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Abstract: Indoor navigation has attracted commercial developers and researchers in the last few
decades. The development of localization tools, methods and frameworks enables current com-
munication services and applications to be optimized by incorporating location data. For clinical
applications such as workflow analysis, Bluetooth Low Energy (BLE) beacons have been employed to
map the positions of individuals in indoor environments. To map locations, certain existing methods
use the received signal strength indicator (RSSI). Devices need to be configured to allow for dynamic
interference patterns when using the RSSI sensors to monitor indoor positions. In this paper, our ob-
jective is to explore an alternative method for monitoring a moving user’s indoor position using BLE
sensors in complex indoor building environments. We developed a Convolutional Neural Network
(CNN) based positioning model based on the 2D image composed of the received number of signals
indicator from both x and y-axes. In this way, like a pixel, we interact with each 10 x 10 matrix
holding the spatial information of coordinates and suggest the possible shift of a sensor, adding a
sensor and removing a sensor. To develop CNN we adopted a neuro-evolution approach to optimize
and create several layers in the network dynamically, through enhanced Particle Swarm Optimization
(PSO). For the optimization of CNN, the global best solution obtained by PSO is directly given to the
weights of each layer of CNN. In addition, we employed dynamic inertia weights in the PSO, instead
of a constant inertia weight, to maintain the CNN layers’ length corresponding to the RSSI signals
from BLE sensors. Experiments were conducted in a building environment where thirteen beacon
devices had been installed in different locations to record coordinates. For evaluation comparison,
we further adopted machine learning and deep learning algorithms for predicting a user’s location in
an indoor environment. The experimental results indicate that the proposed optimized CNN-based
method shows high accuracy (97.92% with 2.8% error) for tracking a moving user’s locations in a
complex building without complex calibration as compared to other recent methods.

Keywords: BLE sensors; signal strength indicator; indoor positioning; bat algorithm; convolutional
neural network

1. Introduction

The academic industry has shown immense interest in the field of the Internet of
Things (IoT) because it can propose smart and innovative solutions. Extraordinary utiliza-
tion of IoT in our routine lives and its regular use in several intelligent environments (e.g.,
smart industry, smart universities, smart homes, and smart cities) requires an extension of
solutions for efficient and effective communication of IoT devices [1]. Keeping balanced
requirements like range, connection density, latency, bandwidth, quality of service, and,
endpoint cost is part of IoT networking [2,3]. Recent enhancements of IoT electronics, com-
puting paradigms and protocols result in the evolution of wireless sensor networks (WSNs)
having strong abilities for several applications in industrial, biomedical, civil, military,
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environmental, etc. WSN is made up of plenty of sensors with abilities to communicate,
process data and sense [4,5].

The observation of paths and locations of individuals through indoor traversal is
becoming a vital element of applications involving contextual information like the analysis
of the workflow of a clinical environment [6,7] and representation of viral diseases [8,9].
Conventional methods like surveys are slow, incompetent and expensive, particularly
when the observation is required all the time and numerous people are required to be
traced at a time [10]. Although numerous technologies exist for localization [11,12], these
are still far behind the performance of global positioning systems (GPS) in an outdoor
environment [13]. Technologies based on radio frequency (RF) are usually used for indoor
tracking, but these are affected by nearby sensors and transmitters, making them unreliable.
Prior solutions were only examined in closed and controlled environments with a high
cost of deployment [14]. Learning the properties of RF signals can aid in designing a better
solution for indoor localization.

Existing RF-based techniques are not feasible in every environment. Also, the claim
that Wi-Fi-based techniques are inappropriate for environments, such as hospitals, due to
the unavailability of signals in certain areas is questionable because Wi-Fi has a longer range
than Bluetooth low energy (BLE). Additional RF techniques based on indoor localization
rely on Bluetooth low energy (BLE) and RFID [14,15]. BLE is a better option than RFID in
multi-locations and multi-user applications due to the low consumption of power and low
cost. Information of signal like travel time, direction, the relative strength of signal [16]
is used in most of the RF-based techniques. RSSI techniques have a low implementation
cost and are easy to implement. Earlier methods used slow algorithms requiring expensive
calibration. For instance, methods relying on fingerprints will not operate properly if
currently sensed data vary significantly from patterns used during training.

It is assumed that more powerful signals will be detected by the receiver of the nearest
BLE beacons. Extra calibrations are required to remove signals from inaccurate locations
in settings where signal interference may cause difficulties. A threshold rate will be used
to manage outlier signals, signals having a value lower than the threshold rate will be
removed by using a novel algorithm. Threshold value may vary from location to location.

Machine learning (ML) algorithms were proposed last year in various applications
like energy [17-19], health [20,21], communication [17,22], agriculture [23,24] and so forth.
It was achieved due to the following reasons: (1) growing computational abilities of
microprocessors and circuits, and (2) access to big data offered by the internet. Unluckily,
machine learning techniques demand transmission of all data gathered by sensors, which
is a huge barrier in several cases, like in cases where data transmission demands data rates
that cannot be neglected. In such cases, to ensure accurate communication of all wireless
techniques with low power is not permissible.

Bio inspired methodologies make the data processing efficient in terms of power
consumption [25,26] and computational power. It is expected that optimization algorithms
will become closer to the sensor nodes for the local processing of data and transmission
of less information to accuracy and precision of positioning and of execution and mem-
ory management.

Particle Swarm Optimization (PSO) is a commonly known socially inspired optimiza-
tion algorithm. A community of particles, known as a swarm, fly and scan at a certain
speed in a restricted range. PSO has been widely applied to solve real-time optimization
problems. Since weight optimization during Convolutional Neural Network (CNN) is a
major problem. Furthermore, the number of layers of CNN need to be decided at run time
instead of predefined fix layers. For optimal parameter selection and to reduce the local
minima problem, PSO is used widely in the similar applications

In this paper, we have proposed a novel CNN architecture optimized by improved PSO
for the indoor positioning system. We adopt a neuro-evolution approach for developing
CNN adaptively. For optimal parameter selection, PSO is used and further enhanced
through dynamic inertia weight factor and social cognitive factors. For this, we convert
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BLE RSSI beacons data into 2-d images through x and y coordinates and evaluate proposed
optimized CNN for indoor positioning through BLE RSSI signals. We compared proposed
CNN with other ML and DL state of the art algorithms such as Decision Tree, K-Nearest
Neighbor (KNN), Logistic Regression, Support Vector Machine (SVM), Artificial Neural
Network (ANN), ANN with dropout, Deep Neural Network (DNN), DNN with dropout,
and finally Multi Layer Perceptron (MLP).

The organization of the remainder of the paper is—related work along with systematic
literature studies in the compact form are discussed in Section 2. Detail related to locating
transmitters, system architecture and the proposed framework are given in Section 3 where
data collection, experimental results, and analysis of simulations are enlisted in Section 4.
We concluded the study in Section 5.

2. Related Work

A method based on the received number of signals indicator (RNSI) was proposed by
the authors [27] to predict the location of a user. They experimented with their method in
hospital and office settings. A comparison was made between RSSI and RNSI at several
ranges from beacons of BLE. To experiment with the movement of a user, a user with a
beacon was made to walk on a pre-defined path. Prediction made was ranked in terms
of accuracy.

The authors of [28] carried out a study to propose a system for the accurate localization
of users touring some cultural places or a museum. They expect that a BLE device is attached
to the visitor that regularly transmits packets, those packets are captured by a receiver
mounted inside the museum. The locator server is equipped with gathered packets that
estimate a visitor’s location in the museum. The estimated position is achieved by using a
feed-forward neural network, which is trained by using a non-linear least square algorithm.
Their proposed method showed an accuracy of the estimated position under 1 m.

Another study based on iBeacon protocol has been carried out by authors [29]. They
examined their method in three different environments in terms of frequency of barriers.
The results gained showed that their algorithm beat the conventional algorithm particularly
in settings with high or medium frequencies of barriers.

The authors propose an innovative data set [30]. They built their data set to facilitate a
reliable and vast quantity of RSSI values gained from wearable and fixed BLE devices to
experiment solutions working with distinct configurations comprising of social interactions
and room possession along with tracking and localization.

Authors carried out a study [31] to suggest UILOC which is an unsupervised local-
ization technique that utilizes Wi-Fi fingerprints, iBeacons and sensors of smartphone for
precise and reliable indoor localization without any labor cost. At first, they compared their
method with fingerprint-based techniques, their proposed method can generate a database
of fingerprints automatically without site survey and then they implement the database
in localization algorithm of fingerprints. After that, their proposed method will give the
estimated location by using the pedestrian dead reckoning (PDR) technique.

Another work [32] has been proposed to analyze threats, opportunities, weaknesses
and strengths to examine the current status of positioning methods of UWB. Their proposed
study exhibits novel taxonomies, debates for more investigations about this problem from
the research community, and analyze recent significant advancements. Similarly, the authors
proposed online collaborative localization (OCLoc) scheme [33] for Online Collaborative
Localization. In their work, they enhanced the RSSI strength through multiple requesting
users.

A hierarchical indoor location (HiLoc) framework is proposed [34] to enhance radio
surface location accuracy from crowdsourced samples. Tian et al. carried out a study [35]
to deal with issues of AP optimization and placement of a beacon by suggesting a novel
Cramer-Rao lower bound (CRLB) based heuristic differential evolution algorithm. Rather
than utilizing the log distance path loss (LDPL) technique, they adopted the Motley-Keenan
model to exhibit the impacts of comprehensive barriers in indoor settings.
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A study [36] has been carried out to exhibit unstable characteristics of RSSI and a
novel method was proposed comprising of three states, that is, invisible, retreating and
approaching. They tested their method in the real world and illustrated that their method
can predict Perceive Direction Information (PDI) by utilizing a Dense Neural Network
while providing 95% accurate results even on untrained devices. After that, they introduced
Monte Carlo Localization (MCL) algorithm that utilized PDI to gain highly accurate results.

A novel framework was proposed by authors [37] under conditions of non-line-of-
sight (NLoS) by utilizing some knowledge of channel state information (CSI) gained from
low power wide area (LPWA) radios. Their proposed method is an NLoS CSI classification-
based framework utilizing deep learning (DL) and machine learning (ML) models. They
illustrated their proposed framework which provided 98% accurate results by utilizing a
multilayer neural network (MNN).

Pu et al. proposed a novel fingerprint-based location algorithm [38] to predict the
location of the desired node by utilizing weighted and general algorithms of k-nearest
neighbor. They trained grid points at 2 m intervals and the predicted error in position was
about 1.8 m. Hence, their suggested model consumes low computations and provided
satisfactory accuracy rates.

Authors proposed a [39] novel indoor localization framework offering accurate and
fast positioning predictions. They utilized an Expectation-maximization (EM) algorithm for
handling issues of varied mobile devices. Their proposed framework is best for exhibition
environments as it enhanced the accuracy rate of localization in different mobile devices
while implementing fingerprint strategy.

In [40] the authors analyzed BLE-based algorithms for indoor localization. They en-
sembled and implemented various localization algorithms like Transliteration Localization,
Weighted Centroid Localization, Centroid Localization, and Proximity Localization. They
also executed and suggested fuzzy logic based technique for choosing the fittest algorithm
based on room size, signal strength and quantity of beacons.

Hou et al. brought out a study [41] for helping patients in finding their relevant clinics
or departments which in terms required an indoor localization technique offering accuracy
of room level. They studied the AOA-based approach to aid patients in finding their ways
in hospitals wherever access points of Wi-Fi are mounted. Their proposed framework
showed promising results.

The authors introduced a novel framework [42] for indoor localization by utilizing the
smartphone of the user. Their proposed method of automatic and real-time method of data
set construction offers low cost and efficient construction of data set. Their proposed model
can also be applied to all sorts of signal processing of time series sensors. They examined
their framework on an android app.

A novel framework [43] was proposed for modeling RSSI’s non-Gaussian properties to
sustain the load of computations. The outcomes of simulations based upon gathered signals
of RSSI guaranteed success of Wasserstein Distance (WD-based) Gaussian Sum Filter (GSF)
framework ensembled standard equivalents. Their investigational results exhibit that their
method gives more accurate results than conventional algorithms.

Girgensohn et al. carried out a study [44] to improve the ability to range technology
to contribute beneficial predictions of location. Velocity was selected as a parameter of
motion state. They exhibit useful enhancements accuracy of predicted indoor localization.
Moreover, the real-world implementation provided valuable suggestions for upcoming
IoT applications.

Another study has been carried out [45] to investigate BLE-based algorithms for indoor
localization. They suggested RSSI of BLE beacons along with current beacon’s distance
from point of the fingerprint to determine Euclidean distance for predicting location. Their
gained outcomes fingerprint algorithm showed the best results by utilizing type 2 of fuzzy
logic for indoor localization.

A study has been carried out [46] to propose a system for indoor localization based on
BLE iBeacon by utilizing the fingerprint technique. They applied the k-nearest neighbors
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(KNN) algorithm to predict user location. To offer higher accuracy rates and a low compu-
tational cost they suggested utilizing lightweight vectors to train the algorithm of machine
learning. Outcomes of their system provided useful predictions of the location of the user.
Some studies suggested [47] GRU as deep learning model to test on such optimization
problems.

An analysis was made by authors [48] to study the variations of BLE signals due
to alteration of power levels in BLE transmission. To examine the consequences they
organized a model for localization by utilizing the following methods, that is, Minimum
Mean Square Error (MMSE) and Centroid Approximation (CA).

Turgut et al. proposed a system [49] for indoor localization to offer a minimum cost
of infrastructure and utilizing technologies of the present building. They generated the
signal map by utilizing a fingerprinting approach, namely HALICDB. Data were classified
by using a DL algorithm. Their obtained results proved that their proposed system gives
highly accurate results as compared to conventional ML methods. We have summarized
the above indoor positioning methods, as shown in Table 1.

3. Material and Methods
3.1. Locating Transmitters

Communication of BLE is comprised of connecting and advertising. Advertising is
a one-way detection method. Devices that are required to be detected can transmit data
packets in periods of 20 to 2000 ms. Signals are not regularly broadcasted in intervals by
beacons. The higher stability of signals and highly accurate approximation are offered
by shorter periods. But it affects the life of the battery. Beacon locations are determined
in BLE-based techniques as signals of Bluetooth are continuously detected by the client
device. Signal strength might be affected by several barriers like furniture and people and
so forth. A ranging process is used to estimate the distance of the device and beacon that
causes four states of proximity.

e  Immediate: This state indicates the close presence of a device to beacon.

e Near: Indicates that the device is 1-3 m away from the beacon without any barrier.

¢  Far: It indicates low confidence due to greater distance and the presence of several
barriers between the device and beacon.

¢ Unknown: It indicates that transmitter proximity cannot be detected.

The received signal’s strength reached by mobile phone is showed by utilizing the
value of RSSI. Signal strength measured from a distance of 1 m from the device is repre-
sented by the power value of TX. As signal strength changes with device distance, it is
critical to calculating the precision of the estimated power value of TX. The difference can
be calculated by utilizing the following equation:

d— 10(TX7RSSI)/1O;1, 1)

here d represents distance, TX represents obtained power value of the signal from 1 m,
RSSI represents the received signal’s strength, path loss index represented by #n. It can be
assigned a value depending upon the location of surroundings and beacon-like that:

2 to large wide rooms, 1.4-1.9 to corridors, 3 to rooms with furniture, 4 to rooms filled
with furniture, and 5 to various floors. The following equation can be used to calculate the

exponent value of path loss.
RSSI —TX
"= ( 10l0g,od ) @
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Table 1. Brief Description of recent related studies on indoor positioning using several machine and deep learning approaches.

Ref Data Set Sensors/ Device Model Results

[27] RSSI Bluetooth RSSI The RNSI-based method gained accuracy (80.0%)
[28] RSSI, SNR Bluetooth device feed-forward neural network ThZg}iﬁ?j;ﬁgﬁgnaﬂfggﬁag of
[29] RSSI Bluetooth Neural network Obtained high accuracy

[30] RSSI Bluetooth RFID Showed promising results

[31] RSS V:rijisiir?;gj;fgifnst;aii;a}fgzj k-nearest neighbour (KNN) algorithm Showed maximum error of 2.77 m

[32] UWB UWB IPSs Obtained good performance

[35] CRLB Wi-Fi, Bluetooth Motley-Keenan model Gained efficient results

[36] RSSI Smart phone Dense Neural Network Showed 95% accurate results

[37] LPWA Wi-Fi multilayer neural network (MNN) Gained 98% accurate results

[38] RSS WiFi, ZigBee or Bluetooth devices k-nearest neighbor predicted error in position was about 1.8 m
[39] RSSI Mobile phone Expectation-maximization (EM) Showed good localization performance
[40] RSSI Bluetooth fuzzy logic Gained highly accurate results

[41] RSSI mobile device log-normal distance path loss (LDPL) Showed localization error less than 2.5 m
[42] DR Smart phone lon-short term memory (LSTM) distance error of <2.4% and >1.5%

[43] RSSI Bluetooth WD-based GSF framework Showed better results than conventional methods
[44] Wi-Fi RTT Wi-Fi Particle filters Gained efficient results

[45] RSSI Bluetooth fuzzy logic Showed good performance

[46] RSSI Fingerprint k-nearest neighbors (k-NN) algorithm provided useful predictions

[48] RSS Bluetooth and Mﬁﬁf&?@gggﬁlﬁig%?rg1?1\)/IMSE) Showed highly precise results

[49] HALICDB Fingerprint Stacked sparse autoencoder Obtained high accuracy
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3.2. System Architecture

Figure 1 represents the setting of the conducted experimentation for indoor localization
and its feasible implementation in a building.
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Figure 1. Standard building environment with the indoor localization of Beacons.

It was supposed that the BLE device will be equipped to the individual to be tracked
from that particular BLE frames will be transmitted after a constant interval of time. The
strength of RSSI is measured to gain the relevant messages of BLE. We implemented every
receiver of BLE with a client of MQTT that renders gathered data to the MQTT receiver.
Data is then forwarded to the server by the receiver, and the stored data is processed. The
primary architecture of the defined localization system is given in Figure 2.

Transmitter

Receiver
BLE/ WiFi
B BlueUp mini
eacon BlueUp mini BLE Frames Module
> l MQTT
) Client
i’ )
Data Store
Broker
MQTT . j
—
Localizer
RSSI Distance Proposed CNN Position

Filter Estimater Algorithm Estimate

< ——PSO
“Optimization
' Distanc

Figure 2. Proposed architecture of the defined localization system.
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Proposed Framework

This research aims to use iBeacon’s Bluetooth to locate an individual in a building
efficiently. This research has different potential applications, like providing a mobile to
individual in a store, making sure that users do not reach selected areas, tracking pedestrian
traffic and flow patterns, and several other innovative applications. In previous studies,
the authors used to consider separate machine and deep learning models to predict x and y
coordinates. The traditional positioning algorithm is shown in Algorithm 1. We overcome
this issue by predicting both coordinates through a single model. The validation technique
is the secondary issue, which we addressed in the proposed model. The employed data
are taken from time series process, rotating the Bluetooth device across the building while
taking a moment of about three seconds at every coordinate and taking a mean value for
each cycle. The obtained mean value leads to the random split and shuffles before the
predictions of both x and y points. We tried to introduce a logical split where the estimation
of the last 20 percent of the data were predicted.

Algorithm 1 Pseudo Code for basic localization system.

Require: Record RSSI signals and number of beacons
Ensure: Sensor with rich RSSI value
1: Object Beacon-detected
2: 1d,
3: Major,
4: Minor,
5: MeasurementsRSSI[],
6: AverageSignalStrength
7: if Scan Timing != 0 then
8:  init BeaconsList[BeaconDetected]
9: end if
10: init Array[Signals]
11: while Scan period not end do

12:  if beacon determined then

13: if beacon previously determined then

14: Update MeasurementsRSSI array of beacon
15: end if

16: Transfer data to Array[Signals]

17:  end if

18:  call Scan_beacon

19:  if Array[Signals]!= 0 then

20: Return sensor data with rich RSSI value
21:  end if

22:  Return Null

23: end while
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Furthermore, we decided to transform previous models based on MLP to CNN. In
the case of neural networks, that is, MLP, the network considers all 13 sensors and then
generates various input neurons to every potential value of that sensor. So this implies the
dealing 13 number of potential input neuronal measurements but these readings may not
contain sufficient transfer value. Hence this phenomenon will lead to the result where zero
information will be transferred. By transforming the input data into an image instead of a
very deep matrix, CNN provides the solution. We used each, y representing a 10 x 10 m
matrix as shown in the image given in Equation (3). Furthermore, we incorporated the
sensors’ locations manually. If the value of the sensors increased, the subsequent array
value will also increase.

S1 5 9
I(x,y)=1]S2 9 14 |. ©)
S3 13 14

In the above equation, 1st column representing sensors, where the second column
shows x coordinate and the third column can be interpreted as y coordinate. Each individ-
ual matrix for each sensor S, (x,y). In this way, we communicate with each 10 x 10 matrix
holding the spatial coordinate information like a pixel, indicating the potential change of
a sensor, adding a sensor and removing a sensor. The trend of each sensor used for the
experimentation can be three possible situations, either sensor shows maximum, low or no
signal. There are rare cases that any sensor produces no signal. To examine the possibility
of outliers in the sensor values, histograms for each beacon device showing the signal
strengths in terms of feature importance are given in Figure 3.

b3009
b3012
b3007
b3013
b3008
b3006
b3004
b3003
b3005

b3002

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175

Figure 3. Histograms for each beacon device showing the signal strengths in terms of feature impor-

tance.

Increased levels mean better signal and —200 represents the minimum signal, indicat-
ing that there is essentially no link. We also performed signal’s correlation analysis of each
sensor to shows the possible measure of strength of each sensor presented in Figure 4.
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Correlation between 13 sensors

1.0 A .
—— b3001
084 —— b3002
» —— b3003
_g 0.6 4 —— b3004
& —— b3005
g 0.471 — b3006
c b3007
£ 024 — b3008
g b3009
& 0.01-— b3010
© —— b3011 T
—-0.21 — p3012
—— b3013
-0.4 - .

b3001 b3003 b3005 b3007 b3009 b3011 b3013
Beacon

Figure 4. Signal’s correlation analysis of each beacons device.

We adopted a neuro-evolution approach to optimize and dynamically construct sev-
eral layers in the network via enhanced PSO to establish CNN. The best global solution
obtained by PSO is given directly to the weights of each layer of CNN for optimization.
Besides, we used dynamic inertia weights in the PSO instead of constant inertia weight to
maintain that the length of the CNN layers corresponds to the RSSI signals.

Let’s take an input image of 2-d matrix I(x,y) for each sensor S,(x,y) where n =
{1,2,3...13}. I(x,y) is given to semi-standard CNN with 3 convolution layers 4 transpose
of convolution layers, and 2 Max pooling layers with auto encoder to compress the signal
readings. The equation for the input layer of auto encoder CNN can be written as:

Si = Inputy, (x,y|D), 4)

where t represents the corresponding iteration, x and y are both coordinates recorded from
each sensor S, (x,y), where n = {1,2,3...13} and D shows the total dimensions of the
input matrix. For each S, (x,y), the feature maps are calculated over the kernel window k
using the following equation.

Egr = Conv(S;, Ks, f(a)). (5)

In the above equation, S; is the actual input matrix extracted from S, (x,v), Ks donates
as kernel size which was set to (3,3) for each convolutional layer and f(a) represents
the activation function. We use ReLu function for the activation of each signal neuron
in the input Input I(t)(x,y|D). The convolutional process can be interpreted using the
formula below:

Conv < S; x Kq[(x,y|D)], Si(x —1,y — 1), (6)

where x — 1,y — 1 indicating the index of each coordinate positioned by S, (x,y) in the
targeted building. Fy further transfer to the fully connected layer to decide the number of
target classes and can be defined as:

Ys, = Fc(Conv + S; x Ks[(x,y|D)],Si(x — 1,y — 1) + Conv(S;, Ks, f(a))). (7)

Ys, contains the number of classes defined by fully connected function F.. At this
stage we employed improved PSO to tune the number of hyper parameters and to decide
the evolution process among the weights of each layer. The whole optimization process is
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performed before the compilation of the entire model using deep features extracted from
fully connected layer Yg_.

PSO is population based optimization algorithm used for optimization in several
applications. For the optimization of neural networks, let us takes a population with n
particles P; = {1,2,3...n}. Each particle is bound to initialize into the 2 dimensional search
space of size I(x,y). The initialization processes can be described as:

Pz!:PJLin'i_(Pigmx_Pznn)'R’ ®)
where t shows current iteration number P!, is maximum range of search space and P},
minimum range of search space. R is the random numbers over the interval of [0, 1]. Each
particles P; = {1,2,3...n} update their current velocity V§ and current position Xit. Both
can be defined using the following two equations:

ViHl=w . Vil 11+ (Pf—X!) +c2 - 12 4 (Gl oo — X}) )

X = (X{+ Vi), (10)

In the above equations V! is the current velocity of each particle P; = {1,2,3...n}, X!
is the current position of each particle P; = {1,2,3...n}, w is inertia weight factor, which
is equal to 0 or any constant in the conventional PSO and hence leads to the premature con-
vergence, c1, c2 are learning factors set to the any constant in the original PSO where 11,12
are random numbers over the interval of [0, 1]. Each individual in the multi-dimensional
search area learns using their personal best solution P, and the global best solution G{ .,
of each swarm in the entire population. To maintain the balance among the convergence
rate of each particle we proposed dynamic inertia weight factor wg, (. ,y which takes signal
reading of each beacons and decide the controlling factor based on the signal strength
of each reading matrix I(x, y). The beacon with low signal rate will bound each particle
P; ={1,2,3...n} to converge with small jumps where the beacons with high signal rate
will tends to increase the convergence rate which helps in improving the local best solution.
The proposed inertia weight factor wg (. ,) can be represented by the following equation.

WS, () = Ponin + (Priax — Pin) - Inpttty (x,y|D ). (11)

Similarly in the proposed PSO, we replaced c1,c2 with random number generator
following the uniform distribution as:

cplep2 =Pl + (Prax — Phin) - Rand(0,1). (12)

m m
The updated velocity and position equation for the improved PSO will be as follows:
Vg:l = Wg

W) Vitcpl -1l + (Phog—X{)4+cp2 - 12 4 (Gpog—X) (13)

XEH = (G+VE. (14)

The global solution G| ., obtained using improved PSO are further used in the opti-
mization of the last layer of auto-encoder CNN for the optimization such as:

Yp, = Fc(Conv < S; x Kq[(x,y|D)] + SiG]tgest, (15)

where S;G{ ., represents the updated sensor reading based on the optimization through

improved PSO. Prime steps for proposed indoor positioning are given in Algorithm 2.
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Algorithm 2 Pseudo Code for proposed indoor positioning

Require: Record RSSI signals and number of beacons

Ensure: Sensor with rich RSSI value

1:

2:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:
28:

Object Beacon-detected
Id,

: Major,

: Minor,

: MeasurementsRSSI[],

: AverageSignalStrength

: if Scan Timing != 0 then

init BeaconsList[BeaconDetected]

. end if

Convert Beacons signals into 10 * 10 I(x, y) for each sensor S, (x,y)
while Scan period not end do
if beacon determined then
if beacon previously determined then
Update Input; (x,y|D)
Convene each 2-d image as: Conv < S; x Ks[(x,y|D)],Si(x —1,y — 1)
Initialize PSO

Vitcplrl + (P

best —XP) +cp2.r2+

Update velocity using Vtstl —w
(G{)est_xg)
Update Position using X;:l _ (Xf +Vt5*;1)

end if

Sn(xry)

Transfer data to Array[Signals]
Optimize Array[Signals] using Yp, =F.(Conv < S; x Ks[(x,y|D)], ;G|
end if
call Scan_beacon
if Array[Signals]!= 0 then
Return sensor data with rich RSSI value
end if

Return Null
end while

4. Results and Discussion

For the experimental simulation, we have used a data set gathered by thirteen beacons

in an indoor building environment. The data set is available at [50]. Data contains 13 fea-
tures compromising of thirteen beacons emitting signals from different locations about
total 1420 instances corresponding to each target class. Similarly, we employed unlabeled
data of similar length contains —200 RSSI strength to incorporated cluster analysis.



Sensors 2021, 21, 1995

13 of 20

4.1. BLE Signal Analysis

Sensor sequence analysis improves to determine the attributes of BLE signal trans-
mission concerning the range in an enclosed environment from a position transmitter.
Although the distribution of the signals could be influenced by the environment (e.g., due
to contouring, extras, etc.), we targeted a better understanding and having more similarities
from diverse conditions regarding RSSI. During the experimentation, we seemed to have
no command over the indoor building conditions and complex elements included shifting
workers during the experiments and interference/noise, such as medical equipment, from
electronic devices, building structures, or furniture. For RSSI, we record the average value
per second. We used fixed location beacons only. To capture the signal patterns from 13
directions, the location beacons were mounted on the ceiling, walls and different other
locations in indoor building.

4.2. Localization Results

To determine the frequency of BLE detectors and the location to be installed in the
region to be controlled, it is necessary to analyses the real distance errors about the ap-
proximate distance between the neural network receiver and the transmitter evaluated.
The distance error between the real position and the proposed estimated position is re-
ported in Figure 5. Similarly, Figure 6 indicates the accuracy curves obtained during the
training of proposed CNN for indoor localization through improved PSO. In the x-axis, it
shows the number of epochs completed while receiving the RSSI signals from the thirteen
installed beacons and the y-axis depicts the accuracy of localization during the validation
of the proposed algorithm. Moreover, we obtained the distance error between the real
position and the MLP estimated position, which can be visualized in Figure 7. The Loss
curve in Figure 7 appeared a bit sloppy which is improved in the later stages when us-
ing the proposed optimized CNN as shown in Figure 5. Likewise, Figure 8 designates
the accuracy curves acquired during the training of MLP to indoor localization through
conventional PSO.

Proposed Model loss

61 —— train
— test
5 -
n 4 A
(7]
o
1
3 -
2 .
0 20 40 60 80 100

epoch

Figure 5. Loss curve obtained for 100 epochs using proposed algorithm with auto-encoder optimiza-
tion.
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Proposed Model accuracy

o N R
§0.85- /\/W\% R
I
0.70 - | | N J U | | |
0 20 40 ooch 60 80 100

Figure 6. Accuracy curve obtained for 100 epochs using proposed algorithm with auto-encoder
optimization.

MLP Loss curves

— train
— test

2 AW

0 20 40 60 80 100
epoch

Figure 7. Loss curve obtained for 100 epochs using Multi Layer Perceptron (MLP) without optimiza-
tion.
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MLP Accuracy curves

100 _ t:;'tnm v Nv q fDJM?\%R'W/V
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T
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epoch

Figure 8. Accuracy curve obtained for 100 epochs using MLP without optimization.

We selected thirteen possible positions (x, y) of the beacons in the area, to evaluate the
accuracy of the position procedure, reported in Table 2. Given numerous beacons greater
than or equal to thirteen in known locations, the optimization method CNN algorithm
solves non-linear problems. The array with the length approximation should therefore be
associated with at least thirteen features. In Table 2, we compare the proposed optimized
CNN with other states of the art ML and DL algorithms to show the competency of the
proposed algorithm. The comparative algorithms including Decision Tree, KNN, Logistic
Regression, SVM, ANN, ANN with dropout, DNN, DNN with dropout and finally MLP.
Two major evaluation metrics were used to compare the experimental results which involve
Average Accuracy and Error Rate (referred to Table 2). Average Accuracy shows the percent-
age of accurate localization from thirteen target classes where the Error rate can be defined
as 1-Accuracy.

Table 2. Accuracy and error rate of detecting indoor location using thirteen beacons through state of
the art ML and DL algorithms.

Model Average Accuracy Error Rate
Decision Tree 0.8395 0.1605
KNN 0.7578 0.2422
Logistic Regression 0.8632 0.1368
SVM 0.8867 0.1133
ANN 0.8127 0.1873
ANN_Dropout 0.8021 0.1979
DNN 0.8110 0.1890
DNN_Dropout 0.8047 0.1953
MLP 0.9085 0.0915
CNN 0.9135 0.0865

Proposed 0.9792 0.0208
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Figure 9 represents CDF of Euclidean distance error using MLP. The X-axis indicates
the distance in meters from the beacons with no greater than 200 range and no lesser
than —200 range where Y-axis shows the probability of accurate indoor positioning. For
the validation of conducted experiments, we have performed statistical tests on the ob-
tained results. Table 3 represents Kruskal-Wallis Test: Average accuracy versus Models
where Table 4 shows Kruskal-Wallis Test: Error rate versus Models. In case of accuracy
comparison, the best algorithm should have a higher Kruskal-Wallis rank while in case
of loss estimation the best algorithm should have a lower Kruskal-Wallis rank. Likewise,
Figure 10 visualizes marginal correlation analysis between error and accuracy obtained
through thirteen BLE beacons. We can see that marginal correlation of error rate from 0.00
to 0.25 tends to decrease which mean that the more signal strength appears to be strong,
the more error rate will be decreased.

Table 3. Kruskal-Wallis Test: Average accuracy versus Models.

Model Median Rank Z—Score
ANN 0.8127 5.0 -0.17
ANN_Dropout 0.8021 2.0 -1.22
Decision Tree 0.8395 6.0 0.17
DNN 0.8110 4.0 —0.52
DNN_Dropout 0.8047 3.0 —0.87
KNN 0.7578 1.0 —1.57
Logistic Regression 0.8632 7.0 0.52
MLP 0.9085 9.0 1.22
SVM 0.8867 8.0 0.87
CNN 0.9135 9.0 1.27
Proposed 0.9792 10.0 1.57

Table 4. Kruskal-Wallis Test: Error rate versus Models.

Model Median Rank Z—Score
ANN 0.18730 6.0 0.17
ANN_Dropout 0.19790 9.0 1.22
Decision Tree 0.16050 5.0 —-0.17
DNN 0.18900 7.0 0.52
DNN_Dropout 0.19530 8.0 0.87
KNN 0.24220 10.0 1.57
Logistic Regression 0.13680 4.0 —0.52
MLP 0.09150 2.0 —-1.22
SVM 0.11330 3.0 —0.87
CNN 0.01865 2.0 —1.27

Proposed 0.02080 1.0 —-1.57
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CDF of Euclidean distance error using MLP
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Figure 9. CDF of Euclidean distance error using MLP.
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Figure 10. Marginal correlation analysis between error and accuracy obtained through thirteen
Bluetooth low energy (BLE) beacons.

4.3. Analysis

The experimental analysis reveals that an increase in the thirteen beacons considered
(and so in the approximate ranges) leads to high errors in the estimation of the position.
This implies that the beacon signals with large loss affect the reliability of the process.

We have interrupted beacons to be labeled under the RSSI (best case) limit, thereby
preventing the localizer from using its estimation sets. We replicated the measurements
to test these cases by removing the beacons with the lowest feature vector provided by
the Decision Tree classifier. In the instance of a vector of one obstructed function (i.e.,
7.6 percent, since the proposed optimized CNN algorithm considers the best thirteen
estimates). According to the order in which they appeared, we were expected to remove
another of the thirteen best receivers. For the top ten best sensors and the thirteen transmit
positions recorded, we summed this process.

We can observe the best performance of the proposed algorithm from Table 2, with
97.92% average accuracy. After the proposed CNN, MLP performed well and appeared as
the second-best performer with 90.85% accuracy. The difference ratio between proposed
and MLP can be described as the number of total correct predictions using proposed CNN
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minus the number of total correct predictions using MLP divided by the summation of the
total number of wrong predictions using both proposed and MLP.

The worst performance in terms of low average accuracy and the high error rate is
obtained by KNN with (75.78% average accuracy and 24.22% error rate). Similarly, error
rate between 0.1 to 0.2 for each RSSI beacons were recorded for Decision Tree (0.1605),
Logistic Regression (0.1368), SVM (0.1133), ANN (0.1873) and DNN (0.1890) respectively.

From Tables 3 and 4, we can see the highest Kruskal-Wallis rank of proposed optimized
CNN with 10.0 and highest Z-score of 1.57 proves the superiority of the proposed algorithm
statistically. Similarly, proposed CNN obtained the lowest Kruskal-Wallis rank (1.0) in the
case of error rate with Z-score is negative —1.57.

We also observed that in some cases, the removal of inappropriate signals lead to
missing location data for updating the position coordinate, such as when only the signals
from wrong directions were detected but the participant’s object and structural elements
were obscured from the right location. Although this was planned, we did not attempt
to optimize signal sensing or calculating the strategic positioning of location beacons. To
ensure a proper connection between the location beacons and the RSSI signal strength, we
placed the location observatories on the walls and floor; however, we did not equate the
reliability of the direction detectors installed on the other locations.

5. Conclusions

BLE beacons have been used to map individuals’ locations in indoor environments.
Devices need to be programmed to allow for complex patterns of interference when
tracking indoor positions using the RSSI. Our proposed framework based on optimized
CNN provides an robust method for tracking the indoor location of a moving user using
BLE beacons in complex indoor building environments. We developed a 2D image-based
CNN positioning model consisting of the number of signals obtained from both the x
and y-axis indicators. The best global solution obtained by PSO is given directly to the
weights of each layer of CNN for optimization of CNN. Besides, instead of constant inertia
weight, we used dynamic inertia weights in the PSO to maintain that the CNN layer length
corresponds to BLE’s RSSI signals. Experiments are performed in a building environment
in which thirteen beacon systems were mounted to record coordinates at various locations.
We further used ML and DL methods for predicting the position of a subject in an indoor
environment for assessment comparison. The experimental results show that, relative to
other recent approaches, the proposed optimized CNN-based approach demonstrates high
precision for monitoring the locations of a moving consumer in a complex building without
complex calibration.

In future work, we intend to use other meta-heuristic models such as Bat Algorithm
and Differential Evolution Algorithm to improve the current performance with more
complex indoor architecture.
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