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Abstract: Falls are one of the leading causes of permanent injury and/or disability among the
elderly. When these people live alone, it is convenient that a caregiver or family member visits them
periodically. However, these visits do not prevent falls when the elderly person is alone. Furthermore,
in exceptional circumstances, such as a pandemic, we must avoid unnecessary mobility. This is why
remote monitoring systems are currently on the rise, and several commercial solutions can be found.
However, current solutions use devices attached to the waist or wrist, causing discomfort in the
people who wear them. The users also tend to forget to wear the devices carried in these positions.
Therefore, in order to prevent these problems, the main objective of this work is designing and
recollecting a new dataset about falls, falling risks and activities of daily living using an ankle-placed
device obtaining a good balance between the different activity types. This dataset will be a useful
tool for researchers who want to integrate the fall detector in the footwear. Thus, in this work we
design the fall-detection device, study the suitable activities to be collected, collect the dataset from
21 users performing the studied activities and evaluate the quality of the collected dataset. As an
additional and secondary study, we implement a simple Deep Learning classifier based on this data
to prove the system’s feasibility.

Keywords: accelerometer; deep learning; embedded system; fall detection; wearable; recurrent
neural networks

1. Introduction

Among most events related to the gait study, fall detection clearly stands out. These
events can lead to severe injuries and sometimes chronic problems or even death. Its
importance grows as users age, becoming one of the most important causes of morbidity
and mortality worldwide among the elderly according to the World Health Organization
(WHO) [1]. The obtained results estimate that around 28% to 35% of people over 65 fall at
least one time per year. Additionally, this rate increments in people who suffered falls in the
past. Key factors regarding falls include not only physical variables but also psychological
aspects, such as fear of falling again. These aspects condition the gait of these persons,
leading to higher falling risks. All these factors are correlated with the person’s way
of walking.

After a fall event, it is very important to have a quick response to avoid increasing the
consequences of the fall. However, in many occasions, elderly people live alone or spend
too much time alone. In addition, in exceptional situations, such as the current global
pandemic caused by COVID-19, we must significantly reduce mobility and contact with
this population sector, since it is the most sensitive to these diseases. This is one of the
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reasons why automatic fall detection systems have become very important in recent years
and especially in the current pandemic situation.

There are multiple fall detection system types that achieve good results in these
situations—solutions integrated into the user’s home (within the “smart home” domain)
using visual sensors, telecare solutions with user interaction, mobile applications or wear-
able systems, among others.

As has already been explained, the responses of these systems occur only after the user
falls, acting as a rapid intervention mechanism when these events occur. However, in order
to continuously monitor and prevent these falls, it is very interesting to detect possible risk
of fall situations, although these events are much more complex to detect. Thus, it is very
important to analyze the efficiency of the system based on these three states—fall, falling
risk and activity of daily-living (ADL).

In order to design a new fall-detection system, it is important to collect a large amount
of data to be able to use it during the system testing phase. For this purpose, researchers
usually use public datasets to save time and resources in the design and implementation
of the data gathering device as this eliminates or greatly reduces the workload for the
collection, filtering and labeling of the required data. Also, the more data we have, the
more reliable the system results will be.

As an important point, it should be noted that there are several sensors and/or systems
that can be used to detect falls. However, the most widely used sensor that is integrated in
almost all fall detection systems is the accelerometer. Some works add other complementary
sensors, like gyroscopes (Gyr) or magnetometers (Mag) to filter the information, but the
accelerometer (Accel) is the most widely used sensor (sometimes integrated in a wearable
independent device and others as part of a smartphone).

In previous works, information about fall events was collected using several users, and
the processed and labelled data were made publicly available for researchers as datasets.
Most of these datasets are linked with published papers that describe the collecting process.
Several of these datasets are summarized in Table 1. As can be observed, there are two
main tendencies—using a smartphone or a wearable device. However, almost all published
works use an accelerometer.

Another important point shown in Table 1 is the sensor (or device) location. Of these
works, 31% place the device in the pocket (usually those that use a smartphone), another
31% place it on the waist, 6% on the chest and 6% on the wrist. Apart from this, two works
place several devices in different locations and only one places it on the lower limb. With
this summary, it can be observed that 87.5% of the analyzed datasets locate the device in
the upper half of the body. Only one work locates the sensor at the bottom, and another
uses multiple sensors (locating one of them on the ankle).

The long-term objective of this work is to implement an integrated system to analyze
events associated with gait, merging the fall detection system with other gait anomaly
detection systems. To achieve this goal, the fall detection system must be near the foot, in
order to be able to integrate this new system with the one developed in previous works [2,3],
where the pressure sensors that measured the gait trend were located in the footwear insole.
For this reason, in order to study the viability of this type of systems, we need a dataset
that collects the information about falls and activities of daily living (ADL) from the foot or
from the ankle.

Moreover, as detailed previously, it is very important to detect not only falls, but also
falling risks. As observed in Table 1, only two of the works include falling risk activities due
to the difficulties regarding data collection. But, for our case, it would be very important
to include these events. So, attending to the aforementioned problems and the detailed
future integration work, we need a dataset obtained from the ankle or from the foot using
an accelerometer and including three types of events: Falls, Falling risks and Activities of
daily living (ADL).

This dataset creation would set a precedence in the field of fall detectors and could be
of great help to other researchers who work in this field. This dataset could be combined
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in future works with classic Machine Learning (ML) or Deep Learning (DL) techniques
to automatically classify the events related to the collected data. These techniques come
from the field of Artificial Intelligence (AI), and they have had (and continue to have) great
success when automatically extracting the meta-characteristics of large amounts of data
in order to perform these classifications correctly. Not only in this area, but also in many
others, both ML and DL are used assiduously to solve this type of problem; and as a result
of this fact, several studies have emerged with remarkable results [4–8].

Table 1. Datasets summary.

Dataset Year Participants Sensors Location Classes #Activities

Frank et al. [9] 2010 16 Accel Waist Pasive, ADL,
Risk, Fall

5

Kerdegari et al. [10] 2012 50 Accel Waist ADL, Fall 20

Anguita et al. [11] 2013 30 Smartphone
(Accel)

Waist Pasive, ADL 8

Medrano et al. [12] 2014 20 Smartphone
(Accel)

Pocket ADL, Fall 8

Ojetola et al. [13] 2015 42 Accel, Gyr Chest ADL, Risk,
Fall

15

Fall-MobileGuard [14] 2015 20 Shimmer2R
(Accel)

Pocket ADL, Fall 29

Vilarinho et al. [15] 2015 3 Smartwatch
(Accel)

Hand ADL, Fall 19

Wertner et al. [16] 2015 5 Smartwatch
(Accel, Gyr)

Pocket ADL, Fall 14

MobiAct [17] 2016 57 Smartwatch
(Accel, Gyr)

Pocket ADL, Fall 13

UniMiB SHAR [18] 2017 30 Smartwatch
(Accel)

Pocket ADL, Fall 17

UMAFall [19] 2017 17 Smartwatch, Tags
(Accel, Gyr, Mag)

Ankle, Waist,
Wrist, Chest

ADL, Fall 11

SisFall [20] 2017 38 Accel, Gyr Waist ADL, Fall 33

Rescio et al. [21] 2018 15 EMG Lower limb
muscles

ADL, Fall 6

Quadros et al. [22] 2018 22 Accel, Gyr
and Mag

Wrist ADL, Fall 12

FallDroid [23] 2018 20 Smartphone
(Accel)

Waist ADL, Fall 19

UP-Fall [24] 2019 17
Wearables (Accel),

EEG, Cameras,
Context-aware

Wrist, Neck,
Pocket, Waist,

Ankle

ADL, Fall 11

Clearly, the application of these technologies in the field of e-Health, both in the
analysis of physiological signals and as diagnostic aid systems with medical images, has an
enormous impact and helps to significantly reduce the workload of healthcare professionals.
Several works related to this area can be found [25–28], and currently we can even find
some interesting applications related to the detection of COVID-19 [29,30]. Due to the
rise of these systems, it is interesting to carry out a preliminary dataset study using DL
techniques in order to evaluate its quality.

Thus, summarizing the aforementioned, in this work one main fundamental objective
is established: designing and developing a dataset for the detection of fall events, falling
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risk events and activities of daily living (ADL) using a wearable device as data collector
(based on low-power microcontroller, accelerometer and Bluetooth BLE transmission),
located on the user’s ankle.

As a complementary objective, but not one of the main objectives, we include a study
regarding the other published datasets (16 in total) in order to extract their main characteristics
and their most common activities. This information will be used to determine the activities
used for our own dataset. It is important to mention that, although this is not one of the main
objectives, this initial study will help to determine the most suitable activities to include in the
dataset; thus, this study will help to accomplish the main objective.

Finally, as an additional objective, a dataset classification study is carried out using DL
techniques based on Recurrent Neural Networks (RNN). This final objective will determine
the dataset quality and, for this reason, a deep study about the different parameters used
for classification purposes is carried out. However, it is important to clarify that, as this
is not one of our main objectives, we are not looking for the best classification result, but
just for a good classifier that justifies the correct samples’ labelling. The results that will
be shown regarding this classification can be (and will be) optimized using more complex
RNNs (like in [31]) in future works after certifying the correctness of the dataset.

About the device location, the ankle was chosen instead of the foot for the ease and
comfort when integrating the designed prototype (larger than the final device). However,
the final and future device will be miniaturized and located in the footwear in order to be
combined with the gait pathology detection system implemented and presented in [3].

The rest of the paper is divided as follows—first, in the ’Materials and Methods’
Section, the characteristics of the collected dataset and the device used for this purpose are
presented, as well as the recurrent neural network implemented to test the dataset quality.
Next, the results obtained after training and testing the dataset collected are detailed and
explained in the Results and Discussion Section. Finally, conclusions are presented.

2. Materials and Methods

In this section, we will present in depth the collected dataset—we will discuss the
users who have participated in the data collection as well as detail the activities selected to
be carried out by all of them based mainly on the analysis of previous public datasets. In
addition, we will emphasize the device designed for this task—we will detail the hardware
design, its firmware and the user application that receives and stores the information.

Last, but not least, we will detail the selected Recurrent Neural Network architectures
used to test the quality of the dataset, as well as all the parameter configurations that have
been tested.

2.1. Ankfall Dataset

The dataset developed for this work has been called “AnkFALL” due to the location
of the data recorder device (ankle), and it is publicly available to any researcher (https:
//github.com/mjdominguez/AnkFall) taking into account the limitations indicated in the
information web page (accessed on 8 March 2021) .

This dataset is stored with version control. In this way, any modification of its content
would provoke the creation of a new version; so that, when researchers download the
dataset, they will be able to know which version they are using and thus be able to compare
themselves with other works. At the time of publication of this work, the version of the
dataset is “v1”, and it will be increased numerically as future changes are made.

This section will detail the users who have participated in the data collection, the
activities carried out by each one of them and the device designed for data collection.

2.1.1. Activity Set and Participants

In order to consider the best activities for our dataset, it is important to analyze the
sixteen previous studies related to the actual datasets that contain activities related to gait. All

https://github.com/mjdominguez/AnkFall
https://github.com/mjdominguez/AnkFall
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these studies were detailed in the Introduction Section and collect activities of daily living
(ADL), fall simulations and, some of them, falling risk activities (as detailed in Table 1).

We analyzed the three activity types recorded by all of them and included only those
which are more common among the sixteen datasets. However, it was established that
activities which are too dangerous to carry out or too difficult to simulate would be discarded.

• Activities of Daily Living (ADL): in this kind of activity, most of the datasets include
the most common ones like walking, sitting down on a chair, getting up from a chair,
crouching down, getting upstairs and getting down stairs. Those ADL activities that
are only present in one or two datasets were not taken into account. So, based on this
study, only those common activities were included in our activity set.

• Falling Risks: regarding these activities, it is important to mention that only two
of the sixteen datasets include this kind of events due to the difficult of simulating
them. These two datasets include activities like recovering after trying to sit down
into the void, trying to get up, stepping down from a platform, trying to dodge an
obstacle on the ground and sitting with an imaginary wall. These situations were
discarded due to the danger involved when performing a simulation or the difficulties
about conducting a realistic simulation. However we wanted to include falling risk
situations and, according to the most common situations among elderly, the risk
activities included in our study were: tripping over an obstacle and walking with an
improper weight change due to dizziness.

• Falls: the simulation of these activities is carried out by all the previous studies in very
different ways, so a deeper analysis is needed in order to select the best activities for
our dataset. A summary about fall simulation activities used in the sixteen analyzed
datasets can be found in Table 2. According to this review, the most frequent fall
events used in the datasets are dropping down (used in eleven of the sixteen datasets:
almost 69%), tripping (used in four of the sixteen datasets: 25%), sitting into the void
(used in four of the sixteen datasets: 25%) and fainting (used in four of the sixteen
datasets: 25%). Thus, these four fall events are included in our dataset.

Table 2. Fall types considered in previous datasets. Reference [11] is empty as it does not consider any fall event.

[9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]

With flexed knees X X X

Sitting on empty X X X X

Base on wall X X

Fall as subject prefers X X

From standing (drop down) X X X X X X X X X X X

Pushing X

Improper weight shift X

Trip X X X X

Walking with improper
weight shift

X

Sitting with imaginary wall X

Walking and slip X X X

Syncope/fainting/falling asleep X X X X
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Table 2. Cont.

[9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]

Trying to get up (seat) X X

Trying to sit down (seat) X

Lying down on a bed X

Lying initially on the knees X X X

Rolling out of bed X

With compensation strategies
to prevent the impact

X X

With contact with an obstacle
before hitting the ground

X X

Steing down from platform X

After evaluating all the datasets, we obtain a total amount of twelve activities. Another
important problem we detected after evaluating the previous datasets is that the different
kind of activities are unbalanced—in some datasets more than 75% of the activities are ADL;
and the great majority of them do not have risk events. These problems affect the classifier
system severely, as it needs balanced data in order to extract the meta-characteristics of
the dataset. Thus, ADL activities were reduced in our dataset to achieve this goal. Table 3
shows the final list of activities considered for the preparation of the dataset. In this table a
short description is included, as well as a detailed preparation process to record them. As
can be observed, our dataset has five ADL activities, three Falling risk activities and four
Fall simulations.

Table 3. List of recorded activities. Last column indicates the mean execution time (in seconds) for each activity.

# Activity Activity Description Activity Steps Time

Act. 1 The subject walks. 0. Standing; 1. Walk; 2. Stop 17

Act. 2 The subject sits in a chair. 0. Standing in front of a chair; 1. Turn around; 2. Sit 7

Act. 3 The subject gets up from a chair. 0. Sitting on a chair; 1. Get up; 2. Stand 6

Act. 4 The subject crouches down with the
intention of touching the ground.

0. Standing; 1. Crouch down; 2. Return to upright position;
3. Stand 6

Act. 5 The subject goes up and down stairs. 0. Standing; 1. Go up stairs; 2. Stop; 3. Turn around; 4. Go
down stairs; 5. Stand X

Act. 6 The user trips over with the left foot. 0. Standing; 1. Walk; 2. Trip over a creased carpet with the
left foot; 3. Regain balance; 4. Walk; 5. Stand 8

Act. 7 The user trips over with the right foot. 0. Standing; 1. Walk; 2. Trip over a creased carpet with the
right foot; 3. Regain balance; 4. Walk; 5. Stand 8

Act. 8 The user walks while dizzy. 0. Standing; 1. Turn on itself several turns; 2. Walk; 3. Stop 19

Act. 9 The user falls backwards while sitting on the
void. 0. Stand; 1. Try to sit; 2. Fall; 3. Stay still 6

Act. 10 The subject trips over and falls forward. 0. Stand; 1. Walk; 2. Trip over a creased carpet with the left
foot; 3. Fall; 4. Stay still 10

Act. 11 The subject falls to the left (faint). 0. Stand; 1. Fall without resisting to the left;
2. Stay still

5

Act. 12 The subject falls to the right (faint). 0. Stand; 1. Fall without resisting to the right;
2. Stay still

5



Sensors 2021, 21, 1889 7 of 20

All these activities were performed by 21 volunteers who were previously informed
and trained about the way to carry them out. Due to the difficulty to perform some of
the falling risk events, the volunteers had the possibility to avoid some of them. The
participants were 16 males and 5 females aged between 21 and 60, with heights between
1.60 and 1.95 m, weights between 70 and 110 kg and none of them presented any gait
limitations.

2.1.2. Acquisition Process

As described before, the long-term goal after this study is to develop an integrated
system that records and analyzes all types gait related events. These events include not
only fall events, falling risk events and ADL events; but also problems related to user
balance, way of walking, plantar problems like pronation or supination, and so forth.
Regarding these problems, some works have been previously developed [2,3], and the
device implemented for those other works was integrated in the footwear. Thus, in order
to fuse both systems (fall detector and gait analyzer) in the near future, the acquisition
device was located in the ankle (as the prototype is currently too big to fit in the footwear).

Moreover, we have consulted two sets of people—the first set was composed by people
who are using a similar device; and the second set includes some of the participants of the
collected dataset. However, because of the difficulties of making an extensive consultation
due to the current pandemic, the first set was formed by relatives and acquaintances of the
authors of this manuscript.

Finally, the first set includes five persons (four of them older than 65); and the device
location used by them varied according to each user—two of them wore it on the waist, one
on the wrist and two on the chest. The two main problems that they commented on were
discomfort when wearing it (3/5; those who wore the device on their waist did not notice
discomfort), and forgetfulness (4/5; only one indicated that he did not forget it because he
wears a bracelet all day). For the second set, four of the participants in the data collection
were able to provide a comparative view with other devices they had used. They all agreed
that the new device was more comfortable to wear. Moreover, some of the participants, at
the end of the collecting process, did not remember which ankle they had the device on (as
it was put over the sock).

So, according to these consultations and taking into account the proposed future
works detailed in the Introduction Section, there are two main reasons why we focus the
study on acquiring data on the footwear:

• This area of the body is directly influenced by risk events and falls; however, the vast
majority of published datasets do not record from this position.

• This location opens the opportunity to combine the information with other sensors,
such as pressure sensors, to analyze pathologies or other gait-related problems.

Regarding the forgetfulness problem, we need to analyze the focus population of
the device:

• Users with many pathologies are used to wear insoles. Forgetting to use the device
would be unlikely, especially if the sensors were integrated into the orthotics devices.

• The elderly usually wear a small number of shoes and, thus, it would be less common
to forget the device.

• Athletes usually wear sports shoes, and therefore sensors could be installed on them.

Thus, according to this extensive study, locating the device in the footwear in a near fu-
ture could be an interesting solution to avoid the inconveniences indicated before. For now,
our device will be located in the ankle; but the information recorded by the accelerometer
will be very similar to what will be obtained by a device located in the footwear. For this
purpose, the full recording system is made up of a sensing and transmission device (placed
on the ankle) and an application for monitoring and saving the received information.

The wearable device is managed by a 32-bit low-power microcontroller. The full list
of used components is described next (see Figure 1a):
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• STMicroelectronics microcontroller (STM32L432KCU6): 32-bits ARM Cortex-M4 with
floating-point unit (FPU), 80 Mhz CLK, 256 KB FLASH, 64 KB SRAM, 12-bit resolution
ADC (analog-to-digital converter) up to 10 channels and up to 22 GPIOs (general
purpose pins).

• ADXL345: triaxial and analog accelerometer with a resolution up to ±16 g for each axis.
• HM-10: low-energy bluetooth modem controlled by a serial port. This modem is used

to transmit the collected data to the monitoring application.
• Power supply: as the main objective is the dataset collection, we used a comercial

powerbank to feed the device. In a near future, with the final implementation after test-
ing the dataset and integrating the RNN inside the embedded system, a 150–200 mAh
lipo battery will be used; however, at this time, no power-consumption studies have
been performed.

(a) (b)

Figure 1. Wearable acquisition device: (a) wearable device placed in the ankle; (b) firmware’s state
machine.

Regarding the device’s firmware, a real-time operating system (FreeRTOS) is used
to correctly process the information (see Figure 1b) and transmit it without losing data,
configuring the accelerometer with a ±16 g accuracy and positioning it in the following
way—x axis was aligned with the horizontal line, y axis with the vertical, and the z axis
was aligned with the march direction. The information collected from each accelerometer
axis is filtered using the mean with a 10-sample window, and the resulting values are
encapsulated into a frame (which contains a starting sequence, the three accelerometer
filtered axis values, a checksum value to check the correct reception of the information in
the computer, and an ending sequence), and transmitted at a 50 Hz rate to the computer
(see Figure 1b).

On the other hand, the monitoring system plots the information received from the
wearable device by the computer in real time (at 50 Hz as commented before), allowing us
to visualize whether the information has been correctly captured. In the meanwhile, this
data is stored locally in a csv file.

After the collecting step, the information stored for all the activities are accelerometer
values (3 values, one for each axis). At this stage the different classes are not indicated yet,
and we need to precisely discriminate the correct label to tag each sample individually.

In order to perform the labelling task, a webcam records the activities while the
monitoring system is plotting the information. A local script launches the monitoring
application and the webcam recording tasks at the same time. Thus, the csv file (that
contains the accelerometer information) and the clip recorded by the webcam share the
timestamps, easing the subsequent labelling task. Therefore, we store the accelerometer
information and the videoclip for every task for all users. However, for confidentiality
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reasons these videos are not publicly available. A recording sequence from both the
monitoring application and the videoclip is shown in Figure 2.

Step 1 Step 2 Step 3

Step 4 Step 5 Step 6

Figure 2. Monitoring application and videoclip during a Fall event recording sequence (in order, from step 1 to 6).

Viewing the video in slow motion, we labelled the entire dataset sample by sample
between the available classes, that is, fall, falling risk and ADL. However, those periods in
which none of the three previous possibilities occurred (a section where the user does not
move), were labelled with an auxiliary category called background (BKG) that corresponds
to the class of other datasets named “Passive” (see Table 1). So, finally, our dataset distin-
guishes between four classes—BKG, ADL, FALL and RISK. The reasons why we use these
classes are detailed below:
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• Most studies group events to simplify the final problem. In fact, there are many studies
that only classify between fall events and ADL, without addressing risk events.

• Knowing the specific user activity is not as interesting for healthcare systems as
detecting dangerous anomalies like falls or falling risks.

• Using more classes requires more complex models and the systems would loose the
ability to alert in real time.

2.2. Recurrent Neural Network Classifier

As detailed previously, the main goal of this work is the elaboration of one dataset
that discretizes between falls, falling risks and activities of daily living (ADL), and the way
in which the activities are selected as well as the methodology to used to perform them was
described before. However, in order to evaluate the quality of the collected dataset, a DL
based classification will be carried out using recurrent neural networks (RNN) in the same
way as it was done in previous works with other datasets [31]. It is important to emphasize
that our objective is not to optimize the final classification accuracy of the system; however,
we study the different parameter combinations for the network in order to evaluate if it
is possible to classify the different activities and, if this is the case, the adequacy of the
collected dataset will be demonstrated. For this purpose, we need to evaluate the specificity
metric—this metric determines measures of the proportion of values not belonging to a
class that are correctly identified as such. So, a good result in this metric means that the
different classes can be differentiated easily and, thus, the dataset collecting and labeling
processes can be verified using this metric.

In order to perform this task, we used Gated Recurrent Neural Network algorithms.
These algorithms can automatically extract the appropriate characteristics from a temporal
sequence (like our dataset) for performing the final classification. Long Short-Term Memory
(LSTM) and Gated Recurrent Units (GRU) are the most used gated recurrent layers (see
Figure 3), which have been demonstrated to obtain an acceptable performance in signal
classification problems [32,33].

(a) (b)

Figure 3. Long Short-Term Memory (LSTM) (a) and Gated Recurrent Units (GRU) (b) units.

If we generalize the problem, the gait-related events require a study of acquired signals
sequential/temporal characteristics, as detailed before. To contemplate this temporality
there are two main approaches; by using frequency analysis (using FFT or DWT ), extracting
features and combining them with a classic algorithm such as an MLP network; or by using
deep learning algorithms such as RNNs. As the final future objective of his work is to
create real-time systems, the feature extraction process needed in the frequency analysis
method requires more computational time than working directly with RNNs (with not too
many layers); therefore, for a real-time system, it is more consistent to work with RNNs.
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In previous studies, we used these recurrent layers with accelerometer signals taken
at the waist (using the information of other datasets), obtaining high effectiveness results
and real-time classifications using low-power microcontrollers [3]. These layers implement
a memory cell that retains relevant information from the analyzed sequence section, to use
it in the analysis of the full sequence and, finally, to provide appropriate information for
the classification problem. In summary, their operation is detailed below:

• LSTM cell: this cell consists of an input gate, a forget gate and an output gate. The
first gate adds new information to the cell from the sequence sample in the current
instant of time t and the outputs of the same layer processing for the previous instant
t− 1. With the same inputs, the forget gate determines the non-necessary data for the
analysis of rest of the sequence. Finally, the output gate passes information from the
memory that considers relevant as input to the layer processing the next instant t + 1.

• GRU cell: it has only two gates (no forget gate is used), so it can add (update gate)
and remove (reset gate) information from the cell, allowing all stored information to
be used by the neural network throughout the sequence analysis.

In this study two main architectures were used (see Figure 4). Both of them contain a
single recurrent layer and a dense layer with four nodes. A softmax activation function is
used to normalize the results in a probability distribution; and, thanks to this, both the loss
calculation and the 4-class classification results can be performed. Additionally, we use a
batch normalization layer during the training step to normalize the input data, allowing a
faster convergence of the system. The two architectures differ in the type of RNN layer
used—the first one is based on LSTM cells while the other one uses GRU cells.

Figure 4. Diagram of the Gated RNN architectures assessed.

Data Segmentation and Labelling Criteria

In order to adapt each registered activity to the RNN models, we established a fixed
temporal window of 64 samples, which, considering an acquisition frequency of 50 Hz, is
equivalent to 1.28 s. This window is appropriate to contemplate a fall event or even risk
situations [34]. Each activity was split into blocks with the same window length of 64 and
was labelled with a unique category. The criteria used for labelling each block consisted of
assigning it to the most relevant class whose occurrence percentage exceeds an established
threshold (see Figure 5). If none of the thresholds is reached, the segment is classified as
background (BKG).

In the first step of this study, we consider different threshold values for each relevant
category and analyze the training results to obtain the best threshold values. In a second
step, grid search is used for model optimization. The parameters considered were the
number of nodes and dropout value for the recurrent layer, as well as learning rate and
batch size used during training. All these tests and the obtained results will be detailed in
the next section.
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Figure 5. Labelling criteria based on occurrence percentage in each block.

3. Results and Discussion

After analyzing all the datasets developed in recent years related to fall events and
selecting the activities that must be collected for the new dataset, its final distribution is
shown below.

In addition, as already indicated above, we consider that it is necessary to test our
dataset using a DL classification system. In this way, we will assess whether the collected
dataset is useful to future fall detection systems studies.

3.1. Collected Dataset

While recording the dataset, three repetitions of each activity were performed. How-
ever, due to the COVID-19 pandemic lockout, some activities could not be registered. It
mainly affected activities 5 (going up and down stairs) and 8 (walking while dizzy) because
they needed special considerations during the preparation. Thus, the data recollection
for these activities was delayed until the other activities were recorded. While activity 8
(walking while dizzy) was performed by 10 users, activity 5 (going up and down stairs)
could not be performed by any user.

So, finally, eleven activities were recorded. Moreover, as activity 5 is considered an
ADL (activity of daily living), the final dataset is more balanced than our initial expectations
as it contains 4 ADL activities, 4 fall activities and 3 falling risk activities.

Additionally, some participants did not carry out some activities for security reasons
or at their own request and, in some cases, some errors were detected after some recordings
(in particular with two activities for participant seventeen); all these reasons reduced the
final amount of records. Figure 6 illustrates the process to obtain the final dataset. Finally,
the total set contains 615 records.

So, after recording the AnkFALL dataset, it is important to compare it with the datasets
presented in the Introduction Section. However, as there are too many differences among
them, only datasets that use a wearable device with an accelerometer (not a smartphone
or smartwatch) and that include fall events are taken into account. The comparison is
presented on Table 4.
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Figure 6. Resulting dataset.

Table 4. Comparison between AnkFALL and the most similar datasets (from Table 1). The last column indicates the number
of activities from each type (in order: activities of daily living (ADL), Risk, Fall).

Dataset Year #Users Sensors Location Classes #Activities Balance

Frank et al. [9] 2010 16 Accel Waist Pasive, ADL,
Risk, Fall 5 3-1-1

Kerdegari et al. [10] 2012 50 Accel Waist ADL, Fall 20 17-0-3

Ojetola et al. [13] 2015 42 Accel, Gyr Chest ADL, Risk,
Fall 15 8-1-6

SisFall [20] 2017 38 Accel, Gyr Waist ADL, Fall 33 29-0-4

Quadros et al. [22] 2018 22 Accel, Gyr
and Mag Wrist ADL, Falls 12 11-0-1

AnkFALL 2020 21 Accel Ankle BKG, ADL,
Risk, Fall 11 4-3-4

As can be observed in Table 4, AnkFALL registers a total number of participants
and a number of activities slightly lower than average (around 30 and 19, respectively).
As detailed before, the dataset is continuously growing and, in the near future, the total
number of participants will increase; however, due to the pandemic lockout, no participant
record has been registered since March 2020. Regarding the number of activities, AnkFALL
seems to have very few, but the dataset it was designed to be as balanced as possible—as it
is shown in the last column of Table 4, we can observe some goodness about AnkFALL:

• AnkFALL is the most balanced dataset among the existing ones according to the
number of activities: around 36%, 28% and 36% of ADL, Risks and Falls, respectively.
If we do not take into consideration AnkFall, the more balanced dataset is the one
presented by Ojetola et al. [13] with 53%, 7% and 40% of ADL, Risks and Falls,
respectively.

• Only two datasets from Table 1 register more Fall events than AnkFALL—the one
from Ojetola et al. [13] with six different Fall activities and FallDroid [23], which has
no Risk activities and uses a smartwatch.



Sensors 2021, 21, 1889 14 of 20

• No other dataset has more Risk activities than AnkFALL—the datasets that have Risk
activities only register one or two types.

Thus, the two most important things that make AnkFALL useful for researchers is that
it has several Risk activities records, and it is clearly the most balanced available dataset.
These two characteristics are very useful when implementing ML classification systems due
to the importance of balancing the training data for obtaining good classification results
without overtraining one of the classes. The internal data structure of AnkFall dataset can
be observed in Figure 7.

Figure 7. AnkFall internal structure: (a) Folder structure; (b) Data collected from user 21 during activity 10, repetition 1; (c)
Labels for each sample of data collected during activity “(b)”.

3.2. Testing the Dataset

Although the main goal of this work is already achieved, it is very interesting to
perform a first classification study in order to check that the information recorded and the
applied pre-processing techniques are correct.

For this purpose, the Hold-Out technique has been applied, dividing the dataset in two
subsets—one subset was used for training and the remaining was used for evaluation. The
distribution was carried out in such a way that each subset contained data from different users,
to avoid bias. Data from 5 users were randomly selected, avoiding choosing the users who
had carried out the least number of activities. In the dataset segmentation process, we used a
64-sample temp window, as mentioned above, and a 25% displacement of the sample size,
which corresponds to 16 temporal samples and applied this approach as a data augmentation
technique: this means that there is an overlapping of 75% of the information between two
consecutive temporal windows. Data distribution is shown in Table 5.
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Table 5. Participant distribution for each subset using the hold-Out method.

Subsets Users # Activities

Train 1, 2, 3, 4, 6, 7, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 463
Validation 5, 8, 9, 10, 21 152

We compared the effectiveness of the classification system using different and well-
known metrics: sensitivity (also known as recall), specificity, precision and F1-score [35].
This last metric is the harmonic mean of precision and sensitivity. Those metrics are
presented in the next equations:

Specificity = ∑
c

TNc

TNc + FPc
, c ∈ classes (1)

Precision = ∑
c

TPc

TPc + FPc
, c ∈ classes (2)

Sensitivity = ∑
c

TPc

TPc + FNc
, c ∈ classes (3)

F1-score = 2 ∗ precision ∗ sensitivity
precision + sensitivity

. (4)

About those metrics:

• Specificity: proportion of “true negative” values in all cases that don’t belong to this
class (see Equation (1)).

• Precision: proportion of “true positive” values in all cases that have been classified as
it (see Equation (2)).

• Sensitivity (or Recall): proportion of “true positive” values in all the cases that belong
to this class (see Equation (3)).

• F1: It considers both the precision and the sensitivity (recall) of the test to compute
the score. It is the harmonic mean of both parameters (see Equation (4)).

In the first stage of the study, the best threshold values for block labelling were
analysed. We considered the values shown in Table 6.

Table 6. Occurrence thresholds values analyzed for each class.

Threshold Set of Values

ADL 0.3, 0.4, 0.5, 0.6, 0.7
RISK 0.2, 0.3, 0.4, 0.5
FALL 0.1, 0.2, 0.3, 0.4

For training our classification system, we used the best architecture considered in
a previous work [31]—this architecture consists, as detailed in the previous section, of a
recurrent layer followed by a dense layer and a softmax activation function. The resulting
best values for thresholds were 30% for Fall events, 20% for Falling risk events and 30% for
ADL, with a mean F1-score up to 0.75 and a standard deviation 0.08 after three training
repetitions. The dataset distribution using the considered thresholds can be consulted in
Table 7. It can be seen how, despite trying to homogenize the number of samples for each
type of event, due to the short duration of risk situations and fall events, an imbalance in
the number of dataset samples can be observed.
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Table 7. Dataset distribution for each subset with best labelling thresholds.

Samples Per Class

Subsets Total ADL BKG Risk Fall

Train 9099 2064 4587 1165 1283
Validation 3172 837 1500 331 504

The model optimization was carried out with a grid search considering the parameter
values shown in Table 8. The parameters consisted of the number of nodes of the recurrent
layer, dropout rate, learning rate and batch size. This range of values was selected based
on the parameters considered in previous studies [31,34].

Table 8. Grid search values for exhaustive parameters optimization.

Parameters Set of Values for Grid Search

Learning rate 0.0005, 0.001, 0.0015, 0.002
Batch size 32, 48, 64

Number of nodes 24, 32, 40
Dropout 0, 0.2, 0.35

After carrying out all the training studies with all the possibilities for each parameter,
the best trained models were obtained and are shown in Table 9. In order to check the qual-
ity of these models, this table shows the values of the metrics described in Equations (1)–(4).
As can be observed, two possibilities are shown in this table based on the two network
types considered in this work—the first one contains LSTM units, and the second one
contains GRU units.

Table 9. Best results obtained after grid search optimization.

RNN RNN Learn. Batch RNN

Architecture Nodes Rate Size Drop. Precision Specificity Sensitivity F1-Score

One LSTM layer 32 0.002 32 0.2 0.780 0.928 0.768 0.774
One GRU layer 40 0.002 32 0.2 0.762 0.924 0.771 0.766

If we analyze the results shown in Table 9, we can obtain the next conclusions for
each metric:

• Specificity: we can see values over 92% that denote a high rate of true negatives
among the total amount of true negatives and false positives. So, in general, this
system classifies correctly the values that do not belong to each class.

• Precision and Sensitivity: these values are lower than the specificity, however both
have similar values around 77–78%. These results are not bad at all, but the important
difference between the specificity and these two metrics indicate that the system does
not behave in the same way with all classes. Maybe one of the four classes has quite
worse results than the others. In fact, if we study the system deeply, we can check
that the class RISK has much worse results than the others due to two main reasons:
the difficulty of distinguishing it and the alternation between RISK, ADL and BKG
during the Falling risk activities. This aspect will be studied later.

• F1-score: As this metric is obtained from precision and sensitivity, it is normal that its
value is similar to them. The main conclusion obtained with this value is the same
that was already obtained for the previous metrics.
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After presenting all the metrics, we can observe that the obtained “specificity” values
are high (92–93%). This fact indicates that the system classifies the values that not belong
to each class correctly. This means that the different classes can be easily differentiated
and, thus, the dataset collecting and labeling processes are proven to be correct. So, this is
a good metric to evaluate the quality of the collected dataset. Regarding the “precision“
metric, it depends on each class independently. But, thanks to the good specificity results,
we can assume that, using more complex RNNs the classification results can be improved.

So, in order to corroborate the results predicted previously by evaluating the metrics,
it is important to study each class independently for the two neural networks (LSTM and
GRU from Table 9) selected after our initial study. For this purpose, the confusion matrices
are shown in Figure 8.

This figure reveals the predicted main obstacle to be faced in the detection problem—
the correct distinction of falling risk activities from activities of daily living (ADL). However,
if we focus our attention on the other classes, their results are high, obtaining an 87% success
rate when classifying falls. These results demonstrate that the information recorded for
the AnkFALL dataset is very useful for being used in fall detection studies. The problem
concerning the RISK class is not new as, in a previous work [31], a RISK class was included
in the SisFALL dataset, and the conclusions were similar—the falling risk events are much
more difficult to distinguish than any other event type.

LSTM GRU

Figure 8. Confusion matrices for best LSTM and GRU models. Each specific box in the confusion matrix represents the
percentage of samples of the class indicated by the row that have been classified as the class indicated in the column.

Concerning the system ROC curves (see Figure 9), they reveal the same problem again:
RISK class obtains worse results than the others. However, the area under the curve is high,
revealing that, in binary classifications of the One-vs-All type, the system has the ability to
distinguish each event class individually.

The curves corresponding to ADL and RISK are those with the lowest area under the
curve, 90% and 80% respectively, which is correctly correlated with the results shown in the
confusion matrices. Regarding the RISK class, a stagnation can be seen from a sensitivity
value of 0.75, which reveals that there are samples of this class which are very complex to
identify. These samples are mainly those corresponding to activity 8 (walking dizzy); so,
it would be interesting to eliminate this activity from a future training study in order to
corroborate these preliminary conclusions.
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Figure 9. ROC curves for best LSTM and GRU hmodels.

4. Conclusions

In this work, a new dataset called AnkFALL is presented. It contains labelled infor-
mation from 21 participants performing 11 activities, including activities of daily-living
(ADL), Falls and Falling risk activities. These activities have been carefully selected by
performing a study of the different available datasets and taking into account that one of
the main objectives is to obtain a dataset that contains all types of activities and that is as
balanced as possible.

According to the explanations given in the introduction, the results of this work can
be used in healthcare and fitness areas. Our main focus area is healthcare, and more
precisely telecare services for older people who use devices to alert about emergency
situations (mainly falls). Using a device placed in the footwear may prevent forgetfulness
and improve wearing comfort and, thanks to this dataset, researchers can start to develop
footwear-placed fall detectors. Although this is our main interest area, these principles can
be easily applied to the fitness field too.

To record the dataset, a personalized wearable device, based on a low-power mi-
crocontroller, an accelerometer and a Bluetooth low energy interface, has been designed
and implemented to transmit the information from the user’s ankle; on the other hand, a
computer application has been implemented for the reception, visualization and storage
of the received data. The labelling task has been thoroughly carried out by checking the
received information sample by sample with the synchronized videoclips recorded while
performing the activities.

The final result is the first dataset of its kind that collects information from the ankle,
and it is also the most balanced fall-detection dataset among of all the datasets currently
described in the literature. Also, this dataset includes a type of activity (falling risk) that is
only available in a small subset of the available datasets.

To verify the quality of the dataset, a deep learning classifier system based on recurrent
neural networks has been designed and implemented for the classification of the four
classes in this dataset—BKG, ADL, Fall and Risk. A detailed study is carried out with
multiple variations of thresholds, learning rates, batch sizes, number of nodes and dropout;
obtaining, in combination, more than 600 different neural networks that have been trained
for this purpose. The best result for each parameter is presented and the final classification
results are shown. The obtained specificity values (between 92% and 93% depending on
the implementation) indicate that the system classifies correctly the values that do not
belong to each class. This means that the different classes can be differentiated easily, so
the quality of the dataset is proven by this result. Regarding the precision, it depends on
each class but, thanks to the specificity results, we can assume that, using more complex
RNNs the classification results can be improved.
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Moreover, the classification results show that the main difficulty is detecting falling
risk events—this is mainly due to the speed at which they occur and the combination with
other ADL activities; not surprisingly, most of the datasets do not include this type of
activities and most of the research studies do not include them either.

For future versions this dataset needs to be expanded with a larger number of partici-
pants. Moreover, after testing the dataset, we have observed that the information collected
for one of the activities has several errors and this affects the classification results; thus,
in the next versions of the dataset we need to evaluate whether the instructions given for
the participants were clear enough and if this activity is essential or not. Finally, in order
to obtain a better adequacy of the activities collected for the dataset, we have started to
apply “Explainable Deep Learning” techniques to the collected data; we hope that these
techniques will help us improve the next versions of the dataset.
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