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Abstract: Finger vein (FV) biometrics is one of the most promising individual recognition traits,
which has the capabilities of uniqueness, anti-forgery, and bio-assay, etc. However, due to the restricts
of imaging environments, the acquired FV images are easily degraded to low-contrast, blur, as well as
serious noise disturbance. Therefore, how to extract more efficient and robust features from these low-
quality FV images, remains to be addressed. In this paper, a novel feature extraction method of FV
images is presented, which combines curvature and radon-like features (RLF). First, an enhanced vein
pattern image is obtained by calculating the mean curvature of each pixel in the original FV image.
Then, a specific implementation of RLF is developed and performed on the previously obtained
vein pattern image, which can effectively aggregate the dispersed spatial information around the
vein structures, thus highlight vein patterns and suppress spurious non-boundary responses and
noises. Finally, a smoother vein structure image is obtained for subsequent matching and verification.
Compared with the existing curvature-based recognition methods, the proposed method can not
only preserve the inherent vein patterns, but also eliminate most of the pseudo vein information,
so as to restore more smoothing and genuine vein structure information. In order to assess the
performance of our proposed RLF-based method, we conducted comprehensive experiments on
three public FV databases and a self-built FV database (which contains 37,080 samples that derived
from 1030 individuals). The experimental results denoted that RLF-based feature extraction method
can obtain more complete and continuous vein patterns, as well as better recognition accuracy.

Keywords: finger vein; biometrics; mean curvature; radon-like features

1. Introduction

Finger vein (FV) biometrics is an efficient individual recognition trait, which has the
advantages of uniqueness, anti-forgery, bio-assay, permanence, and user-friendly [1–3].
At present, the authentication technologies based on FV traits have shown wide application
prospects in the fields of airports, banks, consumer electronics, and so on [4,5]. However,
since the FV images are usually acquired under the restricted imaging environments,
not only do imaging types of equipment need to be designed as narrow and compact as
possible, but the illuminations of infrared light are often weak and uneven, leading to the
acquired images appear to low-contrast, blur, and noisy. In this regard, how to extract more
efficient and robust features from those low-quality images is particularly critical for the
FV recognition system.

Generally speaking, feature extraction of FV images can be carried out in two ways
(as shown in Figure 1). One way is to see an FV image as a general digital image, thereby,
some mature feature extraction algorithms in the field of digital image processing can
be directly migrated to use. In this case, features are extracted from the whole image
while not distinguishing the vein and background (hereinafter we named as ‘image-level’
feature extraction). However, FV images have their own characteristics, for instance,
the vein points are relatively sparse, and the variations of gray value between the veins
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and the surrounding background are slow and gradual. Thereby, the second way is to
try to separate the vein patterns from the image, and then extract features on the pure
vein patterns (hereinafter we named as ‘vein-level’ feature extraction). In essence, ‘vein-
level’ methods obey the hypothesis that the vein points are generally darker than their
surrounding non-vein points.

Figure 1. Illustration of different ways of feature extraction for finger vein images.

For the class of ‘image-level’ feature extraction, existing methods were mainly derived
from the fields of face recognition [6,7], image classification [8,9], and remote sensing
images [10], etc. Among these, local binary pattern (LBP) [11] and its variant methods, such
as local line binary pattern (LLBP) [12], local derivative pattern (LDP) [13], local directional
code (LDC) [14], personalized best bit map (PBBM) [15], personalized best patches map
(PBPM) [16], discriminative binary code (DBC) [17,18], anchor-based manifold binary pat-
tern (AMBP) [19], block multi-scale uniform local binary pattern (MULBP) [20], etc., have
demonstrated satisfactory recognition performance. LBP-based operators transferred the
whole FV image into an ordered set of binary values, which can be seen as a type of local
statistical-based method. While different from LBP-based methods, competitive coding-
based method [21] encoded an FV image according to certain rules. More specifically, only
orientations of the minimal Gabor filter responses (that means the trend of lines) were
encoded. As a result, the competitive coding-based method demonstrated insensitivity
to illumination and better recognition accuracy. Besides, two statistical analysis methods
based on subspace learning, principal component analysis (PCA) [22] and linear discrimi-
nant analysis (LDA) [23], were also introduced for FV image processing. PCA adopted an
unsupervised linear transformation to obtain a set of orthogonal vectors with the largest
variances, while LDA adopted a supervised transformation to obtain a discriminative
subspace. Moreover, an (2D)2 PCA technology was specially designed to extract two-
orientational features [24]. In this manner, the process of converting a two-dimensional
image into a one-dimensional vector is avoided. In addition to the aforementioned methods,
superpixel-based methods [25] also belong to this class.
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Although the ‘image-level’ methods avoid the process of separating vein patterns,
they still have some drawbacks: First and for most, when the original FV images are
low-quality, the local similarity of vein points and their surrounding non-vein points is
high, which makes it difficult to strip out the vein points. In addition, because the genuine
vein points in FV images are relatively sparse, a large amount of irrelevant and pseudo
information are mixed as vein information, which hinders the matching performance.

Considering that each finger has its unique and consistent vein information, most
methods of ‘vein-level’ class are devoted to separate more accurate vein patterns from the
image. Among, line-shape-based and curvature-based methods are two representative
branches. In order to extract line-shape of the veins, a repeated line tracking method
was proposed in [26]. Later, a wide line detector (WLD) was proposed in [27], which
considered width information of the veins. Likewise, curvature-based methods were also
widely used for the representation of vein patterns. Mathematically, curvature reflects
how much a curve bends at a certain point. Taking the FV image for example, on each
cross-sectional profile, the maximum curvature points are those points that own the local
minimum gray value [28]. After that, in [29], by decomposing the Hessian matrix of
the normalized gradient image, two orthogonal principal curvatures of each point were
calculated, and the larger one, which denotes the maximum curvature among all directions,
was used to characterize the vein structures. In [30], mean curvature was utilized to trace
the valley-like structures in a two-dimensional space. Recently, difference curvature with
its greater capability in distinguishing edges and ramps, was also applied to extract vein
features [31]. Roughly speaking, mean curvature and difference curvature both belong
to two-dimensional curvature operators, while the maximum curvature belongs to one-
dimensional curvature operator.

The ‘vein-level’ features represent the intrinsic vein patterns, which are intended to
minimize the influence of non-vein information. However, many methods of this class still
focus on solving problems from the perspective of each individual pixel, while neglecting
the benefits of spatial correlation, thus leading to the sensitivity to weak intensity variations,
and easy to generate many noises and irregular shadings in the obtained feature images.

In recent years, deep learning (DL) based methods, due to their ability of high-level
feature learning, have also been introduced for FV image recognition [32]. Generally,
DL-based models provide an end-to-end recognition procedure, and directly output the
final matching results. Initially, researchers tend to design a few lightweight network
architectures [33,34]. It is due to the fact that, on the one hand, training samples are always
insufficient in some publicly available FV image databases; on the other hand, FV images
contain relatively simpler semantic features (mainly line-shape features). In [35], a four-
layer convolutional neural network (CNN), with two fused convolution/subsampling
layers and two full connection layers, was constructed for FV recognition. Then, a light
CNN, which integrated a maxout activation function [36] and a triple similarity loss func-
tion [37], was proposed in [38]. In [39], a lightweight two-stream CNN architecture was
proposed for FV verification. Among, the first stream network was used to process origi-
nal image pairs as input, and the second stream network was used to process mini-ROI
pairs as input. Then, the outputs of two streams were concatenated to form the final
feature representation.

Besides, some existing DL models, such as VGGNet [38,40–42], ResNet [43], and
AlexNet [44], etc., were also introduced. In these models, either a different image or
an image pair was fed into the networks. It should be noted that in some networks,
the low-level features were used as inputs, e.g., line-shape features extracted by using WLD
operator [27] were fed into a modified VGGNet-16 [41], thus promoting better recognition
accuracy. Such idea of using low-level features also emerged in [45], in which an assemble
feature extractor was constructed to integrate multiple low-level FV features, and then
used to automatically pre-label the vein and background samples, so as to efficiently solve
the problem of insufficient training samples.
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Recently, some more powerful but complex network models, such as Siamese Net-
work [46], GaborPCA Network [47,48], Convolutional Autoencoder [49], Capsule Net-
work [50], DenseNet [51,52], Fully Convolutional Network (FCN) [53,54], Generative
Adversarial Network (GAN) [55–57], and Long Short-term Memory (LSTM) Network [58],
etc., also emerged in the field of FV image recognition. Especially for the GAN, which can
not only achieve more robust vein patterns from low-quality FV images, but also generate
a variety of synthetic FV samples.

Although DL-based FV recognition methods have achieved promising performance,
they still suffer from some problems to be in suspense. First, DL-based models are all
data-driven, in which the training data sources play an important role. However, most
benchmark FV databases are small-scale, thus easy to bring overfitting problems. Secondly,
in a real scenario, the FV images often have poor quality (blur, deformation, etc.), and many
mature DL models require a resized input image, which will degrade the recognition
performance. Therefore, how to extract effective and robust vein structures while removing
the pseudo vein information as far as possible, will be a benefit to the DL-based methods.
Third, in real-time processing, many DL-based models have heavy computation and huge
hyper-parameters, which are hard to be ignored.

Inspired by the aforementioned methods, we presented a novel feature extraction
method of FV images, which combined curvature and radon-like features (RLF) [59].
First, an enhanced vein pattern image was obtained by calculating the mean curvature of
each pixel in the original FV image. However, due to the low quality of the original region
of interest (ROI) image, the obtained vein pattern image not only contained geometric
information of each vein point, but also distributed a lot of pseudo points with similar
geometric information. At this point, if we do binarization directly, it will be bound to
introduce more errors. So, we developed a specific implementation of RLF, and applied to
the previously obtained vein pattern image, which can effectively aggregate the dispersed
spatial information around the vein structures, thus highlight vein patterns and suppress
spurious non-boundary responses and noises. Finally, a greater smoothing vein structure
image was obtained for subsequent matching and verification.

The main idea of our proposed method is to realize a more advanced feature repre-
sentation of FV images, which takes the existing local feature as an initial base-feature
representation. Then, by means of spatial correlation, this kind of base-feature is reorga-
nized and processed to form a more advanced feature. To be specific, in order to extract
more clear vein patterns from low-quality FV images, we introduced the RLF [59] to ag-
gregate the mean curvature-based features. The RLF has been successfully applied to the
enhancement and segmentation of cell boundaries in connectomics. To the best of our
knowledge, it is the first attempt to introduce RLF for feature representation of FV images.
We have compared our proposed method with some commonly used methods, includ-
ing LLBP [12], Gabor filters [60], WLD [27], as well as curvature-based methods [28,30],
and confirmed that our method significantly outperforms the compared methods in the
case of FV recognition. In summary, the main innovative contributions of our work are
three folds:

• First and foremost, we present a novel feature representation method of FV images,
which can be used to carry out spatial aggregation and feature refinement on the noisy
vein pattern images, thus obtaining more robust vein structural information.

• Second, we develop a specific implementation of RLF, and apply for FV image pro-
cessing. Compared with some commonly used feature extraction methods of FV
images, our proposed RLF-based method can highlight vein patterns and suppress
spurious non-boundary responses and noises, thus obtaining more smoothing vein
structure images.

• Third, the implemented RLF-based feature extraction method demonstrates a fast
running speed and a relatively low complexity of the algorithm. The experimental
results also confirm the effectiveness of our method.
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The remainder of this paper is organized as follows. Section 2 provides a brief review
of the related works, including two key issues of mean curvature and radon-like features.
Section 3 details our proposed RLF-based feature extraction method. Section 4 discusses
the experimental results obtained by using four different FV databases. Section 5 concludes
the paper with some remarks and hints at plausible future research lines.

2. Related Works

In this section, we briefly review the basic principle of two important issues in our
proposed method, including mean curvature and radon-like features.

2.1. Mean Curvature

The concept of mean curvature was first put forward by Marie-Sophie Germain [61],
which is defined by the arithmetic mean of any two orthogonal curvatures that are perpen-
dicular to each other on a surface. Supposing two orthogonal curvatures are expressed
as κ1 and κ2, the mean curvature will be calculated by κ = (κ1 + κ2)/2. Compared with
maximum curvature, the mean curvature is calculated in a two-dimensional space, and ac-
cording to Euler’s formula, it actually represents the average value of curvatures in all
directions, so it is insensitive to orientation.

In the field of FV recognition, mean curvature was first adopted in [30]. Here, we use
divergence of the normalized gradient vector to calculate the mean curvature values of
each point. Meanwhile, for the two orthogonal directions, we directly select x and y axes
for convenience. The corresponding formula is shown in Equation (1).

κ = −1
2
∇ · g

=
1
2

(
∂g
∂x

+
∂g
∂y

)
=

1
2

(
Ixx I2

y − 2Ixy Ix Iy + Iyy I2
x

(I2
x + I2

y)
3/2

) (1)

where I denotes the image intensity field, g = ∇I/|∇I| denotes the normalized gradient
of image, Ix and Iy are two partial derivatives of the first order, while Ixx, Ixy and Iyy
are partial derivatives of the second order. Equation (1) denotes that the mean curvature
provides a quantitative measurement of the likeness degree to ridges or valleys, which is
large at ridge-like structures and small at valley-like structures.

2.2. Radon-Like Features

RLF was originated from the idea of Radon transform. The traditional Radon trans-
form was defined as the line integrals of a two-dimensional function f (x, y) along a line
l(θ, τ) in the plane, with θ and τ are the slope and intercept of the line. When Radon
transform is applied to an image, it will collapse the whole image into a line. Generally,
lines with high-intensity values correspond to the bright points, while lines with low-
intensity values correspond to the dark points. Therefore, the features can be extracted
by using multiple scan lines in different orientations. Since Radon transform performs
integral on the whole line, the difference between the regions swept by the line will not be
distinguished. In addition, Radon transform is sensitive to scaling, translation and rotation.

Different from traditional Radon transform, RLF will not collapse the image into scalar
values via integration of the scan line. Actually, RLF divides the scan line into multiple
segments, and then carries out segmental feature extraction along the scan line, so as
to better reflect the distribution of features in the image space. In the meantime, when
multiple scan lines along various directions are provided, RLF can define a distribution of
features. Considering the specific implementation of RLF, two important issues should be
resolved: the first issue is related with the segmentation strategy of scan lines. Generally,
some edge detection operators (e.g., Canny, Sobel, Kirsch) can be used to provide auxiliary
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line segments, which means, line segments can be defined by a set of salient points (called
‘knots’) along the scan line. These knots are the intersection points of the scan line and edge
map. In this way, the knots provide positive guidance of the constituent structures of the
image. The second important issue is related to the extraction function. Supposing the set
of knots along a scan line is given as (k1, ..., kn), then, for any one point p that located in
the line segment from ki to ki+1, the corresponding RLF can be calculated by Equation (2).

Ψ(p, l, ki, ki+1)[I(x, y)] = F(I, l(k)), k ∈ [ki, ki+1], (2)

where I(x, y) denotes the target image, l(k) denotes the k-th segment of scan line, and func-
tion F(·) is the extraction function. Follow the definition of extraction function, when a
series of scan lines with the same slope θ but different intercepts (τ1, ..., τm) were used,
the resulting RLF would be a two-dimensional image of the same size as the target image,
this is a significant point of departure from the traditional Radon transform where the
output in such a case is a one-dimensional vector. Moreover, if the slope θ varied as well,
RLF would be presented as a series of feature images.

Here, in order to support the efficiency of the RLF-based feature aggregation scheme,
we provided a toy example to illustrate the way of RLF, as shown in Figure 2.
First, a bacteria image was shown in Figure 2a, it can be observed that each bacteria
body was surrounded by a circle of highlighted areas. Then, the Canny edge detector
was performed on the original bacteria image to form an edge map (see Figure 2b), and a
series of scan lines with different slopes and intercepts were used to determine knots and
line segmentation. For simplicity, we only display three scan lines with 135◦ slope (red
lines) and three scan lines with 45◦ slope (green lines) in Figure 2b, and the corresponding
knots are marked as star-shape. After, a simple form of extraction function was adopted,
which calculated the absolute value of the difference between two endpoints (a pair of
adjacent knots) of each line segment, and then assigned to all pixels on this line segment.
Figure 2c–g illustrated RLF maps obtained by using five groups of scan lines with different
slopes, for each group of scan lines, their slopes are equal, while the intercepts are varied
and cover the whole image. In addition, Figure 2h illustrated a mean RLF image obtained
by averaging the RLF maps of all directions. It can be observed that RLF effectively ag-
gregated image statistics along a line segment, the highlighted areas around each bacteria
body were eliminated due to the feature aggregation effect.
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(a) Original image (b) Edge map and scan lines

(c) 0◦ RLF map (d) 45◦ RLF map (e) 90◦ RLF map

(f) 135◦ RLF map (g) 180◦ RLF map (h) Mean RLF

Figure 2. Toy example: illustration of the basic principle of radon-like features (RLF). (a) Original bacteria image; (b) edge
map obtained by using Canny edge detector, this figure also illustrated the line segments and knots; (c) 0◦ RLF map; (d) 45◦

RLF map; (e) 90◦ RLF map; (f) 135◦ RLF map; (g) 180◦ RLF map; (h) mean RLF map obtained by averaging RLF maps of
all directions.

3. Proposed Method

In this section, we elaborated on our proposed RLF-based FV recognition method.
As depicted in [59], RLF has been successfully applied for connectomics image analy-
sis, such as cell boundary enhancement, mitochondria segmentation, and vesicle cluster
enhancement, to name a few. However, due to the fact that FV images are generally
low-contrast and noisy, it is less effective to perform Radon-like feature extraction directly
on the original image. With this in mind, we developed a specific implementation of
RLF and performed on the mean curvature images, thus can effectively aggregate dis-
persed spatially statistics information into compact feature descriptors. After, the extracted
Radon-like features would be used for matching and verification. Figure 3 illustrated
the block diagram of our proposed FV recognition method. The whole process can be
divided into three main steps: first, a robust ROI localization method was performed
on the acquired original vein image [62], so as to achieve a more accurately positioned
ROI image. Then, the mean curvature of each pixel in the ROI image was calculated,
and their corresponding Radon-like features were constructed by selecting eight groups of
dense scan lines, which come from eight different directions. After, previously obtained
feature images of different directions were accumulated to form a mean RLF image. Finally,
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after normalization [27,63] and binarization, the resulting binary image would be used
for subsequent matching and recognition purposes. It should be noted that, to be fair, we
adopted a conventional template-matching algorithm [26] for performance comparison
and assessment, the matching ratio between an input pattern and the registered templates
was calculated to determine whether to accept or reject. Below, we detail the proposed
method step by step.

Figure 3. Block diagram of the proposed RLF-based feature extraction method for finger vein
image recognition.

3.1. ROI Localization

The acquired FV images by charge-coupled device (CCD) camera often contain many
unexpected background information, which will aggravate the negative impact on the
accuracy of vein recognition. Therefore, an effective ROI localization is necessary no matter
what feature extraction methods are performed [64]. Here, we adopted a robust ROI
localization method that has been proposed in [62]. The main idea of the adopted ROI
localization algorithm is to divide the whole FV image into four parts (namely top-left,
top-right, bottom-left and bottom-right), and then we carry out a three-level dynamic
thresholds strategy on each part of the image, so as to obtain more complete and distinct
contour edge information. Finally, the edges from each part of the image are connected
to form the finger contour boundaries. In this case, the ROI region is located in the finger
contour. Figure 4 illustrated an implementation example of the proposed Radon-like
features, among, the ROI localization result corresponding to the Figure 4a was shown in
Figure 4b, and more detailed descriptions please refer to [62].

(a) Original image (b) ROI (c) Mean curvature

(d) Edge map (e) RLF of 8 directions (f) Mean RLF

Figure 4. An implementation example of the proposed Radon-like features. (a) Original finger vein
(FV) image; (b) region of interest (ROI) result; (c) mean curvature result; (d) edge map of mean
curvature image; (e) scan lines of eight directions; (f) mean RLF image.
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3.2. Implementation of Radon-Like Features

As described beforehand, the implementation of RLF contains two important issues,
one is related to the segmentation strategy and knots selection, and the other is the form
of the extraction function. For the segmentation strategy, we first calculated the mean
curvature at each point of the ROI image by using Equation (1). As observed from Figure 4c,
the mean curvature map presented enhanced vein patterns than the ROI image. However,
it still contained plenty of break lines, thin lines, as well as pseudo vein patterns. So,
we introduced the Canny edge detector to obtain an edge map of the mean curvature
image, as shown in Figure 4d. It should be emphasized that the edge detector operation
was performed on the mean curvature image rather than the low-contrast original FV
image or ROI image. Then, eight groups of scan lines with different slopes and intercepts
were intersected with the edge map, so as to obtain the corresponding line segmentations
and set of knots. Specifically, the slopes were sampled with 45◦ intervals from the scope
of [0◦, 315◦]. For each fixed slope value, the intercept values should be guaranteed to
cover the whole image. Considering that our purpose was to obtain a vein pattern that
is more continuous, genuine, and minimize the influence of pseudo vein information, we
specifically designed an implementation form of the extraction function, as defined in
Equation (3).

F(MC, l(k)) =

∫ ki+1
ki

MC(l(k)) dk

‖l(ki+1)− l(ki)‖ 2
, k ∈ [ki, ki+1], (3)

where MC(x, y) was the mean curvature image, which indicated the processing target of
RLF. l was a scan line along which the RLF was calculated. The numerator of the extraction
function (3) indicated the piecewise integral along a scan line in the mean curvature image,
and the denominator of the extraction function (3) was the distance of two knots in each
line segment. In this manner, the extraction function (3) can capture the most dominant
response at each pixel by assigning an equal value to all pixels between the knots ki and ki+1
along scan line l. The corresponding result RLF image was shown in Figure 4e,f, among,
Figure 4f was the pixel-wise mean of RLF accumulated from eight different directions.
As compared with the mean curvature image, the mean RLF image further enhanced the
vein patterns, and the vein network becomes more continuous, the related line width
information were also restored, thus leading to a more smoothing vein structure image.
It is due to the fact that the RLF implementation can effectively aggregate the dispersed
spatially statistics information into compact feature descriptors, thus further highlight the
vein patterns and suppress spurious non-boundary responses and noises.

3.3. Template Matching

After finishing the aggregation of RLF, we can obtain a smooth vein structure image,
which would be used for subsequent matching and recognition. Here, we adopted a con-
ventional template-matching method for fair assessment [26], which has shown robustness
to the shifting of matching images. The matching process was carried out by searching
for an optimal overlapped region of the registered template image and the input image.
As shown in Figure 5, supposing R(x, y) and I(x, y) are the registered and input matching
images, respectively, and w and h are the width and height of both images. Considering the
displacement, two margins from the registered image, that denoted as cw and ch, were cut
to obtain the registered template sub-image. (In the following experiments, we discussed
the parameter setting of cw and ch). As a result, the template data was determined by the
red rectangular region within R(x, y) (as shown in Figure 5a). Then, the template window
slid from the top-left corner of the input image (green window in Figure 5b), so as to find
the optimal matching position, which means that the template data and the input data has
the maximum overlapped region in this position. At this point, we can give the formula of
match rate, as shown in Equation (4):

Rm =
Ncommon

(Ntemplate + Ninput)
(4)
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where the numerator Ncommon represents the number of matched pixel pairs when the
registered template sub-image and the input image region have reached the optimal match.
Ntemplate and Ninput are the number of pixels in the maximum overlapped region of the
template image and the input image, respectively. Rm is the match ratio. Obviously, when
the template region is exactly matched with the input region, Rm = 0.5, while when the
number of pixels of the overlapped region is zero, Rm = 0, that means the registered finger
is completely different from the input finger. Thereby, the ratio value of Rm is in a range of
0 to 0.5, a larger value means a better match, while a smaller value means a poorer match.
If the value of Rm is larger than a preset threshold value, it will be accepted, otherwise, it
will be rejected.

(a) Registered image (b) Input image

Figure 5. Template matching between the registered and input images. (a) Cut cw and ch from the
registered image margin; (b) the best match between the registered and input images, the match ratio
is 0.259.

For clarity, we provided a comparison of the match ratio by using the mean curvature
and the proposed RLF-based method from the perspectives of intra-class and inter-class,
as shown in Figures 6 and 7, respectively. In Figure 6, the first row shows the extracted vein
patterns by using the mean curvature method, and the second row shows the extracted vein
patterns by using the proposed RLF-based method. The first column is the registered finger,
the second and the third columns are two different input images from the same finger class.
Below the image, the corresponding match ratios with the registered template image are
also presented. If we use the registered image as the input for matching, the match ratio is
0.5, since they are the same image. As observed from Figure 6, the proposed RLF-based
method achieved higher match ratios than the mean curvature. This is due to the fact that
the aggregation of RLF is able to retrieve more ignored structure characteristics, e.g., the
growth direction and varied width, which may be helpful in vein pattern representation
and matching.

For assessing the results of inter-class, we randomly choose two input images from
different finger classes, as shown in the second and third columns of Figure 7. Although the
setting is almost the same as in Figure 6, the calculated match ratio of both methods are
low, and the match ratios of mean curvature are even lower than the proposed RLF-based
method, it is because the proposed RLF-based method enhanced the vein patterns, so we
can get more overlapped points even though the two matching images are derived from
different finger classes.
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Register image Input image ]1 Input image ]2

Match ratio = 0.5 0.1633 0.1978

Match ratio = 0.5 0.2590 0.2807

Figure 6. The match ratio of intra-class, that means the registered template and input image are both
from the same finger class. The first row shows the results of mean curvature method, and the second
row shows the results of our proposed RLF-based method. Their corresponding match ratios are
listed below the images.

Register image Input image ]1 Input image ]2

Match ratio = 0.5 0.0474 0.0444

Match ratio = 0.5 0.0792 0.0726

Figure 7. The match ratio of inter-class, that means the registered template and the input image are
from different finger classes. The first row shows the results of mean curvature method, and the
second row shows the results of our proposed RLF-based method. Their corresponding match ratios
are listed below the images.

4. Experimental Analysis

To ascertain the effectiveness of our proposed RLF aggregation-based FV recognition
method, we carried out comprehensive experiments on four different FV databases which
were constructed by using different sensors. First, a brief description of the adopted FV
databases was provided in Section 4.1. Then, the experimental setting and assessment
criteria were reported in Section 4.2. Next, in Section 4.3, in order to objectively evaluate
the matching performance of the proposed RLF-based method, we conducted experimental
analysis on two margin parameters of cw and ch, which are used in the template matching
algorithm to determine the registered template sub-image. After, in Sections 4.4 and 4.5,
the recognition performance of the proposed method was analyzed from the perspectives
of quantitative and visual observation, respectively. Lastly, the computational time of
main steps in our proposed RLF-based method was measured and compared in Section 4.6.
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In addition, it should be noted that we carried out all of the experiments under a computing
environment with 3.6 GHz Intel Core i7 CPU and 32 GB RAM.

4.1. Finger Vein Databases

Table 1 shows the relevant properties of the four FV databases used in our experi-
ments. Among these, the first three databases are publicly available, hereinafter named
as ‘HKPU’ [65], ‘MMCBNU’ [66], and ‘FV-USM’ [67], respectively. Moreover, in order to
verify the effectiveness of a large FV image database, a new database (namely ‘ZSC-FV’)
was collected at the University of Electronic Science and Technology of China, ZhongShan
Institue. The ‘ZSC-FV’ database contains 1030 volunteers, all are college students with ages
ranging from 18 to 22 years old. Each individual provided 6 image samples from the index,
middle and ring fingers of both hands, thus a total of 36 finger samples for each individual,
and a total of 37,080 FV image samples. The whole collection process was carried out
under varying indoor lighting conditions, some indoor positions were illuminated by
strong spotlight sources, and some indoor positions were mainly illuminated by ambient
lights. All acquired original FV images are in 8-bit bitmap format with 256 grayscale levels,
and have the same size of 384× 512. The acquisition equipment is EA, manufactured by
Beijing Yannan Tech Co., Ltd., Beijing, China. The fingertip is oriented to the right and
outside the image region.

Table 1. Details of four finger vein databases.

Databases HKPU MMCBNU FV-USM ZSC-FV

Num of individuals 156 100 123 1030
Fingers index, middle index, middle, ring index, middle index, middle, ring
Hands left left, right left, right left, right

Num of images per finger 6/12 10 12 6
Sessions 2 1 2 1

Num of finger classes 312 600 492 6180
Total num of images 3132 6000 5904 37,080

Image size 513× 256 480× 640 640× 480 384× 512
Scaled image size 109× 217 118× 158 171× 203 173× 237

4.2. Experimental Settings and Assessment Criteria
4.2.1. Experimental Settings

As observed from Table 1, Different FV databases own different size and quality of
image samples, and the preserved background scopes are also diverse. In this regard, we
should do some cropping and resizing so as for further use.

In the ‘HKPU’ database [65], most image samples contain a rectangle frame, as well
as serious shadow interfere, we cut 30 pixels at the top boundary, 10 pixels at the bottom
boundary, 30 pixels at the left boundary, and 50 pixels at the right boundary. Then, we
resized the cropped images to half-size by bicubic interpolation, thus obtaining the final
image samples with a size of 109× 217 (as shown in the last row of Table 1).

The ‘MMCBNU’ database [66] has a relatively clean and pure black background, so
we only cut out an area of five pixels at four boundary positions. Then, we resized the
cropped images to one-quarter size, thus obtaining the final image samples with a size of
118× 158.

Unlike other FV databases, the image samples in the ‘FV-USM’ database [67] are
fingertip downward and contain plenty of useless information. Therefore, we first rotated
the images by 90◦, then, we cut out 150 pixels at the top and bottom boundaries, respectively,
5 pixels at the left boundary, and 70 pixels at the right boundary. After, we resized the
cropped images to half size, thus obtaining the final image samples with a size of 171× 203.

‘ZSC-FV’ database [62] also has a very complicated background and high edge density
in the noisy regions. Therefore, we cut out an area of 20 pixels at four boundary positions.
Then, we resized the cropped images to half size by bicubic interpolation, thus obtaining
the final image samples with a size of 173× 237.
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4.2.2. Assessment Criteria

In order to quantitatively assess the matching performance of our proposed method,
we adopted some typical measurement criteria in the experiments, as detailed below:

• False Acceptance Rate (FAR), it is the error rate where the un-enrolled FV images are
accepted as enrolled images. The related formula is shown in Equation (5).

FAR =
NFA

NIRA
× 100%, (5)

where NFA is the number of false accept, and NIRA is the number of impostor
recognition attempts.

• False Rejection Rate (FRR), it is the error rate where the enrolled FV images are rejected
as un-enrolled images. The related formula is shown in Equation (6).

FRR =
NFR

NGRA
× 100%, (6)

where, NFR is the number of false reject, and NGRA is the number of genuine recog-
nition attempts. Taking each finger as one class, if there are n number of finger classes,
and each finger class has m number of images. NGRA will be n×m, and NIRA will
be (n− 1)×m.

• Equal Error Rate (EER), it is defined as the ratio of trials in which the FAR is equal
to the FRR. However, there may not exist a threshold such that FAR is exactly equal
to FRR in practice, because FAR and FRR are both discrete values. In this case, we
adopted an approximate calculation method for EER. Concretely, the EER is calculated
as follows: First, let T be a set of threshold values, which are sampled from 0 to 0.5
(since the match ratio is in the range of [0, 0.5]) with a sampling interval of 0.0001,
namely T = {0, 0.0001, 0.0002, ..., 0.5}. In this case, there are 5001 elements in set T.
Supposing Ti is the i-th threshold of T, with i = {1, 2, ..., 5001}. If the match ratio
is lower than the predefined threshold Ti, the claimant will be accepted, otherwise,
the claimant is rejected. Therefore, we can obtain a couple of FARi and FRRi for
each threshold Ti. When the threshold Ti is varied from 0 to 0.5, the corresponding
FARi will be reduced and FRRi will be increased. Finally, the EER can be obtained by
calculating (FARi + FRRi)/2 when ‖FARi + FRRi‖ is minimized.

4.3. Analysis on the Margin Parameters

As depicted in Section 3.3, in order to eliminate the effect of image shifting, part of the
horizontal and vertical margin areas in the registered images need to be cut out, so as to
facilitate the search of the optimal matching region in the input image. In this experiment,
we analyzed the matching performance of the proposed RLF-based method under different
margin parameter values of cw and ch, which are used to crop the template sub-image from
the registered image. It should be noted that registered images derived from different FV
database’s own diverse image sizes, as well as with different background areas retained,
thus the values of cw and ch will be affected by these factors. With this consideration, we
tested six groups of different margin parameter values on four FV databases, covering the
range from cw = 5, ch = 5 to cw = 50, ch = 50.

In addition, considering that some FV databases have provided a built-in ROI result
image set, we also choose two sources of ROI images for parameter analysis. One is
derived from our adopted ROI localization strategy [62] (see Section 3.1), and the other
is the built-in ROI images provided by some public FV databases. It should be clarified,
compared with the ROI images obtained by our method, the ROI images provided by
those publicly available FV databases only contain a small part of the whole finger region
(mainly concentrated in the middle of the finger region), which means that the contour of
the finger is lost and the correction of finger placement becomes impossible. To illustrate
this point, we presented two sample diagrams from MMCBNU and FV-USM databases
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respectively, as shown in Figures 8 and 9. As can be observed from these samples, the built-
in ROI images generally have a relatively smaller size than our extracted ROI images,
in MMCBNU database, the size of built-in ROI image is 60× 128, while our extracted ROI
images have a size of 118× 158. Likewise, in FV-USM database, the size of the built-in ROI
image is 100× 300, while our extracted ROI images have a size of 171× 203. Furthermore,
the ROI images obtained by our method still retain a small part of background information,
while the built-in ROI images only contain a part of finger vein regions. In this case, we also
hope to explore whether the retained background information has a positive or negative
influence on the matching results.

Built-in ROI
60× 128

Extracted ROI
118× 158

Figure 8. Sample diagram from MMCBNU database, the first row is the built-in ROI image and
its corresponding RLF-based vein feature, while the second row is derived from our adopted ROI
localization strategy [62] and its corresponding RLF-based vein feature.

Built-in ROI
171× 203

Extracted ROI
100× 300

Figure 9. Sample diagram from FV-USM database, the first row is the built-in ROI image and its
corresponding RLF-based vein feature, while the second row is derived from our adopted ROI
localization strategy [62] and its corresponding RLF-based vein feature.

Table 2 illustrated the EER results of the RLF-based matching with different margin
parameters on four FV databases. As we can observe, some EER results are missing because
of the size of the image, for example, in case of cw = 50, ch = 50, most of the EER results of
the built-in ROI are missing due to their small image size. At the same time, we can draw
some conclusions: firstly, there are no unique and fixed-parameter values of cw and ch
that can satisfy all the situations, aims to different size of ROI images, the optimal margin
parameters are different. Secondly, compared with the built-in ROI, our extracted ROI
preserved a complete finger contour and part of the background, which can provide better
auxiliary information about finger placement, and help to find more accurate template
matching region.
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Table 2. Equal error rates (EER) obtained by using different margin parameters on four finger
vein databases.

HKPU MMCBNU FV-USM ZSC-FV

Built-In Extracted Built-In Extracted Built-In Extracted Extracted
ROI ROI ROI ROI ROI ROI ROI

cw = 5, ch = 5 – – 2.12% – 4.28% – –
cw = 10, ch = 10 21.12% 2.55% 2.36% 1.60% 1.93% 0.74% 2.02%
cw = 20, ch = 20 10.60% 2.28% 18.82% 0.77% 1.68% 0.76% 1.43%
cw = 30, ch = 30 5.90% 2.49% – 0.78% 5.56% 0.87% 1.39%
cw = 40, ch = 40 4.72% 5.47% – 0.93% 26.87% 0.93% 1.69%
cw = 50, ch = 50 4.23% – – – – – 2.32%

To sum up, in the subsequent experiments, we will select two groups of margin
parameters ([cw = 30, ch = 30] and [cw = 40, ch = 40]) to compare the effectiveness of
different feature extraction algorithms.

4.4. Quantitative Comparison of Matching Performance

In this experiment, the matching recognition performance of our proposed method on
four databases was quantitatively analyzed. Each finger is taken as one class, and all the
captured image samples from the same finger belong to the same finger class.

For comparison, we also provided the EER results of five unsupervised handcrafted
feature extraction methods (including LLBP [12], Gabor [60], WLD [27], maximum curva-
ture [28], mean curvature [30]), and one newly developed CNN-based method, hereinafter
we called it the ‘GaborPCA’ network [48]. Similar to the aforementioned handcrafted
counterpart methods, the GaborPCA network also uses an unsupervised fashion and no
class label information is needed in the training procedure. The GaborPCA network has a
3-layer CNN architecture with two convolutional layers and one binarization layer, in which,
the first convolutional layer is tuned by using PCA filters, and the second convolutional
layer is tuned by using adaptive Gabor filters.

For those compared handcrafted-based methods, since different threshold values may
lead to quite different results, we uniformly adopted the Otsu threshold strategy [68] to
binarize the extracted vein pattern images. In addition, for the template matching issue,
we presented the EER results under two different settings of margin parameters of cw and
ch. While for the GaborPCA network, the outputs were all 1D feature vectors, therefore, we
adopted the Euclidean distance to calculate the match results, and then, the corresponding
match results were used to calculate the FAR, FRR and EER in the same way as shown in
Section 4.2.2.

Moreover, in this experiment, the usage of databases is also different between the
handcrafted-based methods and GaborPCA network. For our proposed RLF-based method
and five handcrafted-based methods, they do not need a training procedure, so only
the testing settings are required. Specifically, for the HKPU database [65], all of 312
finger classes that derived from a total of 156 individuals in Session 1 were used for
testing, and each finger contributed 6 images, bringing the total number of images to 1872.
For the MMCBNU database [66], considering that the number of finger classes will affect the
EER results, we randomly choose 312 finger classes for testing, and each finger randomly
contributed 6 number of image samples, bringing the total number of images to 1872.
The experiments are repeated five times. The same experimental settings are also used in
FV-USM [67] and ZSC-FV [62] databases, and the experiments are repeated five times in
FV-USM and ten times in ZSC-FV, since ZSC-FV is a bigger one. Finally, the average results
of several experiments are reported.

While for the GaborPCA network, the detailed settings of training and testing proce-
dures are shown below: For the HKPU database [65], 210 number of finger classes with a
total number of 1260 images (six for each class) were used for training, these image samples
are acquired from Session 2. Then, the same settings as before were used for testing, which
means that there is a total number of 1872 image samples with 312 finger classes. For the
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MMCBNU database [66], 288 finger classes with a total number of 2880 images (10 for each
class) were randomly chosen for training, then, the remaining 312 finger classes with a total
number of 1872 images (randomly choose 6 for each class) were used for testing. For the
FV-USM database [67], 180 finger classes with a total number of 2160 images (12 for each
class) were randomly chosen for training, then, the remaining 312 finger classes with a
total number of 1872 images (randomly choose six for each class) were used for testing. For
the ZSC-FV database [62], 5868 finger classes with a total number of 35,208 images (6 for
each class) were randomly chosen for training, then, the remaining 312 finger classes with
a total number of 1872 images (randomly choose six for each class) were used for testing.

The FAR-FRR curves are shown in Figures 10 and 11, and their corresponding EER
results are shown in Tables 3 and 4. Among these, a smaller EER value denotes the better
of method. Moreover, the EER values are also affected by the number of finger classes.
The smaller the number of finger classes, the smaller the EER value. The experimental
results show that, on the HKPU database, the GaborPCA network obtained the worst result.
While for the MMCBNU, FV-USM and ZSC-FV databases, Gabor filter produced a worse
result. Finally, for the GaborPCA network and our proposed RLF-based method, very close
and promising results were obtained on all the databases except for the HKPU database,
this is due to the fact that the HKPU database has fewer training samples than the other
three databases. All in all, the experimental results further confirmed that our proposed
method has robustness to the threshold selection.
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Figure 10. False acceptance rate (FAR)-false rejection rate (FRR) curves of compared methods on four
finger vein databases, the margin parameters are cw = 30, ch = 30.



Sensors 2021, 21, 1885 17 of 23

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

FAR

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

F
R

R

LLBP
Gabor
WLD
Maximum curvature
Mean curvature
Proposed RLF-based

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

FAR

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

F
R

R

LLBP
Gabor
WLD
Maximum curvature
Mean curvature
Proposed RLF-based

(a) HKPU (b) MMCBNU

0 0.05 0.1 0.15 0.2 0.25

FAR

0

0.05

0.1

0.15

0.2

0.25

F
R

R

LLBP
Gabor
WLD
Maximum curvature
Mean curvature
Proposed RLF-based

0 0.05 0.1 0.15 0.2 0.25

FAR

0

0.05

0.1

0.15

0.2

0.25

F
R

R

LLBP
Gabor
WLD
Maximum curvature
Mean curvature
Proposed RLF-based

(c) FV-USM (d) ZSC-FV

Figure 11. FAR-FRR curves of compared methods on four finger vein databases, the margin parame-
ters are cw = 40, ch = 40.

Table 3. EERs obtained by using different methods on four finger vein databases, the margin
parameters are cw = 30, ch = 30.

Databases LLBP Gabor WLD Maximum Mean GaborPCA Proposed
Filter Curvature Curvature RLF-Based

HKPU 9.39% 9.82% 8.04% 12.02% 8.56% 26.7% 2.49%
MMCBNU 2.59% 9.01% 8.69% 5.99% 3.79% 0.84% 0.78%

FV-USM 6.16% 10.76% 9.89% 4.32% 4.08% 1.14% 0.87%
ZSC-FV 4.06% 9.76% 3.62% 4.55% 3.63% 2.47% 1.39%

Table 4. EERs obtained by using different methods on four finger vein databases, the margin
parameters are cw = 40, ch = 40.

Databases LLBP Gabor WLD Maximum Mean Proposed
Filter Curvature Curvature RLF-Based

HKPU 10.86% 14.14% 15.6% 20.87% 14.64% 5.47%
MMCBNU 4.46% 11.29% 17.85% 12.81% 8.39% 3.3%

FV-USM 5.99% 12.87% 11.79% 5.10% 4.51% 0.93%
ZSC-FV 4.11% 12.28% 4.37% 5.93% 4.37% 1.69%
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4.5. Visual Assessment of Matching Performance

In this experiment, we visually assessed the extracted FV features of various methods,
so that we can get more insights into the proposed RLF-based method. Figure 12 shows the
extracted FV features that were originated from five commonly used methods (including
LLBP [12], Gabor filter [60], WLD [27], maximum curvature [28], and mean curvature [30]),
as well as our proposed RLF-based method. Since the outputs of the GaborPCA network
are 1D feature vectors, we do not show this here. It should be emphasized that, in order to
obtain optimal results, different methods may use different threshold values. However,
for the sake of fair comparison, we still adopted the same Otsu threshold strategy [68] in the
following experiments. Some specific issues can be observed in Figure 12, as detailed below:

• In the third row of Figure 12, though the LLBP [12] method extracted more smooth
and continuous vein patterns, it also introduced plenty of pseudo vein points.

• In the fourth row of Figure 12, the adopted Gabor filters [60] contained three scales
(wavelength is set to 16, 17, 18) and eight orientations (from 22.5◦ to 180◦ with equal
intervals), thus a total of 24 filters. The final result was obtained by taking the
minimum value of all filters. However, the results seem poor, which is due to the
fact that the method of the Gabor filter is sensitive to the threshold values, maybe a
different threshold value would bring a better result.

• In the fifth row of Figure 12, there is a lot of noise in the result of the WLD method [27],
and the extracted vein patterns are very discontinuous.

• In the sixth row of Figure 12, similar to the WLD method, the maximum curvature-based
method [28] still missed a lot of vein information under the Otsu threshold strategy.

• In the seventh row of Figure 12, although the mean curvature method [30] extracted
more complete vein patterns, it still has the problem of discontinuity of vein lines.

• Finally, as shown in the last row of Figure 12, our proposed RLF-based method
obtained more continuous vein lines, that is, some breaking points, which existed
in the result of the mean curvature method, have been connected, thus obtain more
complete and enhanced vein patterns.

To sum up, compared with some other FV feature extraction methods, our RLF-
based method can obtain more complete and continuous vein patterns as well as better
noise resistance.

4.6. Time Analysis

In the last experiment, we provided a measurement of the computational time of the
main steps in our proposed RLF-based method. For comparison, we also provided the time
costs of the other methods. It should be noted that, for our proposed RLF-based method,
the recorded time cost mainly covered the procedure of feature extraction on the ROI image,
which means, the calculation of mean curvature image, the Canny edge map, and the
Radon-like feature images, are all covered, while some preprocessing steps of cropping
and ROI localization, and postprocessing steps of normalization and binarization, are not
mentioned in the recorded times. For the other compared methods, we also only recorded
the time cost of the corresponding feature extraction step. Table 5 shows the computational
times (in milliseconds) of various methods on four FV databases. Regardless, the mean
curvature method achieved the shortest time cost, this is because the mean curvature is
a kind of two-dimensional curvature operator in nature, thus can directly perform the
calculation on the image. While for the maximum curvature, it is a one-dimensional
curvature operator, which has to be performed on each cross-sectional profile. Likewise,
the LLBP is a global (image-level) feature extraction method, it needs to be calculated in the
neighborhood space of each pixel, thus leading to a huge amount of computation burden.
We have to admit that our proposed RLF-based method requires more time than the mean
curvature method, as a result of some additional steps are introduced, especially for the
decision of the knots and the execution of extraction function in the Radon-like feature
extraction step. In spite of these reasons, our proposed method shows better than the LLBP
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and maximum curvature methods. On the whole, the time cost of our proposed method
is acceptable.

(a) HKPU (b) MMCBNU (c) FV-USM (d) ZSC-FV

Original

ROI

LLBP

Gabor Filter

WLD

Maximum Curvature

Mean Curvature

Proposed RLF-based

Figure 12. Different finger vein feature extraction methods are carried out on four image samples
from different databases. The first and second rows show the originally acquired images and their
corresponding ROI images. Here, we uniformly adopted the strategy in [62] to obtain ROI. The third
to eighth rows show the extracted feature images by using LLBP, Gabor Filter, WLD, Maximum
Curvature, Mean Curvature, and our proposed RLF-based method, respectively.
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Table 5. Computational times (ms) of various methods on four finger vein databases.

Databases Image Size LLBP Gabor WLD Maximum Mean Proposed
Filter Curvature Curvature RLF-Based

HKPU 109× 217 254.6 72.3 39.7 231.2 4.4 104
MMCBNU 118× 158 141.8 40 30.1 182.3 3.4 66.7

FV-USM 171× 203 232.3 105.2 58 343.9 5.0 102.1
ZSC-FV 173× 237 377.4 96 70 400.6 6.5 143

5. Conclusions

In this paper, we carried out an exploration on the aggregation ability of RLF in the
field of FV recognition, and proposed a novel FV feature extraction method. The proposed
method combined the mean curvature and RLF, which can effectively aggregate the dis-
persed spatial information around the vein structures. As a result, the vein patterns can be
highlighted, and spurious non-boundary responses and noises can be suppressed. Finally,
a more smoothing vein structure image can be obtained. The experimental results on four
FV databases confirmed the superiority of our proposed method, and compared with some
state-of-the-art FV recognition methods, our proposed method can not only preserve the
intrinsic vein patterns, but eliminate most of the pseudo vein information, leading to more
smoothing and a genuine vein structure image. As with any new method, there still have
some unresolved issues that deserve further consideration. First, for the specific implemen-
tation of RLF, we presented a relatively simple form of extraction function, and achieved
good performance. However, whether there exist some more efficient forms of extraction
function, deserves further investigation. Second, we must point out that, even though a
series of RLF images were obtained by using our method, only a mean RLF image was
used in the experiments. Further studies are needed to clarify whether there have other
forms of feature fusion strategies. Third, for the calculation of line segmentation and knots,
we adopted a serial form to intersect the edge map with each scan line in turn. In this case,
the computational speed can still be improved. In the future, we will try to convert the
serial implementation into parallel implementation, which will use parallel programming
techniques to synchronously calculate the intersection of all scan lines with the edge map.
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