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Abstract: Machine learning models are being utilized to provide wearable sensor-based exercise
biofeedback to patients undertaking physical therapy. However, most systems are validated at a
technical level using lab-based cross validation approaches. These results do not necessarily reflect
the performance levels that patients and clinicians can expect in the real-world environment. This
study aimed to conduct a thorough evaluation of an example wearable exercise biofeedback system
from laboratory testing through to clinical validation in the target setting, illustrating the importance
of context when validating such systems. Each of the various components of the system were
evaluated independently, and then in combination as the system is designed to be deployed. The
results show a reduction in overall system accuracy between lab-based cross validation (>94%),
testing on healthy participants (n = 10) in the target setting (>75%), through to test data collected from
the clinical cohort (n = 11) (>59%). This study illustrates that the reliance on lab-based validation
approaches may be misleading key stakeholders in the inertial sensor-based exercise biofeedback
sector, makes recommendations for clinicians, developers and researchers, and discusses factors that
may influence system performance at each stage of evaluation.

Keywords: biofeedback; biomedical technology; exercise therapy; machine learning; human factors;
wearables; inertial measurement unit

1. Introduction

Within physical rehabilitation, remotely collating and aggregating data from patients
has been suggested to have numerous benefits in terms of cost, clinical outcome and pa-
tient satisfaction [1,2]. Exercise biofeedback systems use a sensing platform to capture and
interpret data to offer the user meaningful information about their performance [3]. Many
systems utilise one or more inertial measurement units (IMUs) to acquire biomechanical
data [4–8]. Some systems perform simple data processing tasks such as repetition count-
ing, whilst others use more complex supervised machine learning (ML) models to offer
greater granularity of feedback to the user such as joint angle measurement, repetition
segmentation, or exercise technique biofeedback [9–11].

The application of ML spans a variety of biomechanical contexts, with models devel-
oped to predict the effect of an intervention, perform activity recognition, predict disease
progression or classify abnormal movement [12]. Supervised learning is one of the main
categories of ML and involves training a model which best maps input features to labelled
outputs. This requires the developed algorithms to be provided with annotated training
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data, and the features analysed. The model is then trained using these data and the al-
gorithms are tested with new unlabelled data to identify its accuracy [9]. For example,
supervised ML algorithms can be used with data collected from an IMU to classify exercise
performance and technique, whereby the output of the model can give a binary prediction
as to whether an exercise in a sequence (or set) was performed correctly or not [10,13,14].
This requires a two-step data analysis process. Firstly, when a time-series of sensor data is
recorded the signal needs to be broken down into each individual repetition of the exercise
(segmentation; Figure 1). Segmentation goes beyond merely counting repetitions, but
also isolates each individual repetition for the subsequent classification phase [11]. Once
individual repetitions have been segmented, classification is undertaken where the input
data for each repetition are compared to the labelled training data to assess which label
they match most closely to (Figure 2).

Sensors 2021, 21, x FOR PEER REVIEW 2 of 18 
 

 

outputs. This requires the developed algorithms to be provided with annotated training 
data, and the features analysed. The model is then trained using these data and the algo-
rithms are tested with new unlabelled data to identify its accuracy [9]. For example, su-
pervised ML algorithms can be used with data collected from an IMU to classify exercise 
performance and technique, whereby the output of the model can give a binary prediction 
as to whether an exercise in a sequence (or set) was performed correctly or not [10,13,14]. 
This requires a two-step data analysis process. Firstly, when a time-series of sensor data 
is recorded the signal needs to be broken down into each individual repetition of the ex-
ercise (segmentation; Figure 1). Segmentation goes beyond merely counting repetitions, 
but also isolates each individual repetition for the subsequent classification phase [11]. 
Once individual repetitions have been segmented, classification is undertaken where the 
input data for each repetition are compared to the labelled training data to assess which 
label they match most closely to (Figure 2).  

 
Figure 1. An example of a correctly segmented time-series of triaxial accelerometer data. 

 
Figure 2. An example of classification of a time-series of triaxial accelerometer data with a sub-
optimal repetition highlighted in red. 

Figure 1. An example of a correctly segmented time-series of triaxial accelerometer data.

Sensors 2021, 21, x FOR PEER REVIEW 2 of 18 
 

 

outputs. This requires the developed algorithms to be provided with annotated training 
data, and the features analysed. The model is then trained using these data and the algo-
rithms are tested with new unlabelled data to identify its accuracy [9]. For example, su-
pervised ML algorithms can be used with data collected from an IMU to classify exercise 
performance and technique, whereby the output of the model can give a binary prediction 
as to whether an exercise in a sequence (or set) was performed correctly or not [10,13,14]. 
This requires a two-step data analysis process. Firstly, when a time-series of sensor data 
is recorded the signal needs to be broken down into each individual repetition of the ex-
ercise (segmentation; Figure 1). Segmentation goes beyond merely counting repetitions, 
but also isolates each individual repetition for the subsequent classification phase [11]. 
Once individual repetitions have been segmented, classification is undertaken where the 
input data for each repetition are compared to the labelled training data to assess which 
label they match most closely to (Figure 2).  

 
Figure 1. An example of a correctly segmented time-series of triaxial accelerometer data. 

 
Figure 2. An example of classification of a time-series of triaxial accelerometer data with a sub-
optimal repetition highlighted in red. 
Figure 2. An example of classification of a time-series of triaxial accelerometer data with a sub-optimal
repetition highlighted in red.

It is common practice to test a number of different ML algorithms for early validation,
with the best performing algorithm being used within the final model [15,16]; however,
there are suggestions that the common cross-validation methods for evaluating ML models
analysing IMU data do not provide a realistic reflection of system performance [17].
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The World Health Organisation has published guidelines for the evaluation of digital
health interventions which include monitoring the functionality of a system, with function-
ality defined as “the degree to which a product or system provides functions that meet stated and
implied needs when used under specific conditions” [18]. In the context of exercise biofeedback
systems, we can assume that the ‘specific conditions’ relate to a real-world application
that involves the patient performing exercise and receiving feedback outside a clinical or
laboratory setting. However, there is a lack of research investigating the real-world validity
of IMU based biofeedback systems with only one previous real-world validation of an
exercise classification model identified in the literature [19]. Thus, there is a clear need to
assess these components in real-world environments in order to optimise their effectiveness.
A framework for segmentation model validation has recently been proposed to assess
segmentation accuracy using a staged approach, with testing in laboratory, pre-clinical
and clinical settings [20]. However, this does not consider the overall performance of an
exercise biofeedback system incorporating classification models or continue to demonstrate
an evaluation of a system in each of these settings.

Therefore, the aim of this study was to conduct a thorough validation of an example
IMU-based exercise biofeedback systems with testing in the laboratory through to clinical
participants in the target-use conditions. Additionally, three objectives were identified; (1)
to identify the accuracy of the classification models using the lab-based cross validation
approach, (2) to investigate the performance of the segmentation and classification models
independently with newly collected test data from a healthy and a clinical population,
and (3) to evaluate overall biofeedback system performance with test data that have been
algorithmically segmented and classified.

2. Materials and Methods

The method of investigation was broken into four key phases: (1) the development
of the classification models and lab-based evaluation, (2) evaluation of the classification
models using manually segmented test data, (3) evaluation of the segmentation model,
and (4) overall biofeedback model performance evaluation, combining the segmentation
and classification models (Figure 3).
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2.1. Classification Model Development
2.1.1. Training Data

A previously collected labelled data set was used to train the classification models [21].
This data set contained IMU data from clinical participants undergoing lower limb rehabili-
tation collected in a supervised setting. Participants performed the exercises both correctly,
or with naturally occurring deviations, with the error labels chosen based on a Delphi
survey identifying the commonly occurring deviations in these exercises [21]. A description
of each of the exercises, and the error assessed is described in Table 1. These exercises were
selected due to their widespread use in rehabilitation programmes following orthopaedic
interventions such as knee arthroplasty [22,23]. Table 2 illustrates the composition of the
training data, providing a breakdown of the number of participants, exercise sets, and
balance of correct and sub-optimal performance of each exercise.

Table 1. Description of exercises and the errors assessed within the machine learning models.

Exercise Description of Exercise Error Assessed

Heel Slide (HS) In supine lying, the exercise is performed by flexing the hip
and knee to slide the foot closer to the ipsi-lateral hip. Excessive hip external rotation

Inner Range Quadriceps (IRQ)

In supine lying, a roll is placed under the knee to be
exercised. The exercise is performed by contracting the
quadriceps muscles to bring the knee from a position of

slight flexion into full extension.

Hip flexion (raising knee off the
towel)

Straight Leg Raise (SLR)

In supine lying, the exercise is performed by flexing the hip,
lifting the leg off the supporting surface while keeping the

knee in full extension, raising to a height above the
contralateral toes.

Knee flexion (lag)

Seated Active Knee Extension
(SAKE)

In sitting with the upper thigh supported on a chair, the
exercise is performed by contracting the quadriceps to bring

the knee from a position of flexion into full extension.
Lack of full knee extension

Table 2. Characteristics of the classification training data.

Exercise Participants Exercise Sets Total Repetitions Correctly Performed
Repetitions

Sub-Optimally
Performed Repetitions

HS 36 71 711 350 (49.2%) 361 (50.8%)
IRQ 35 68 679 351 (51.7%) 328 (48.3%)
SLR 37 69 689 370 (53.7%) 319 (46.3%)

SAKE 38 76 754 380 (50.4%) 374 (49.6%)

2.1.2. Classification Model Design

To build the classification models, each IMU data set was manually segmented to
isolate each individual repetition. A set of 352 features were then extracted for each
repetition which were derived from nine different signal vectors, namely the acceleration
and angular velocity in the x, y and z axes, plus the magnitude, pitch and roll [11]. For
each of these vectors, two different groups of features which are commonly adopted for
classification of IMU data [24,25].

Static features in the time domain (n = 14): mean, median, standard deviation, variance,
range, kurtosis, skewness, maximum, minimum, positive mean, negative man, sum of
absolute differences, 1st quartile, and 3rd quartile.

Dynamic features in the frequency domain (n = 25): energy, energy ratio, energy
average, harmonic ratio, energy entropy, and the first 20 coefficients of the signal Fourier
transformation.

Additionally, the Pearson correlation coefficient between pitch and roll vectors is
included in the feature set. These features were then used to train a number of classification
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algorithms [26], the selection of which were determined by previous exploratory work
assessing for the most suitable algorithms in a similar data set [21]:

i. logistic regression
ii. support vector machine (SVM) trained with the sequential minimal optimisation

algorithm (SMO) technique
iii. adaptive boosting
iv. random forest
v. J48 decision tree

Leave-one-subject-out cross-validation (LOSOCV), seen as the most appropriate cross-
validation approach when considering an entirely new user [8,12], was then completed to
assess the performance of each algorithm. The algorithm demonstrating the best accuracy
per exercise was selected for use in the ML classification component of the biofeedback
system and testing with newly collected data.

2.1.3. Classification Cross Validation

In line with similar work and as recommended, performance for the classification
algorithms was measured using accuracy, sensitivity, and specificity metrics [12,13,21].
Accuracy (Equation (1)) is the number of correctly classified repetitions divided by the
total number of repetitions, this is calculated by the sum of the number of true positives
(TP) and true negatives (TN) divided by the sum of the true positives, false positives (FP),
true negatives and false negatives (FN). Sensitivity (Equation (2)) refers to the effectiveness
of the classifier to identify a desired positive label, in this case a correctly performed
repetition, whilst specificity (Equation (3)) describes the ability of the model to detect a
negative label—a sub-optimal performance of the exercise.

Classification Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Sensitivity =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
(3)

Equations (1)–(3) to calculate the accuracy, sensitivity and specificity of the classifica-
tion models, respectively.

2.2. Test Data Collection
2.2.1. Example IMU-Based Biofeedback System

A prototype biofeedback system for lower limb rehabilitation comprising of a single
IMU (Shimmer, Dublin, Ireland) [27] and a custom-built Android tablet application was
used to collect the test data for this study. The Shimmer3 IMU was configured to sample at
102.4 Hz and utilised a low-noise accelerometer (±2 g) and tri-axial gyroscope (500◦/s). All
units were calibrated according to the manufacturer instructions prior to testing using the
Shimmer 9DOF Calibration Application v1.0 (Shimmer, Dublin, Ireland), and paired via
Bluetooth to a corresponding tablet. The IMU was placed at the midpoint of the anterior
aspect of the shin in a custom-made neoprene sleeve as illustrated in Figure 4. Further
details of the system can be found in Argent et al. [6].
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2.2.2. Healthy Participants

In order to collect real-world test data, 10 participants (six female and four male, mean
age = 66 years (range 57–91) were recruited from the general population. Participants were
selected based on the similar age demographic to those of knee replacement patients [28].
They were required to be over 55 years of age and be capable of performing the four
rehabilitation exercises. Participants were excluded if they had a history of lower limb
musculoskeletal injury in the past six months, orthopaedic surgery in the past year, or
previous bilateral knee replacement surgery.

2.2.3. Clinical Participants

A sample of 11 participants (six male, five female, mean age = 62 years (range 49–71)
were recruited for the clinical test data. Participants were recruited from a single private
hospital in Dublin, Ireland, having recently undergone total or uni-compartmental knee
replacement. The study received ethical approval from the Beacon Hospital Research Ethics
Committee (BEA0065), and written informed consent was obtained from all participants
prior to commencing the study.

2.2.4. Experimental Procedure

Data were collected from participants in their own home using the example biofeed-
back system. Participants were provided with an explanation of each exercise and allowed
the opportunity to practice three repetitions with the supervision of a Chartered Physio-
therapist. The IMU was configured, calibrated, and placed on the anterior shin, and video
was recorded from the trunk down for each exercise. Fifteen repetitions of each exercise
were completed with the raw IMU data saved to the tablet device. Healthy participants
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completed a set of all exercises on one occasion, while clinical participants completed
three supervised sessions, each one week apart, all participants completed the exercises
to the best of their ability. Video data were then reviewed and labelled by two Chartered
Physiotherapists and where there was discrepancy, a discussion took place between the
Physiotherapists until agreement was reached, with each repetition labelled as correctly or
sub-optimally performed.

2.3. Classification Evaluation

In order to determine the accuracy of each component, the first task was to assess
the classification in isolation to the segmentation model. Each exercise file from the newly
collected test set was manually segmented using a combination of physical boundaries and
template boundaries [29], with labelled coordinates identifying each individual repetition
within the time-series. These repetitions were then run through the classification model
offline (not through the biofeedback application) to remove any software programming or
computational load issues, and the accuracy, sensitivity and specificity of the classifiers
were then calculated based on this manual segmentation.

2.4. Segmentation Evaluation

A pre-existing segmentation model was deployed within the prototype system [15].
This utilises a template matching algorithm to firstly derive the periods of rest within
the set of exercises. Periods of rest are then clustered to provide a reference point for
each period, and pairs of consecutive reference points are tested against the template
matching algorithm, with the template being the expected signal for a repetition. If the
algorithm returns a positive result, where the signal matches, the pair of reference points
are considered as start and end coordinates for a repetition.

For the prototype system to function effectively, the exercise files need to be segmented
automatically, therefore the same test set was run offline through the segmentation model.
The segmentation model performance was then assessed using temporal tolerance [29],
where a TP is identified if the coordinates occur within a range (±terr) of the manually
annotated label. The identification of a point from the model that is not manually identified
in the ±terr region is a FP error, and a FN error is recorded if a point was not found by the
model in the ±terr region of a manually annotated point. There is variance within the litera-
ture for the range of ±terr [30–32]; however, for the purposes of this study, an asymmetrical
±terr threshold was used. A threshold for points at the start of a repetition was set to 0.5 s
before the manually annotated point, and 0.25 s after the same manually annotated point.
However, if the predicted point was greater than 0.5 s before the annotation point, but after
the end point for the previous repetition, this was also deemed acceptable, as there was no
overlap (Figure 5).
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The opposite was used for the predicted points at the end of a repetition, where the
threshold was 0.25 s before to 0.5 s after the manually annotated point, with a point greater
than 0.5 s after the corresponding manual point but before the manually selected point for
the start of the next repetition also being identified as a TP (Figure 6).
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Once the temporal tolerance process was used to assess the segmentation model point
selection, the precision (Equation (4)), recall (Equation (5)) and accuracy (Equation (6))
were calculated [29].

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

Recall =
TP

TP + FN
(6)

Equations (4)–(6) were used to calculate the precision, recall and accuracy of the
segmentation model, respectively.

2.5. Biofeedback Model Evaluation

Finally, the classification accuracy was based on the segmentation algorithm outputs
rather than manual labelling. This provides the true real-world classification accuracy
when all components of the system are incorporated, as would be the case for the end-user.
When determining the technical functionality of the models, and in line with previous
research [33], classification accuracy was considered as ‘excellent’ when greater than 90%,
‘good’ when 80–89%, ‘moderate’ when 60–79%, and ‘poor’ when less than 59%.

3. Results
3.1. Lab-Based Cross-Validation

The results of the LOSOCV of binary classification for the best performing algorithm
per exercise are presented in Table 3 with these models being used in the example exercise
biofeedback system. The full results for all algorithms can be found in Supplementary
File 1.

Table 3. Lab-based results following leave-one-subject-out cross-validation.

Exercise
Best Performing

Algorithm
Metric (%)

Accuracy Sensitivity Specificity

HS Logistic Regression 98.45 99.43 97.51
IRQ Logistic Regression 92.05 93.73 90.24
SLR SVM 94.78 96.22 93.10

SAKE Random Forest 96.29 96.52 96.05

3.2. Test Data Characteristics

Table 4 outlines the composition of the test sets collected in this study. All participants
in the healthy data set completed every repetition of each exercise with correct technique.
Eleven clinical participants were recruited for this study; however, the data for one of these
participants were compromised due to technical issues for three of the four exercises and
were therefore discarded.

Table 4. Data collected to form the test sets.

Cohort Exercise Participants Exercise Sets Total
Repetitions

Correctly Performed
Repetitions

Sub-Optimally
Performed Repetitions

Healthy

HS 10 10 148 148 (100%) 0 (0%)
IRQ 10 10 150 150 (100%) 0 (0%)
SLR 10 10 150 150 (100%) 0 (0%)

SAKE 10 10 150 150 (100%) 0 (0%)

Clinical

HS 10 23 320 320 (100%) 0 (0%)
IRQ 10 18 270 203 (75.2%) 67 (24.8%)
SLR 10 21 297 148 (49.8%) 149 (50.2%)

SAKE 11 17 241 103 (42.7%) 138 (57.3%)
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3.3. Classification Performance

To evaluate the classification models in isolation to the segmentation algorithm, the test
sets were manually segmented and run through the best performing classification models
as outlined in Table 3. The mean classification accuracy along with the 95% confidence
interval (CI) is illustrated in Table 5. In some cases, participants performed every repetition
of the exercises correctly, with no sub-optimal examples (Table 4), therefore it was not
possible to determine the specificity of the classification models for these exercises.

Table 5. Classification performance following manual segmentation of test data.

Cohort Exercise

Metric (%)

Accuracy Sensitivity Specificity

Mean
(95% CI)

Mean
(95% CI)

Mean
(95% CI)

LB UB LB UB LB UB

Healthy

HS 100.00 (100.00 100.00) 100.00 (100.00 100.00) N/A * N/A * N/A *
IRQ 84.67 (67.83 100.00) 84.67 (67.83 100.00) N/A * N/A * N/A *
SLR 84.67 (68.14 100.00) 84.67 (68.14 100.00) N/A * N/A * N/A *

SAKE 100.00 (100.00 100.00) 100.00 (100.00 100.00) N/A * N/A * N/A *

Clinical

HS 98.99 (96.46 100.00) 98.99 (96.46 100.00) N/A * N/A * N/A *
IRQ 58.49 (41.50 75.45) 52.70 (31.93 73.46) 78.17 (51.33 100.00)
SLR 66.01 (48.93 83.10) 49.14 (20.16 78.13) 81.35 (62.38 100.00)

SAKE 65.17 (43.92 86.41) 61.12 (22.23 100.00) 68.00 (37.36 98.64)

* due to the unbalanced test set with no sub-optimal repetitions it was not possible to calculate specificity.

As illustrated in Table 5, the mean classification accuracy of all four exercises when
the segments were manually annotated was greater than 84% for healthy participants,
with the system correctly classifying all repetitions in the heel slide (HS) and seated ac-
tive knee extension (SAKE) exercises. In the clinical cohort, with the exception of the
HS exercise which demonstrated excellent accuracy (mean = 98.99%), the mean classifica-
tion accuracy ranged between 58.49–66.01% with IRQ demonstrating ‘poor’ performance
(mean accuracy = 58.49%), and both SLR and SAKE offering ‘moderate’ performance when
manually segmented.

3.4. Segmentation Performance

The asymmetrical threshold was used to calculate the segmentation accuracy. Table 6
illustrates the mean segmentation performance along with the 95% CI, with average
accuracy in the healthy cohort greater than 89% across all four exercises when compared to
the manually annotated coordinates. In the clinical cohort, mean segmentation accuracy
across the four exercises ranged from 70.64% to 81.50%. These results show a reduction in
segmentation performance compared to testing with healthy data (Figure 7). There is an
average reduction in segmentation accuracy across the four exercises of 15.24% ranging
from SLR reducing by 8.98%, to HS demonstrating a 21.60% reduction in segmentation
accuracy.
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Table 6. Segmentation model performance with use of the test data.

Cohort Exercise

Metric (%)

Precision Recall Accuracy

Mean
(95% CI)

Mean
(95% CI)

Mean
(95% CI)

LB UB LB UB LB UB

Healthy

HS 96.21 (94.03 98.39) 95.56 (92.97 98.15) 92.24 (87.97 96.51)
IRQ 96.00 (92.67 99.34) 96.00 (92.67 99.34) 92.64 (86.69 98.60)
SLR 96.23 (94.15 98.32) 93.67 (89.86 97.47) 90.48 (85.64 95.33)

SAKE 94.33 (90.27 98.39) 94.33 (90.27 98.39) 89.76 (82.62 96.90)

Clinical

HS 86.84 (77.35 96.34) 74.95 (62.87 87.03) 70.64 (58.16 83.12)
IRQ 79.28 (60.85 97.71) 78.08 (59.96 96.20) 75.03 (57.11 92.94)
SLR 91.21 (81.19 100.00) 84.48 (71.88 97.08) 81.50 (68.77 94.23)

SAKE 91.53 (87.85 95.21) 82.05 (74.19 89.92) 77.01 (68.45 85.57)
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3.5. Biofeedback Model Performance

The coordinates generated automatically by the segmentation algorithm were then
passed through the classification models in order to test the overall performance of the
biofeedback system. Table 7 shows the average classification performance along with 95%
CIs from repetitions that were identified by the segmentation model. Mean accuracy in
the healthy cohort was greater than 75% across all four exercises with both HS and SAKE
continuing to demonstrate 100% accuracy. In the clinical cohort, classification accuracy
ranged between 59.90% and 98.49% across the four exercises with algorithmically generated
segment coordinates. As illustrated in Figure 8, there was a slight improvement in accuracy
in the overall biofeedback model performance of clinical test data compared to the manually
segmented classification performance results; however, both were markedly reduced from
the lab-based LOSOCV.
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Table 7. Biofeedback model performance: classification results of healthy test data with segments generated automatically.

Cohort Exercise

Metric (%)

Accuracy Sensitivity Specificity

Mean
(95% CI)

Mean
(95% CI)

Mean
(95% CI)

LB UB LB UB LB UB

Healthy

HS 100.00 (100.00 100.00) 100.00 (100.00 100.00) N/A * N/A * N/A *
IRQ 86.00 (68.67 100.00) 86.00 (68.67 100.00) N/A * N/A * N/A *
SLR 76.47 (56.09 96.86) 76.47 (56.09 96.86) N/A * N/A * N/A *

SAKE 100.00 (100.00 100.00) 100.00 (100.00 100.00) N/A * N/A * N/A *

Clinical

HS 98.49 (96.46 100.00) 98.49 (96.46 100.00) N/A * N/A * N/A *
IRQ 59.90 (44.56 75.24) 53.46 (34.35 72.56) 79.23 (58.98 99.49)
SLR 67.30 (51.66 82.94) 45.34 (19.14 71.55) 87.26 (77.02 97.50)

SAKE 68.86 (47.29 90.43) 60.48 (18.60 100.00) 74.72 (45.49 100.00)

* due to the unbalanced test set with no sub-optimal repetitions, it was not possible to calculate specificity.
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when testing with clinical data.

Finally, Figure 9 illustrates the difference in combined performance of the ML models
between the healthy and clinical population, with the lab-based LOSOCV as a reference.
The SAKE demonstrated the largest reduction in mean classification accuracy between the
healthy and clinical cohort with a 31.10% reduction, IRQ shows a 26.10% decrease, and
SLR a 9.17% loss of accuracy. The HS performance remained largely similar although no
sub-optimal examples were included in either test set for this exercise.
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4. Discussion

This study has highlighted the importance of thorough validation of ML models
in IMU based exercise biofeedback systems to ensure acceptable accuracy. The example
system evaluated has illustrated the variations in performance across each phase of the
process and demonstrates the shortcomings in accuracy of this system in the final clinical
deployment, with the overall biofeedback model provided with a balanced clinical test
set demonstrating ‘poor’ to ‘moderate’ levels of accuracy. Therefore, this particular model
requires further development and refinement prior to wider scale implementation. This
study highlights the importance of context when evaluating the performance of rehabil-
itation biofeedback systems. Making judgements on potential for performance in the
real-world setting based on laboratory validation of underlying data models potentially
reports an over-optimistic and unrealistic expectation of system accuracy, which in turn
has implications for clinical applications.

Making direct comparisons between these results and the literature is difficult due
to the lack of external validation that is conducted on ML models [8,17]. The majority of
current research outlines LOSOCV and other similar lab-based methods such as k-fold cross-
validation [8,10,34,35], rather than the evaluation of ML models with a newly collected
and independent test-set. Shany et al. [17] recommended that external validation is the
most preferred option in the evaluation of ML models for fall risk prediction, and Figure 9
illustrates the trend in reducing accuracy with external test data in this clinical context. As
such cross-validation results should arguably be seen as the best-case scenario rather than
actual performance. This study has therefore taken the preferred validation option [17],
built on previous work [11,21], and moved past the lab-based validation methods into the
real-world setting.

When breaking down the ML components of the system, it is clear that there is a
notable reduction in performance in the clinical cohort across both classification (Table 5)
and segmentation (Figure 7) when compared to healthy participants. However, interest-
ingly, the slight improvement in overall biofeedback model performance, compared to
classification performance in Figure 8, would suggest that the reduction in segmentation
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accuracy has less of an effect on overall system functionality. This would indicate that the
classification component, and the training data provided to the model, is the leading cause
for the reduction in accuracy when deploying this system with clinical patients.

Therefore, this study has highlighted key criteria in the development of exercise
classification models, particularly regarding the training data on which the models are
built. Firstly, whilst the training data contained data from participants aged between 40
and 80 years of age undergoing lower limb rehabilitation [21], none of the participants
were undertaking rehabilitation following TKR or UKR. This could explain the reasons
for the reduction in accuracy, as the classification models are being tested against training
data which are too heterogenous, and must be closer matched to the population for which
they are designed [26]. During data collection using the example system, some participants
preferred to complete their exercises on their bed, others on the sofa and some lying on
the floor, thus demonstrating the heterogeneity of real-world use. However, the training
data were collected in a controlled clinic environment. The presence of thick duvets, soft
mattresses, and varying sizes of towels at home can all contribute to variance in the IMU
data obtained, and therefore the outputs of the ML models. For pragmatic reasons, most
training data sets for exercise biofeedback systems are collected in controlled environments;
however, the results of this study would suggest that any ML model must be built on
training data from those with the same clinical pathology and collected in the same manner
as the target user to demonstrate acceptable levels of accuracy. Equally, it is arguable
that given the greater balance between correct and sub-optimal repetitions in the clinical
test data, these results are a better reflection of the actual performance of the models
and that a balanced test set from healthy participants may have demonstrated a similar
reduction in performance [36]. Developers of these systems, and those reviewing their
performance, must be cognisant of collecting a balanced test-set, whilst doing their best to
avoid including deliberately produced examples of sub-optimal repetitions. Additionally,
in this particular approach, further work in refining the classification models is required
prior to clinical deployment, including exploring other feature selection approaches and
hyperparameter tuning [12].

This binary approach using supervised ML also has implications to both the technical
and clinical feasibility of such systems. The need to collate large quantities of training data
which contains both raw IMU data and video to label the ground truth is time consuming
and requires access to large numbers of participants. There is subjectivity in labelling the
exercise technique [37], and the scalability of the method is impacted should it be sought
to develop models for additional exercises. Finally, the clinical feasibility of using ML to
classify exercise technique can be further questioned, as this method removes the human
factors of therapy and the context of each individual patient. For example, it is possible that
two patients performing the same exercises with the same clinician will receive markedly
different feedback in clinical practice. This is due to the judgement the therapist makes on
numerous factors including the rehabilitation timeline, patient’s personality, progress and
goals. One patient may be ahead of schedule and moving quickly onto the next exercise,
whereas another may be slow and lacking engagement, requiring a different message to
be given by the therapist. Whilst in theory it is possible to train a machine to learn these
variables, it is not necessarily feasible. As an alternative, during a user evaluation of this
example system patients expressed a wish for a greater granularity in the feedback they
receive such as joint angle or a quality score [6].

There are a number of limitations to consider when reviewing the results of this study.
It is important to highlight that this evaluation took place outside of the custom-built
tablet application. This was done to ensure that there were no computational load or
software programming issues; however, any such stability concerns must be considered
when evaluating a system in its entirety. Secondly, the clinical test set contained multiple
data sets from the same participant as they were tested over three different time points.
Whilst it was outside the scope of the aims and objectives of this study, further analysis
of exercise biofeedback performance within and between participants may be beneficial.
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Finally, as highlighted previously, the unbalanced test set for the HS exercise means that it
is difficult to draw firm conclusions on the functionality of the models for this exercise.

Despite these limitations, this study has highlighted the deterioration in technical
functionality of the ML models within an example biofeedback system when deployed
with clinical patients compared to healthy controls. The results provide a clear illustration
on the importance of not relying on the lab-based validation methods frequently reported
in the literature and emphasises that this real-world validation is a crucial step in the
development and implementation of IMU-based biofeedback ML systems.

5. Conclusions

The reliance on lab-based validation approaches may be misleading key stakehold-
ers in the IMU-based exercise biofeedback sector. Clinicians should question validation
results presented with these cross-validation methods, and researchers should work to
demonstrate real-world validity in a newly collected, unseen and balanced test data set.
Additionally, conducting this evaluation process will allow developers to assess and under-
stand the factors contributing to ML model performance in order to make modifications.
In this example, there was a significant reduction in real-world performance compared to
lab-based validation processes, largely due to the heterogeneity of the training set used and
variance in the environment patients choose to conduct rehabilitation at home. Finally, the
technical and clinical challenges in providing binary exercise biofeedback using supervised
ML mean that other options should be explored to support patients in their rehabilitation.
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