0.24 0.08 0.14 0.29

Table 2. Calculated time of the proposed method and wavelet transform method.

Time (s) Simulation Patterns Fringe Projection
Patterns Interferograms

The proposed method 0.069 0.066 0.071

Wavelet transform method 1.154 3.152 2.850

From Table 2, we can see, once the neural network was determined, the calculated
time of the neural network method have no matter with the fringe pattern quality, only
depending on the network structure and the input size. Under the same accuracy, the
calculated speed of the proposed method is 20 times faster than the wavelet transform
method.

4.3. Discussion

From Figure 12c, we find that different measured objects can yield correct results
regardless of the change in the position or the angles of objects. Figure 13c shows that this
trained neural network can be applied to interferograms with lower pattern quality. To
verify the network’s ability to handle more complex fringe patterns with different shapes
and intervals of fringes, some fringe obtained from such data extensions as image extension
and rotation were calculated, and consistent results were obtained as shown in Figure 14.
The results of Figure 14 further verify the robustness of this trained neural network.
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Figure 14. Calculated wrapped phase maps from (a) four-step phase-shifting method, and (b) neural
network.

This learning-based method is an improving process. The more different fringe
patterns are learned, the more complex model can be calculated. A sufficient amount of big
data can support this neural network to adapt to all kinds of fringe patterns. Different fringe
patterns verified its precision with the four-step phase-shifting method, however, this end-
to-end neural network only needs one original fringe pattern to obtain the corresponding
wrapped phase map.
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This method requires a considerable amount of training data, which is time-consuming
in data preparation. This training can be a continuous process. Once a batch of fringe
patterns has been trained, the obtained neural network can be saved. The next batch of
images can then be trained on the saved neural network, which can significantly reduce
the time needed for training.

5. Conclusions

In this paper, we proposed a fringe wrapped-phase map extraction method based on
the U-net neural network that can obtain the wrapped phase map directly from a fringe
pattern. The results of simulated and experimental fringe patterns verified the efficiency
and the robustness of this method. At the same accuracy, the proposed method boasts easy
operation and a simple principle compared with the traditional phase-shifting method and
owns faster speed than wavelet transform method.
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