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Abstract: This article introduces a bioinspired, cicada wing-like surface-enhanced Raman scattering
(SERS) substrate based on template-stripped crossed surface relief grating (TS-CSRG). The substrate
is polarization-independent, has tunable nanofeatures and can be fabricated in a cleanroom-free
environment via holographic exposure followed by template-stripping using a UV-curable resin.
The bioinspired nanostructures in the substrate are strategically designed to minimize the reflection
of light for wavelengths shorter than their periodicity, promoting enhanced plasmonic regions for the
Raman excitation wavelength at 632.8 nm over a large area. The grating pitch that enables an effective
SERS signal is studied using Rhodamine 6G, with enhancement factors of the order of 1 × 104.
Water contact angle measurements reveal that the TS-CSRGs are equally hydrophobic to cicada
wings, providing them with potential self-cleaning and bactericidal properties. Finite-difference
time-domain simulations are used to validate the nanofabrication parameters and to further confirm
the polarization-independent electromagnetic field enhancement of the nanostructures. As a real-
world application, label-free detection of melamine up to 1 ppm, the maximum concentration of
the contaminant in food permitted by the World Health Organization, is demonstrated. The new
bioinspired functional TS-CSRG SERS substrate holds great potential as a large-area, label-free
SERS-active substrate for medical and biochemical sensing applications.

Keywords: bioinspired nanostructure; surface-enhanced Raman spectroscopy; surface relief gratings;
melamine detection; cicada wing nanostructure

1. Introduction

Biomimicry is an emerging field with the objective of replicating physical or chemical
attributes found in nature to create human-made devices. The development of biomimetic
materials and devices has been particularly useful in optics and sensing applications [1,2].
Examples of bioinspired materials include polymer-based biohybrid sensor interfaces [3],
functional nanostructures of S-proteins for breast cancer cell detection [4], wearable eye
health monitoring sensors [5], anti-Moiré grids with the optoelectronic performance [6] and
SERS substrates inspired by the geometry of lotus seedpod [7]. Subwavelength periodic
structures, such as nipple arrays and tapered pillars, can be found in some insect eyes
and wings. Cicadas, in particular, have tapered nanopillars in their transparent wings to
suppress light reflection, which makes them invisible to predators [8] and provides them
with self-cleaning, superhydrophobic and bactericidal properties [9]. The amplitude and
periodicity of the nanopillars range between 170 and 300 nm in order to achieve minimal re-
flection in the visible 300–800 nm spectrum [10–13]. In previous studies, direct deposition of
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metals on cicada wings has been used to investigate broadband light absorption properties
of the nanostructures [14], as surface-enhanced Raman scattering (SERS) substrates [15,16]
and to produce bio-templated SERS-active nanostructures transferred to optical fibers [17].
Other studies include photocatalytically deposited metallic nanoparticles on cicada and
butterfly wings [18]. However, these methodologies enable the production of fixed-pitch
nanostructures, preventing the tailored fabrication of SERS active surfaces of similar or
identical morphologies.

Nanostructures that support surface plasmon resonance (SPR) have been widely used
for sensing and biosensing applications through the use of different techniques, including
SPR spectroscopy [19–25], SPR imaging [26–29] and surface-enhanced Raman scattering
(SERS) spectroscopy [30–37]. SERS, particularly, allows for highly sensitive detection
and specific identification of analytes. Nevertheless, metallic nanostructures must enable
high enhancement of near-surface electromagnetic field intensities to qualify as SERS
substrate [36]. Nano-engineered substrates such as metallic tips [35], nanohole arrays [38]
and nanogratings [32] have been investigated for better controlled and reproducible SERS
substrates. These structures provide a uniform enhancement over a large surface area,
negating the concept of plasmonic “hot-spots” where only specific regions experience
electromagnetic field strength enhancement [15]. Metallic nanogratings, in particular,
experience large-area uniform electromagnetic enhancement, which increases the chances
for analyte detection via SERS spectroscopy [39–41]. However, excitation of plasmons on
1D nanogratings is maximized when the polarization of the incident light is aligned with
the grating vector [34]. Optimal enhancement is determined by the morphology of the
nanogratings and the relative angle between the incoming light polarization and the grating
vector. The polarization dependency of the nanostructures can be overcome by structuring
them into a 2-dimensional (2D) arrangement. Crossed relief gratings (CSRGs) are 2D
nanostructures that enable polarization-independent SERS detection, offering enormous
potential for specific analyte sensing [19,21,26]. SPR excitation by one of the superimposed
gratings is re-radiated by its orthogonal counterpart in a polarization state that is orthogonal
to that of the incident light. Metallic CSRG may enhance the electromagnetic field intensity
at a metal-dielectric boundary near-surface region by ~30 times, but they are fabricated from
an azobenzene molecular glass (gDR1) solution that consists of azobenzene chromophore
molecules, which are SERS active. This aspect has limited the deployment of CSRGs
for SERS-based analysis as target signals may get masked by the azobenzene Raman
spectra. One way to tackle this problem, and the main motivation of this work, is by
replicating the tapered nanopillars in the cicada wings, to take advantage of their optical
properties, and to use template stripping to allow the transfer of the metallic nanostructures
to another substrate without the gDR1 layer that could potentially mask SERS signals,
with the additional benefit of being pitch-customizable to provide antireflective (AR) or
signal generation properties at desired wavelengths. Template stripping is a cost-effective
and cleanroom-free approach that has been used for transferring other types of metallic
nanostructures while preserving their shape and plasmonic efficiency [42,43].

Here, we present a polarization-independent, template-stripped Ag CSRG (TS-CSRG)
SERS substrate, inspired by the tapered nanopillars found in the Cicada wings [15],
along with the outstanding plasmonic capabilities of subwavelength metallic CSRG. The new
methodology is achieved using holographic exposure and template-stripping of silver-
coated CSRG using a UV-curable epoxy that enables fabrication of homogeneous, pitch-
customizable, large-area, and low-cost substrates that allows for reproducible SERS signals.
FDTD simulations are used in the design process to confirm the enhancement and distri-
bution of the electromagnetic field along the nanostructures. The pitch-dependency of
the TS-CSRG is used to tailor the SERS signals response upon the adsorption of Raman
reporter molecule Rhodamine 6G (R6G). To showcase the capabilities of Ag TS-CSRG as
SERS substrates in a real sensing context, we demonstrate the effective, label-free detection
of melamine at concentrations of 1 ppm, which corresponds to the maximum residue limit
for melamine in infant formula dictated by the World Health Organization (WHO) [44].
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2. Materials and Methods
2.1. Atomic Force Microscopy

Imaging of the cicada wings, CSRGs, and TS-CSRGs structures was performed us-
ing a Dimension Edge atomic force microscope (AFM) system (Bruker, Billerica, MA,
USA). A ScanAsyst-Air AFM tip (Bruker, Billerica, MA, USA) was utilized to scan a
5 µm × 5 µm area, using the peak-force tapping mode, with a scan rate of 1 Hz per line.
Bruker NanoScope Analysis software was used to fit and analyze the AFM scans and obtain
parameters such as the topography, depth, and pitch of the structures.

2.2. Fabrication of Nanogratings

The surface plasmon resonance wavelength of CSRGs is found by matching the SPR
wavevector to the diffracted light via the grating equation so that the following equality is
obtained [19]:

ksp = k0 nsinθ ± 2πm/Λ, (1)

where ksp is the surface plasmon wave number, k0 is the incident light wave number in free
space, n is the refraction index of the dielectric, θ is the incidence angle, m is the diffraction
order (normally limited to unity), and Λ is the grating pitch.

Fabrication of the CSRGs was performed using the rapid and high-throughput inter-
ferometric technique described elsewhere [19,21,26]. Azobenzene molecular glass (gDR1)
solution (DR1-glass, 2.99 mM, 94%) was prepared according to the methods described
elsewhere [45]. A volume of 500 µL of 3 wt % gDR1 solution, diluted in dichloromethane,
was spin-coated on a 2.5 cm × 2.5 cm Corning 0215 soda lime microscope glass slide (Ted
Pella Inc., Redding, CA, USA) using a Headway Research spin-coater (Headway Research
Inc., Garland, TX, USA) at 1000 RPM for 20 s. The spin-coated samples were then dried
and annealed for 1 h at 90 ◦C in a Yamato ADP-21 oven (Santa Clara, CA, USA) to generate
a uniform gDR1 film of approximately 200 nm thick, verified by a Sloan Dektak II surface
profiler (Veeco Instruments Inc., Plainview, NY, USA). CSRGs were written on the gDR1-
coated substrates by direct holographic exposure to the laser-light interference pattern
assisted by a Lloyd mirror optical setup. The laser beam from a solid-state diode-pumped
laser (Coherent, Santa Clara, CA, USA, Verdi V6, λ = 532 nm, irradiance = 140 mW/cm2)
was directed onto a Lloyd mirror optical setup to allow for molecular mass transport of
the azo-molecules to generate of nanopatterned SRGs. After the initial inscription of the
SRGs (time of exposure = 300 s), the sample was rotated by 90◦ and a second exposure
for 100 s was performed to fabricate orthogonally superimposed SRGs. An 80-nm layer of
silver was subsequently sputtered over the CSRG using a Bal-Tec SCD 050 sputter-coater,
to make an Ag-CSRG. The prepared samples had a periodicity of 450, 500, 550, 600 nm.

2.3. Template-Stripping Procedure

The fabricated Ag-CSRG was spin-coated with a UV-curable epoxy (NOA61, Norland
Products Inc., East Windsor, NJ, USA) to generate uniform epoxy coating. Next, a pre-
cleaned Corning 0215 soda lime microscope glass slide (Ted Pella Inc., Redding, CA, USA)
was pressed against the epoxy-coated Ag-CSRG. The sandwiched system was then exposed
to UV light in an enclosed UV chamber (Novascan PSD-UV, Novascan Technologies Inc.,
Ames, IA, USA) for 30 min. When the epoxy was cured, the patterned silver was stripped
from the Ag-CSRG by a simple peel-off. The stripped substrate, consisting of the smooth
Ag nanogratings, was subjected to a final rinsing with 10% ethanol and DI water to dissolve
and remove any remaining gDR1 from the metal surface. The cleaned substrate was then
air-dried and stored in a microscope glass slide holder for further use.

2.4. Raman Measurements

A Horiba/Jobin-Yvon Raman spectrometer (Model: LabRAM) with a 632.8 nm HeNe
laser (17 mW), 1800 1/mm grating and an Olympus BX-41 microscope system were used.
The collection of spectra was performed in the backscattered mode under the following
conditions: ×100 microscope objective, 500 µm pinhole, 500 µm slit width, laser filter 10×,
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for a sampling time of 10 seconds with 10 repeats. All Raman spectra were background
corrected through polynomial subtraction, and the noise was reduced with a Savitsky–
Golay filter.

2.5. Analyte Sample Preparation

R6G was dissolved in methanol at a stock concentration of 0.1 M and diluted in
methanol to generate solutions in the range of 1 µM–1 mM. Melamine was dissolved in
Millipore®water to a stock concentration of 1 mg mL−1 (1000 ppm) and diluted in water to
generate solutions in the range of 1–100 ppm.

2.6. Contact Angle Measurements

Contact angle measurements were performed using an OCA 15EC digital goniometer
(DataPhysics, Charlotte, NC, USA). Droplets (volume of 2.56 ± 0.13 µL, n = 5) of Nanop-
ure water were dispensed onto a 500 nm Ag TS-CSRG at standard conditions using an
electronically controlled syringe. The resulting contact angle was calculated using the
SCA 20 software module (DataPhysics, Charlotte, NC, USA) with a Young-Laplace fitting
feature for the sessile drop method.

2.7. Enhancement Factor Calculations

SERS EF for R6G molecule absorbed on Ag-CSRG was calculated using the following
equation [46]:

EF = (ISERS/NSERS)/(IBulk/NBulk), (2)

ISERS and IBulk are the intensities of the 1358 cm−1 peak with SERS and normal Raman
(flat Ag surface), respectively. NBulk is the number of molecules illuminated in bulk,
giving a normal Raman signal, and NSERS is the number of molecules illuminated on the
nanostructured metallic substrate, giving the SERS signal. The peak at 1358 cm−1 represents
intensity at a characteristic band wave number for R6G absorbed on an Ag-CSRG and a
flat Ag substrate.

2.8. Finite-Difference Time-Domain (FDTD) Simulations

Three-dimensional FDTD was used to simulate the distribution of the near-field elec-
tromagnetic field on the surface of the TS-CSRG using Lumerical FDTD Solutions software.
Simulations under S and P polarizations were recorded and added to emulate the plas-
monic response under a quasi-unpolarized broadband excitation light source. Symmetric
and antisymmetric boundary conditions were set for the x- and y-directions, respectively,
and a perfectly matched layer (PML) in the z-direction. The dielectric permittivity used in
the simulations for the UV-curable epoxy and silver were obtained from the manufacturer
and the literature, respectively [47]. The topography of a CSRG was modeled according to
the following function:

f (x,y)=A/2{|sin[(4π/p)x]| − |cos[(4π/p)x]| − |sin[(8π/p)x]| + |(|sin[(4π/p)x]| −

|cos[(4π/p)x]|)| + |sin[(4π/p)y]| − |cos[(4π/p)y]| − |sin[(8π/p)y]| + (3)

|(|sin[(4π/p)y]| − |cos[(4π/p)y]|)|-cos[(8π/p)x] − cos[(8π/p)y]}

where A and p correspond to the amplitude and period of the structure, respectively,
in accordance with the AFM characterization. A uniform mesh size of 3 nm was used
for the envelope of the nanostructure, comprising the UV-curable epoxy, the silver film,
and the dielectric medium in all the directional axes. A time-averaged electric field intensity
distribution, normalized with respect to the incident plane wave |E/E0|2, was calculated
for the Ag-CSRG. A frequency-domain field profile is placed at the xy plane of the CSRG.
To match experimental conditions, |E/E0|2 was recorded at 632.8 nm, corresponding to
the excitation wavelength of the Raman apparatus.
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2.9. Scanning Electron Microscopy

High-magnification image acquisition of the surface of TS-CSRGs was achieved using
a high vacuum scanning electron microscope (SEM) Quanta FEG 150 ESEM (Field Electron
and Ion Company, Hillsboro, OR, USA) with BF/DF STEM detector, at 10 kV. Images of
TS-CSRG of 450, 500, 550 and 600 nm were acquired at magnifications of 16,000×, 20,000×
and 25,000× (images of all TS-CSRGs are provided in the Supplementary Information).

3. Results and Discussion

A piece of the external façade of the wing of a natural cicada Neotibicen canicularis was
scanned using atomic force microscopy (AFM). Figure 1a shows a digital picture of the
cicada, and Figure 1b shows the AFM scan image of the external surface of a distal portion
of the wing. The inset shows an image of a droplet atop the wing of the cicada, acquired
during contact angle measurements (more details can be found in the Supplementary
Information). Even when the AR nature of the nanostructured cicada wings is dictated by
evolutionary survival strategies, the topography between different species of cicadas may
vary. Figure 1c shows an AFM scan of the external wing topography of a wing of cicada
Cryptotympana atrata fabricius reported previously [48].
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Figure 1. (a) Picture of a cicada Neotibicen canicularis. (b) atomic force microscope (AFM) image of
the external surface from a piece of the wing of the cicada; inset: wetting state of a water droplet
on a cicada Neotibicen canicularis. (c) AFM image of the external surface of the wing of a cicada
Cryptotympana atrata fabricius. Reprinted with permission [48]. Copyright 2017, The Royal Society of
Chemistry. (d) Schematic representation of the fabrication procedure for creating template-stripped
Ag template-stripped crossed surface relief grating (TS-CSRG). AFM scan of a 5 µm × 5 µm area of a
500-nm-pitch (e) Ag CSRG, and (f) Ag TS-CSRG; inset: wetting state of a water droplet on an Ag
TS-CSRG; scale bars correspond to 1 µm. (g) SEM image of a 500 nm-pitch Ag TS-CSRG.

As the nanostructure pattern in the cicada wing is nearly complementary to a CSRG,
it can be reproduced via template-stripping to create the bioinspired SERS-active sub-
strate. The fabrication procedure of the TS-CSRG is schematically shown in Figure 1d.
First, surface relief gratings (SRGs) were fabricated by dissolving photoactive gDR1 in
dichloromethane, followed by a spin-coating step on a pre-cleaned microscopic glass to
achieve a uniform thin film of ~200 nm. Using a laser, gratings with the desired pitch were
written on the gDR1-coated substrate by direct holographic exposure to an interference
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pattern as reported elsewhere [19]. CSRGs were achieved by the in-plane, orthogonal
superposition of two sequentially inscribed SRG, as detailed in the Experimental section.
Nanometer-level precision in the periodicity of the CSRG is achieved by controlling the
fabrication parameters, including laser power, exposure time, and angular position of
the sample. The precise control in the periodicity enables the creation of a tailored pitch
in ~6 min. A 50-nm thick layer of Ag was deposited on the CSRG to provide the metallic
interface for the SPR excitation. Figure 1e shows an AFM scan of a 500-nm-pitch Ag-coated
CSRG. The final TS-CSRGs were achieved by selective lift-off of the Ag layer from the
CSRG. UV-curable epoxy was spin-coated on the Ag CSRG and then pressed against a
pre-cleaned microscopic glass slide and placed in a UV curing chamber for 30 min to
allow the epoxy to solidify. The Ag nanostructures were then peeled off and cleaned with
ethanol to dissolve any remnant gDR1. This method provided a large-area and smooth Ag
TS-CSRG with a complementary pattern of the CSRG, as shown in the AFM scan in Figure 1f.
Images on the template stripping process and the resulting nanostructures are shown in
Figure S2 in the Supplemental Materials. The inset shows an image of a droplet atop the
TS-CSRG, acquired during contact angle measurements. Additional information on the
wetting state of the cicada wing and the fabricated nanostructures can be found in the
Supplementary Materials, along with images of droplets atop the surfaces taken during the
CA measurements (Supplementary Materials Figure S1). Figure 1g shows an SEM image
of a 500-nm-pitch Ag TS-CSRG, where the valleys and peaks of the nanostructures are
recognizable, analogous to the topology revealed by the AFM scan. Additional SEM images
of the Ag TS-CSRGs are also shown in Figure S3 in the Supplementary Materials. Notably,
the fabricated TS-CSRGs have a remarkable resemblance to the nanostructures on the wing
of cicada Cryptotympana atrata fabricius. The nanostructures have a total sensing area of
approximately ~1 cm2, allowing for a large-area approach for target analyte detection,
in contrast to established hot spot methods.

The nanostructures on the wings of the cicadas not only provide them antireflection
but also self-cleaning and antibacterial properties that arise from the hydrophobicity of the
surface [9]. Compared to a flat silver substrate, the TS-CSRG allows for a metal-dielectric
interface with nanoscopic features that significantly alter the wettability of the surface.
Typically, the contact angles (CA) of non-wetting surfaces range between 90◦ and 180◦,
whether a perfect wetting surface is 0◦. An ideal flat silver surface is perfectly wetting;
although the CA can vary depending on the cleanness of the surface, it is significantly
low compared to values for non-wetting surfaces [49]. The nanostructured features of
Ag TS-CSRGs induce a Wenzel state, where the surface exhibits the apparent CA of a
non-wetting surface [50], similar to the self-cleaning hydrophobic surface of cicada wings.
We investigated the wettability of the TS-CSRG and cicada wing by measuring the static CA
using microscopic droplets of DI water. The insets in Figure 1b,f show, respectively, images
of droplets on the external surface of a piece of a cicada Neotibicen canicularis wing and atop
a pristine TS-CSRG taken with the automatic CA measurement system. From the images,
it is qualitatively evident the hydrophobicity exhibited by both surfaces. Quantitatively,
the measured CA from the cicada wing and the TS-CSRG were, respectively 115◦ ± 2.075◦

and 119◦ ± 3.4222◦ (n = 5).
Electromagnetic enhancement is critical for SERS-based detection. In a backscattering

approach, a surface-confined enhancement assisted by SPR excitations allows for the
enhancement of small molecule Raman signals. However, a SERS substrate needs to be
tailored to allow for the excitation depending on the incident laser wavelength. Using
Equation (1), for air (n = 1) and assuming normal incidence, the desired pitch of the gratings
was calculated to be ~560 nm for a laser excitation wavelength of 632.8 nm. However,
any analyte on the surface of the metal will eventually change the dielectric permittivity
as perceived by the incident light. Hence, a set of TS-CSRGs with a grating pitch ranging
from 450 to 600 nm with a 50-nm pitch increment was fabricated to acknowledge the
dielectric change encountered by the incident light on the surface. The nanostructures
were strategically designed with those periodicities to minimize the reflection of light for
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wavelengths shorter than the periodicity, promoting therefore enhanced plasmonic regions
for the Raman excitation wavelength of 632.8 nm.

FDTD simulations were used to demonstrate the polarization-independent electric
field enhancement in the vicinity of the TS-CSRG and to confirm the nanostructure pitch
leading to the highest EF. Details on the methodology, including the equation utilized to
replicate the topography of the nanostructures, are described in the Experimental section.
Figure 2a,b shows, respectively, the 3D surface created from Equation (3) and the simulation
model used for the FDTD simulations. This equation was utilized to create a model of the
TG-CSRGs on Lumerical FDTD solutions software to perform FDTD simulations, which are
presented in Figure 2b. The simulations demonstrated the polarization-independent electric
field enhancement in the vicinity of the TS-CSRG and confirmed the nanostructures pitch
leading to the highest EF. Details on the methodology, including the equation utilized to
replicate the topography of the nanostructures, are described in the Experimental section.
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Figure 2c–f shows the electric field intensity distribution, |E/E0|2, recorded along
the xy cross-section, for gratings with periodicities spanning from 450 nm to 600 nm for
a dielectric with RI of 1.33. All the simulation results were scale-adjusted for intensity
values of 0–100. The plasmonic enhancement obtained for all the structures demonstrated
to be the same for s- and p-polarized incident light. Figure 2d shows the simulated
electric field enhancement of the TS-CSRG of 500-nm pitch, which is at least five times
higher than the other periodicities investigated in this work (Figure 2c,e,f). Additionally,
it can be observed that the highest electric field enhancement occurs at the crests of the
nanostructures. The strength of the electric field decreases in a quasi-radial pattern towards
the center of the valleys. Although the simulations may indeed vary from real samples
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on account of alterations in RI or topography, they served to confirm the response for the
TS-CSRG periodicities scrutinized in this work.

The pitch-dependency of the TS-CSRG was used to tailor the SERS signals response
upon the adsorption of Rhodamine 6G (R6G), a Raman reporter molecule with a distinct
Raman spectrum. Figure 3a shows the Raman spectra for a flat Ag surface and TS-CSRG
with pitches of 450, 500, 550 and 600 nm. Raman peaks at c.a. 610, 770, 1180, 1306, 1360,
1505, 1570, 1595, and 1645 cm−1 are characteristic of R6G [51,52]. The reference peak at
1360 cm−1, corresponding to aromatic C-C stretching [53], is commonly used as a reference
to track changes on the surface of the substrate, and it can be clearly observed in all
CSRGs. However, the peak is more prominent in the 500-nm-pitch grating, concurring
with the simulation results shown in Figure 2c–f. The SERS enhancement factor (EF),
which correlates to the evaluation of signal intensities observed from SERS-active and
passive substrates (i.e., flat Ag substrate), was calculated. The Raman vibration of R6G
at 1358 cm−1 was used for the EF calculations, and the corresponding intensity for R6G
(10−2 M) on a flat Ag substrate was calculated to be 70 arbitrary units (a.u.). The intensities
at 1358 cm−1 were recorded for each of the substrates with different pitches using R6G
(10–5 M). The EF values were calculated using Equation (2) for TS-CSRG with pitches
450, 500, 550 and 600 nm were 3.8 × 104, 7.6 × 104, 6.1 × 104 and 1.6 × 104, respectively.
The TS-CSRG with a pitch of 500 nm exhibited the highest EF—a value that may serve as
a guideline for SERS detection applications and further investigations, with magnitude
comparable to reported values for grating-based SERS substrates [54] and commercial
SERS substrates [30].
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The TS-CSRG was further evaluated in a real-world detection scenario for the de-
tection of melamine. Melamine is a toxic, nitrogen-rich (66% by mass) chemical used in
the plastics industry for the production of compounds for molding, coating, adhesives,
and glues. Due to its high nitrogen content, it is illegally added to foodstuffs such as pet
food, milk, infant formula to inflate the apparent protein content of the food [55]. Melamine
contamination is virtually undetectable by standardized tests as they rely on the amount of
nitrogen in test samples as a proxy for the amount of protein. Illegal contamination of dairy
products led to severe health problems, resulting in renal failure and even death, with the
hospitalization of over 50,000 infants in some cases [56]. The World Health Organization
dictates 2.5 ppm (2.0 × 10−5 M) as the maximum residue limit for melamine in milk and
1 ppm (7.9 × 10−6 M) as the maximum residue limit in infant formula [57]. Detection
of melamine usually involves laborious, expensive, and time-consuming methods such
as HPLC and LC-MS. In spite of the low detection limit of those methods, they involve
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immovable heavy equipment and sample preprocessing that make them impractical for
point-of-use testing. Melamine has a strong characteristic Raman peak associated with
the in-plane deformation of the triazine ring peak (around 676–690 cm−1), depending
on reaction conditions [58]. This provides an opportunity to allow for the detection of
melamine using the Ag TS-CSRG SERS substrate. Melamine in water with concentrations
ranging 1 ppm–1000 ppm were drop-casted on the Ag TS-CSRG, followed by SERS spectra
acquisition. Figure 3b shows the normalized acquired spectra for melamine for the different
concentrations. The characteristic Raman peak associated with the in-plane deformation of
the triazine ring peak is distinguishable up to 1 ppm, a concentration that is in line with the
WHO regulations for melamine in food products. These results demonstrate that the Ag
TS-CSRG presented here can be used as an inexpensive, yet effective SERS sensor with a
topology that can be customized to transmit or reflect specific light wavelengths, similarly
to actual nanostructures in cicada wings, to enable signals tailored to employ and acquire
specific wavelengths for sensing.

4. Conclusions

In conclusion, this work presents a new Ag TS-CSRG as polarization-independent
SERS active substrate, inspired by the tapered nanopillars found in cicada wings. The fab-
rication of the substrate is cost-effective and achieved in a cleanroom-free environment
via holographic exposure followed by a template-stripping step using a UV-curable resin.
Inspired by the AR properties of the cicada wings, the nanostructures are strategically
designed to minimize the reflection of light for wavelengths smaller than their periodicity,
promoting enhanced plasmonic regions for the Raman excitation wavelength at 632.8 nm.
AFM scans reveal that the TS-CSRGs possess a remarkable resemblance to the nanostruc-
tures in the wings of cicada Cryptotympana atrata fabricius and are equally hydrophobic,
providing them with potential self-cleaning and bactericidal properties. The nanostructures
enable a field enhancement that allows for the sensitive and reproducible SERS detection
of R6G. Simulations and experimental investigation of the SPR-assisted electromagnetic
enhancement are performed via FDTD and detection of SERS-active dye R6G, respectively,
to validate the nanofabrication parameters. More important, the TS-CSRG enables the
label-free, sensitive detection of melamine at concentrations compatible with the maximum
residue limits allowed by the WHO in food. The fabrication methodology of TS-CSRG al-
lows for the generation of nanostructures with customized periodicities that can be tailored
for specific applications. Therefore, the new bio-inspired functional, SERS-active TS-CSRG
introduced here holds great promise as large-area, label-free SERS-active substrates for
medical and biochemical sensing applications.
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pitches of 450 nm, 500 nm, 550 nm and 600 nm.
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