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Abstract: Electrocardiogram (ECG) signals are time series data that are acquired by time change.
A problem with these signals is that comparison data that have the same size as the registration data
must be acquired every time. A network model of an auxiliary classifier based generative adversarial
neural network that is capable of generating synthetic ECG signals is proposed to resolve the data
size inconsistency problem. After constructing comparison data with various combinations of the
real and generated synthetic ECG signal cycles, a user recognition experiment was performed by
applying them to an ensemble network of parallel structure. Recognition performance of 98.5% was
demonstrated when five cycles of real ECG signals were used. Moreover, 98.7% and 97% accuracies
were provided when the first cycle of synthetic ECG signals and the fourth cycle of real ECG signals
were repetitively used as the last cycle, respectively, in addition to the four cycles of real ECG.
When two cycles of synthetic ECG signals were used with three cycles of real ECG signals, 97.2%
accuracy was shown. When the last third cycle was repeatedly used with the three cycles of real ECG
signals, the accuracy was 96%, which was 1.2% lower than the performance obtained while using the
synthetic ECG. Therefore, even if the size of the registration data and that of the comparison data are
not consistent, the generated synthetic ECG signals can be applied to a real life environment, because
a high recognition performance is demonstrated when they are applied to an ensemble network of
parallel structure.

Keywords: ECG; biometrics; user recognition; ACGAN; parallel ensemble networks

1. Introduction

Among the biometric signals investigated in studies of user recognition methods,
electrocardiogram (ECG) signals are bio-signals that are produced autonomously and
show unique characteristics of individuals according to such factors as the heart’s position,
size, and structure, as well as age and gender [1]. However, the public database used in
the existing research has a problem that does not consider reproducibility because the
data acquired once is classified as learning data/validation data/experimental data for
experimentation. Also, the databases used in the conventional user recognition research
using ECG signals are composed of registration data and comparison data with the same
size in the initial experimental environment setting [2]. However, ECG signals are time
series data acquired by time change, and, if the comparison data are not of the same size as
the registration data because of a lack of time for acquiring the comparison data, a problem
of data size inconsistency occurs [3–5].

To solve this problem, when conventional data normalization methods such as data
copy and interpolation method are applied to the ECG signal and converted into data of
the same size, important characteristic information such as time information, amplitude,
and interval of P, QRS, and T waves is lost. In addition, the heart rate and waveform of the
ECG signal changes due to the individual’s physical activity, measurement time period,
or mental influence, and accordingly, a section in which the waveform changes significantly
and a section with relatively little change occurs.
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In fact, as shown in Figure 1, when comparing the waveform of the ECG signal in
the pre-exercise state and the ECG signal in the post-exercise state, it can be seen that the
P-peak point and the T-peak point occur closer to the QRS complex. In other words, if the
ECG signal acquired in response to the user’s condition change is used as comparison
data, not the ECG signal acquired in the same environment, the cause of user recognition
performance deterioration occurs.
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Figure 1. Variation in ECG signals based on waveform changes. (a) Variation in ECG signals based
on a change in user state (a) and Variation in ECG signals change in time (b).

To solve this problem, studies have been conducted for various data schemes using
neural networks. A generative adversarial network (GAN), which is the algorithm attract-
ing the most attention in recent studies, is a model that generates data through adversarial
learning of a generator and discriminator composed of two mutually different multilayer
perceptrons. With a GAN, generation of data is simple, but it has the inherent problem
of learning instability, because its approach in the learning process is a minimization
problem [6].

In this study, synthetic data were generated through an auxiliary classifier GAN
(ACGAN) using the class information as an auxiliary classifier. The structure of the
ACGAN used in this study was designed to have mutually different convolution neural
network (CNN) models for the generator and the discriminator. For the generation of
one-cycle ECG signals, the input data used for the generator were the class information
and the noise that had the same size as the cycle to be generated [7,8]. Because the real
ECG signals and class information and the synthetic ECG signals and class information are
divided, the structure of the discriminator model is designed as a CNN model that repeats
the convolution operation of a structure that is not deep when compared with that of the
generator model. The data are composed of various combinations of generated synthetic
ECG signal cycles and real ECG signal cycles and applied to the user recognition.

This work is organized as follows: In Section 2, previous studies for generative
adversarial-neural-network-based synthetic data generation are analyzed and conventional
user recognition methods which use the ECG signal. In Section 3, the synthetic data
generation model using the ACGAN proposed in this study and the ensemble network of
parallel structure for user recognition are described. In Section 4, the similarity between the
results of the real ECG signals and the generated synthetic ECG signals is analyzed, and
the user recognition performance using the synthetic ECG signals is examined. Section 5
provides the conclusion of this work.
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2. Related Works
2.1. Generated Synthetic Data Based on Deep Learning

The construction of large-scale data using personal biometric information is difficult
in the field of medicine because of constraints, such as private information protection and
acquisition cost; as a result, the problem of imbalanced big data arises. Imbalanced big data
consist of majority classes containing larger data than other classes and minority classes
containing smaller data than other classes. If a machine-learning model is learned using
imbalanced big data, it is biased toward the majority classes, and, consequently, a problem
occurs: low recognition performance is shown for the minority classes, or the possibility of
recognizing newly input data as minority classes decreases.

In recent years, wearable device products like those shown in Figure 2 (Apple Watch,
Galaxy Watch and Kardiamobile) have been commercialized, making it possible to acquire
bio-signals in various environments. However, the number of bio-signal data is remarkably
insufficient to be applied to a deep learning technology that exhibits high user recognition
performance. In the existing research, a model-based synthetic data generation technology
based on user-settable average heart rate, number of beats, sampling frequency, and wave-
form shape (P, Q, R, S and T timing, amplitude and duration) was researched. However,
while the existing model-based synthetic data generation technology has the advantage
of generating synthetic data with a small number of data, it has a disadvantage that it
cannot be applied to data of a new waveform [9]. To resolve this problem, studies have
been performed recently for various data generation methods using GANs. The GAN has
shown excellent results in diverse areas, such as image generation, resolution improvement,
and natural-language processing, as a method of a typical generation model using deep
learning. AGAN consists of a generator model that generates data and a discriminator that
classifies whether the data are real data or generated data. The main learning method is
to use the adversarial structure of generator and discriminator to improve gradually the
performance of each other. After finding the distribution of learning data, the GAN induces
the generated data to follow that distribution, thereby generating data clearer than the
variational auto-encoder. Using this characteristic, Christian et al. [10] proposed a super
resolution GAN, which is a GAN-based high-resolution method. In the case of conven-
tional methods using the loss function as mean squared error, a data-blurring phenomenon
occurs, because the mean value of all possible solutions is estimated by data. However, the
GAN can generate clearer data, because the learning is performed to be as close as possible
to the learning data while maintaining individual attributes.
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Hartmann et al. [11] used a Wasserstein GAN to apply various upsampling and
downsampling methods to a method of generating ECG signals, which are time series data.
The Wasserstein GAN improved the instable learning of a conventional GAN by using the
concept of the Wasserstein Distance in the loss function instead of using conventional loss
functions, such as Kullback-Leibler Divergence or Jensen-Shannon Divergence. Wasserstein
distance is an indicator measuring the distance between two probability distributions and
refers to the minimal cost used to let a certain probability distribution shape have a
different probability distribution shape. Furthermore, the up-sampling methods used in
the discriminator model were nearest-neighbor, linear, and cubic interpolation. However,
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for the down-sampling used in the generator model, the impact on data generation was
investigated by applying average pooling. Table 1 shows the structures of generator and
discriminator used in Wasserstein GAN.

Table 1. Structures of generator and discriminator models.

Generator Critic
Layers Act/Norm Output Shape Layers Act/Norm Output Shape

Latent - 200 × 1 Input - 1 × 768
Linear LReLU 50 × 12 Conv 1 LReLU 50 × 768

Upsample - 50 × 24 Conv 9 LReLU 50 × 768
Conv 9 LReLU/PN 50 × 24 Conv 9 LReLU 50 × 768
Conv 9 LReLU/PN 50 × 24 Downsample - 50 × 384

Upsample - 50 × 48 Conv 9 LReLU 50 × 384
Conv 9 LReLU/PN 50 × 48 Conv 9 LReLU 50 × 384
Conv 9 LReLU/PN 50 × 48 Downsample - 50 × 192

Upsample - 50 × 96 Conv 9 LReLU 50 × 192
Conv 9 LReLU/PN 50 × 96 Conv 9 LReLU 50 × 192
Conv 9 LReLU/PN 50 × 96 Downsample - 50 × 96

Upsample - 50 × 192 Conv 9 LReLU 50× 96
Conv 9 LReLU/PN 50 × 192 Conv 9 LReLU 50 × 96
Conv 9 LReLU/PN 50× 192 Downsample - 50 × 48

Upsample - 50 × 384 Conv 9 LReLU 50 × 48
Conv 9 LReLU/PN 50 × 384 Conv 9 LReLU 50 × 48
Conv 9 LReLU/PN 50× 384 Downsample - 50 × 24

Upsample - 50 × 768 Conv 9 - 50 × 24
Conv 9 LReLU/PN 50 × 768 Conv 9 LReLU 50 × 24
Conv 9 LReLU/PN 50 × 768 Downsample - 50 × 12

Conv 1 - 1 × 768 Linear - 1 × 1

Tomer et al. [12] proposed personalized generative adversarial networks to generate
the P, QRS, and T wave features of ECG signals similar to those of real ECG signals
by patients using the MIT-BIH arrhythmia data. For the input data of the generator
model, 100 arbitrary samples in the Gaussian distribution noise were used, and batch
normalization and rectified linear unit (ReLU), which is an activation function, were
applied to the deconvolution layer. Instead of one cycle, three cycles of ECG signals were
generated, and the middle cycle was used as input data of the discriminator. The remaining
two cycles were used as input data of mean squared error, which is a loss function used in
the discriminator model, after detecting the P, QRS, and T waves. In the results of applying
the ECG signals generated for each patient to the long short-term memory model to check
the classification performance, 0.95 area-under-curve performance was shown, confirming
that the classification performance improved when the learning was performed by adding
the ECG signals generated for each patient.

2.2. Deep Learning Networks Design Using ECG Signals

A variety of studies have been performed on personal recognition using ECG signals
based on deep learning. As a conventional method of applying the ECG signal to deep
learning, Jun projected a one-dimensional ECG signal into a two-dimensional space to
solve the problem of extracting various sampling rates and amplitudes depending on
the acquisition equipment and to increase the limited ECG signal. The result of 99.05%
recognition is shown by applying the 2D transformed data to the CNN. Compared to
general 2D images, 2D ECG images showed simple patterns and showed high recognition
performance without deep network design.

Zhai et al. [13] transformed ECG signals into 2D images, and applied these to the CNN,
which subsequently showed an accuracy of 98.6% and 97.5% for the evident waveform
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detection. Ubeyli [14] proposed a method of detecting arrhythmia with the RNN, using
principal component analysis based feature extraction. Experimental results showed that
this network has an average accuracy of 98.06% for four different types of arrhythmia.
Zubair et al. [15] designed a nine layer CNN with an accuracy of 92.7%. Acharya et al. [16]
designed a nine layer CNN with an accuracy of 94.03% and 93.49% for waveforms before
and after noise remove, respectively.

Kiranyaz et al. [17] applied a 1D CNN to ECG arrhythmia detection. Unlike the
method of applying the CNN to 2D ECG images, Kiranyaz’s method showed excellent
performance results by applying the CNN to 1D ECG signals. Rajpurkar et al. [18] proposed
a 1D CNN model that used a deeper network and more numerous data than Kiranyaz’s
CNN model. However, detection performance was low in spite of the use of more ECG
data. Fan et al. [19] proposed a two layer multi scale CNN model (shown in Figure 3)
to detect normal ECG signals and arrhythmia ECG signals. Its structure was designed
with different filter sizes for each layer, to detect features of different data scales, and
they applied a database of the ECG signal sampled at 20 s intervals. Experimental results
showed that the multi scale CNN model they proposed achieved a detection result of
98.13%, which was an highly improvement upon the results of 89.58% and 98.03% achieved
when a single network and the VGG network were applied, respectively.
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Figure 3. Example of two stream based convolutional neural networks.

Liu et al. [20] proposed an ensemble network that combines multi stream CNNs and
a single RNN to classify myocardial infarction signals using 12 lead ECG signals. They
designed multiple independent CNNs to receive input different signals from the 12 leads
ECG signals. The feature data output from each network were used as the input data
of the single RNN. They also solved the overfitting problem between the multi stream
CNNs and the single RNN by applying the lead random mask (LRM). Lead random mask
solves a generalization problem that occurs when processing large amounts of data in
training, using randomly selected data in the same way as Dropout. Experimental results
showed that the detection performance for myocardial infarction and normal signals
achieved a classification rate of 99.9%, and the recognition rate of experimental subjects
was 93.08%. Oh et al. [21] proposed an ensemble network model using a single CNN and
single RNN to diagnose five types of arrhythmia. The single CNN was designed to enable
a classifier to extract spatial features, and arrhythmia signals were detected by applying the
detected features to the single RNN, which receives data according to temporal information.
The results of applying public databases of arrhythmia signals showed a high detection rate
of 98.1%. As described above, previous studies on user recognition using ECG signals have
recently gained attention as a next generation user recognition method that can replace
conventional recognition methods effectively, owing to their high accuracy.

3. Proposed User Recognition Using Synthetic ECG Signal
3.1. Synthetic ECG Generation of GAN Using Auxiliary Classifier

The ACGAN is a model that generates data by using input class information, and
it discriminates the classes of generated data through the auxiliary classifier. While the
conventional discriminator performs learning to discriminate whether data are real data or
generated synthetic data, the ACGAN performs learning to classify the data classes as well.
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The generator generates data not to deceive the discriminator, but to produce accurate
classification results for the generated data. The data generated through such a learning
process can obtain similar results to the real data. Furthermore, data of a certain class can
be generated using the class information.

The structure of the ACGAN used in this study was designed to ensure that the
generator and the discriminator have mutually different CNN models, as shown in Figure 4.
To generate one-cycle ECG signals, the generator use the following input data: the class
information and noise with the same size as the cycle to be generated. Data are generated in
the generator model using a one-dimensional convolution operation and pooling operation
repetitively and these data are used as the input data of the discriminator model along with
the class information. As the number of layers increased through the repeated experiments,
the generator model could not generate data similar to the real ECG signals; on the contrary,
the values of generated synthetic ECG signals diverged because of the data loss in the
learning process.
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Therefore, the generator model was designed with nine convolutional layers, two
pooling layers, and a fully connected layer. The learning is performed for the discriminator
model in a direction of classifying the signals and classes of the real ECG and the synthetic
ECG input in the discriminator model. The structure of the discriminator model is designed
with a CNN model that repeats an operation of convolution and has a shallower structure
than the generator model, because it classifies the real ECG signals and class information
and the synthetic ECG signals and class information. Accordingly, the generator and
discriminator models generated synthetic ECG signals similar to the real ECG data through
the repeated learnings.

3.2. Ensemble Networks Design of Parallel Structure

An ensemble network structure of parallel structure was designed using acquired
ECG signals by user status change, as shown in Figures 5 and 6. First, the real data acquired
by the user status and environment changes constitute the registration database, and they
are used as input data in the 1D single CNN of parallel structure. The 1D single network
structure uses alternately a convolution layer that detects unique features of ECG signals
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and converts them into a feature map through convolution operation, a pooling layer that
reduces the data size, and a dense layer that sets the inputs and size. The role of the pooling
layer is to reduce the volume of calculation by reducing the size of data output from the
convolution layer, and to facilitate extraction of features having robust properties [22].
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The average pooling produces an effect of reducing the features of robust properties
output from the convolution layer (down-scale weighting) when “0” is output many times
for the operation result by ReLU, an activation function. Therefore, max-pooling, in which
the maximum value is selected in the window, is used. The ensemble method improves
the performance through combinations of mutually different models, and each 1D single
network is composed with different parameters to detect different features. The learning is
set to perform 500 and 750 times repeatedly, and the batch size, which is the number of
data used in the learning each time, is set to 256 and 512. The dropout that reduces the
computation time and amount by omitting a part of the network is set to between 50~70%.
For the learning rate, 0.001 is applied, which is often used in general.

Next, the ECG signals of output results from each network are used as registration
data for retraining by combining them into one database. However, when the ECG sig-
nals output from each network are all used as registration data, even the results of low
recognition rates are used as registration data because of the parameters and incorrect
network design; consequently, there is a problem that the recognition performance de-
clines. Therefore, not all output data are used, and by combining the result data of the
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top-three networks showing excellent performance, the registration data are composed.
Finally, user recognition is performed for the recomposed registration data by relearning
the time-independent comparison data in the single CNN.

4. Experimental Results

The type of noise in the ECG signal is a power line interference arising from the device
used for acquiring the ECG signal, motion artifacts caused by subjects’ movement, muscle
contractions by irregular muscle activity, and baseline drift by breathing [23]. This noise
can provide false information and degrade user recognition performance, so the noise
removed process is essential [24]. First, degree of reduction for each frequency depends on
the design and parameters of the filter. By using the high pass filter with a cutoff frequency
of 0.5 Hz, we remove baseline drift in the low frequency band. Next, to remove power line
interference, we applied the notch filter for the 60 Hz band. Lastly, we perform R-peak
wave detection using the Pan and Tompkins method.

ECG signals were acquired from 89 adults of various age groups from their 20s to 50s
to analyze the ECG signal changes and apply them to user recognition. The equipment
used for measurement was an MP160 model (BIOPAC Systems, CA, USA) and lead-1 ECG
signals were acquired by using wet electrodes. Measurements were taken over the course
of one year, in order to acquire time independent ECG signals, and the ECG signals were
measured by defining the following four environment as ones that could change ECG
signals in real environment as show in Figure 7 [25]. Depending on the subject’s schedule,
ECG signals were measured three times at a 2000 Hz sampling rate across different days.
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• Lying down: acquiring signals for 1-min in the lying posture after rest state
• Standing: acquiring signals for 1-min in the standing posture after rest state
• Before exercise: acquiring signals for 1-min in the sitting position before exercise after

rest state
• After exercise: acquiring signals for 1-min while maintaining the heart rate above

120 through the stepper exercise equipment after exercise
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The similarity between the acquired ECG signals and the generated synthetic ECG
signals was measured and checked using the cosine similarity and cross correlation [26,27].
First, the cosine similarity test results were examined to investigate the directional similarity
between the real and synthetic ECG signals. The cosine similarity is in the range of −1
to 1. As it approaches 1, it indicates a high similarity between the two signals, and, as
it approaches -1, it indicates a signal of different waveform. Table 2 exhibits the cosine
similarity measurement results by experimentee and shows a minimum similarity of 0.974
and a maximum similarity of 0.998, with a mean cosine similarity of 0.991.

Table 2. Cosine similarity measurement results by experimentee.

Class 1 2 3 4 5 6 7 8 9
Result 0.998 0.996 0.996 0.995 0.996 0.991 0.99 0.997 0.994
Class 10 11 12 13 14 15 16 17 18

Result 0.99 0.989 0.988 0.991 0.979 0.991 0.974 0.995 0.994
Class 19 20 21 22 23 24 25 26 27

Result 0.993 0.991 0.992 0.99 0.989 0.994 0.992 0.994 0.98
Class 28 29 30 31 32 33 34 35 36

Result 0.995 0.996 0.993 0.99 0.979 0.996 0.989 0.996 0.995
Class 37 38 39 40 41 42 43 44 45

Result 0.993 0.987 0.99 0.989 0.996 0.995 0.995 0.975 0.987
Class 46 47 48 49 50 51 52 53 54

Result 0.988 0.984 0.93 0.994 0.994 0.994 0.985 0.986 0.997
Class 55 56 57 58 59 60 61 62 63

Result 0.995 0.998 0.978 0.998 0.996 0.98 0.996 0.995 0.993
Class 64 65 66 67 68 69 70 71 72

Result 0.982 0.996 0.996 0.992 0.995 0.993 0.988 0.995 0.995
Class 73 74 75 76 77 78 79 80 81

Result 0.992 0.995 0.994 0.99 0.992 0.987 0.994 0.996 0.989
Class 82 83 84 85 86 87 88 89 AVG

Result 0.994 0.996 0.996 0.989 0.995 0.992 0.995 0.998 0.991

Next, the similarity results were checked using the cross correlation quantified through
the correlation analysis to investigate how similar two different signals are in the signal-
processing area. After overlapping the cross-correlation waveforms of the current ECG
signal cycle and the synthetically generated ECG signal cycle on the cross-correlation
waveforms output from the current ECG signal cycle and the next ECG signal cycle, the
similarity between the two signals was expressed numerically by using the Euclidean
distance. Figure 8 shows a method of measuring similarity using Euclidean distance based
on cross correlation.
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As the Euclidean distance of two cross correlations approaches 0, it indicates the gen-
eration of synthetic ECG signals similar to the real ECG signals of the same experimentee;
as it moves away from 0, it indicates a cross-correlation result of real ECG signals and
synthetic signals between different experimentees.
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Table 3 is the similarity measurement results using Euclidean distance based on the
cross correlation by experimentee, and it shows the similarities from 0.136 minimum to
0.364 maximum, with the mean Euclidean distance showing a similarity result of 0.25. In
the results of using the network proposed, the directivity features are very similar to the
real ECG signals, and the synthetic ECG signal generation results have different correlation
waveforms between the experimentees. This means that the generated synthetic ECG
signals were similar to the real ECG signals, and even if the registration and comparison
data do not have the same size, the data size inconsistency problem was solved through
synthetic data generation.

Table 3. Similarity measurement results using euclidean distance on the basis of cross correlation.

Class 1 2 3 4 5 6 7 8 9
Result 0.264 0.352 0.166 0.247 0.212 0.31 0.178 0.242 0.36
Class 10 11 12 13 14 15 16 17 18

Result 0.136 0.254 0.223 0.176 0.198 0.261 0.36 0.163 0.227
Class 19 20 21 22 23 24 25 26 27

Result 0.325 0.298 0.271 0.35 0.221 0.259 0.197 0.362 0.296
Class 28 29 30 31 32 33 34 35 36

Result 0.27 0.344 0.168 0.19 0.224 0.314 0.356 0.172 0.34
Class 37 38 39 40 41 42 43 44 45

Result 0.198 0.21 0.332 0.281 0.26 0.314 0.171 0.364 0.218
Class 46 47 48 49 50 51 52 53 54

Result 0.323 0.167 0.229 0.284 0.341 0.217 0.29 0.192 0.23
Class 55 56 57 58 59 60 61 62 63

Result 0.276 0.139 0.224 0.261 0.25 0.317 0.163 0.183 0.266
Class 64 65 66 67 68 69 70 71 72

Result 0.189 0.16 0.335 0.238 0.162 0.281 0.318 0.29 0.314
Class 73 74 75 76 77 78 79 80 81

Result 0.195 0.263 0.225 0.242 0.22 0.196 0.329 0.214 0.31
Class 82 83 84 85 86 87 88 89 AVG

Result 0.324 0.161 0.243 0.324 0.212 0.194 0.22 0.139 0.25

Because ECG signals of certain cycles are difficult to acquire in a real-life environment,
the comparison data were constructed with various combinations of the real ECG signal
cycles and the generated synthetic ECG signal cycles, as shown in Table 4. Then, they were
applied to the ensemble network of parallel structure. The number of data used in the
experiment was as follows: 53,400 data were used for the training data through the data
expansion method with 600 data per person acquired from 89 experimentees over three
times, and 17,800 data were used for the validation and comparison data.

Table 4. Experimental database for comparing user recognition performance.

Test Data Set
Real1~5 Real1 Real2 Real3 Real4 Real5

Real1~4+Synthetic1 Real1 Real2 Real3 Real4 Synthetic1
Real1~4+Real4 Real1 Real2 Real3 Real4 Real4

Real1~3+Synthetic1~2 Real1 Real2 Real3 Synthetic1 Synthetic2
Real1~3+Real3~3 Real1 Real2 Real3 Real3 Real3

Real1~2+Synthetic1~3 Real1 Real2 Synthetic1 Synthetic2 Synthetic3
Real1~2+Real2~2 Real1 Real2 Real2 Real2 Real2

In the experimental results, 98.5% recognition performance was shown when the five
cycles of real ECG signals were used, as shown in Figure 9, and 98.7% and 97% accuracies
were shown, respectively, as results of repeatedly using the one cycle of synthetic ECG
signals and the fourth cycle for the last cycle with the four cycles of real ECG signals.
A 97.2% accuracy was shown when two cycles of synthetic ECG signals were used with
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three cycles of real ECG signals. Moreover, when the last third cycle was repeatedly used
with the three cycles of real ECG signals, 96% accuracy was demonstrated, which was
1.2% lower than the performance obtained using the synthetic ECG signals. Therefore,
the generated synthetic ECG signals are similar to the real ECG signals. Furthermore, the
data composed by combining the synthetic ECG signals demonstrated superior recognition
performance compared with the data using the real ECG signals repetitively. Therefore,
a high user recognition result is confirmed through the ensemble network of parallel
structure using the synthetic ECG signals.
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In addition, the performance of the latest technology was compared using the MIT-
BIH database, an open database. As shown in Table 5, the performance of the proposed
method was 99.6%, which was higher or similar to the previous studies. This is the result
of applying a public database measured once in the same state as training, verification, and
test data to minimize the effect of heart rate and waveform changes. In other words, it can
be interpreted as a result of recognizing the environment at the time the data was acquired,
not the result of recognizing the experimenter’s unique characteristics.

Table 5. Comparison of recognition performance with previous studied using MIT-BIH data.

Classifier Work Database Test Set Accuracy Specificity Sensitivity
1D Ensemble

Networks Proposed

MIT-BIH
database

1692 99.6% 0.99 0.99

2D CNN
Jun et al. [28] 100,000 99% 0.99 0.97

Abdeldayem et al. [29] 250 98.8% - -

1D CNN Zhang et al. [30] 250 91.1% - -

MLP

Sidek et al. [31] -

94.4% 0.99 0.94

RBF 96.2% 0.99 0.96

KNN 97.9% 0.99 0.97

5. Conclusions

In conventional user recognition studies using ECG signals, experiments are per-
formed by constructing comparison data with the same size as the registration data in
the initial experimental environment. However, when the size is not identical to that of
the registration data because of a lack of comparison data acquisition time, they cannot
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be applied to user recognition because of the data size inconsistency problem. To resolve
this problem, an ACGAN network model was proposed. In this study, the similarity was
measured using the cosine similarity and the cross correlation to evaluate the generated
synthetic ECG signals. Furthermore, after constructing comparison data with various
combinations of the real ECG signal cycles and the generated synthetic ECG signal cycles,
the user recognition experiment was conducted by applying them to an ensemble network
of parallel structure.

In the experimental results, the proposed ACGAN confirmed the data generation of
various features, and even when the size was not consistent between the registration and
comparison data, the data size inconsistency problem was solved through generation of
synthetic data. Furthermore, because ECG signals of certain cycles are difficult to acquire in
a real-life environment, the comparison data were constructed with various combinations
of the generated synthetic ECG signal cycles and the real ECG signal cycles, in which heart
rate and waveform changes occurred in real life according to the user status. Then, the
user recognition experiment was conducted by applying them to the ensemble network of
parallel structure.

In the experimental results, the recognition performance obtained when the synthetic
ECG signals were used was higher than that obtained when the real ECG signals were
repeatedly used. In other words, high recognition performance was shown when the
generated synthetic ECG signals were applied to an ensemble network of parallel structure
according to the user status changes, even if the size was not consistent between the
registration and comparison data. Therefore, the applicability of the proposed model in
real-life environments was confirmed. The study was conducted focusing on generation
of synthetic ECG signals similar to real ECG signals. At present, synthetic ECG signals
similar to real ECG signals can be generated only if the learning process is undergone for
the generation of synthetic ECG signals. Therefore, a study for real-time generation of ECG
signals using user information learned in advance has been planned.
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