
sensors

Article

Latency-Optimal Computational Offloading Strategy for
Sensitive Tasks in Smart Homes

Yanyan Wang, Lin Wang, Ruijuan Zheng *, Xuhui Zhao and Muhua Liu

����������
�������

Citation: Wang, Y.; Wang, L.; Zheng,

R.; Zhao, X.; Liu, M. Latency-Optimal

Computational Offloading Strategy

for Sensitive Tasks in Smart Homes.

Sensors 2021, 21, 2347. https://

doi.org/10.3390/s21072347

Academic Editors: Giovanni Pau,

Ilsun You and Subhas Mukhopadhyay

Received: 25 January 2021

Accepted: 10 March 2021

Published: 28 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Information Engineering, Henan University of Science and Technology, Luoyang 471023, China;
wangyanyan@stu.haust.edu.cn (Y.W.); linwang@haust.edu.cn (L.W.); zxh@haust.edu.cn (X.Z.);
lxk0379@126.com (M.L.)
* Correspondence: zhengruijuan@haust.edu.cn

Abstract: In smart homes, the computational offloading technology of edge cloud computing (ECC)
can effectively deal with the large amount of computation generated by smart devices. In this paper,
we propose a computational offloading strategy for minimizing delay based on the back-pressure
algorithm (BMDCO) to get the offloading decision and the number of tasks that can be offloaded.
Specifically, we first construct a system with multiple local smart device task queues and multiple
edge processor task queues. Then, we formulate an offloading strategy to minimize the queue length
of tasks in each time slot by minimizing the Lyapunov drift optimization problem, so as to realize
the stability of queues and improve the offloading performance. In addition, we give a theoretical
analysis on the stability of the BMDCO algorithm by deducing the upper bound of all queues in
this system. The simulation results show the stability of the proposed algorithm, and demonstrate
that the BMDCO algorithm is superior to other alternatives. Compared with other algorithms, this
algorithm can effectively reduce the computation delay.

Keywords: back-pressure algorithm; computational offloading; edge cloud computing; lyapunov
drift; smart home

1. Introduction

Nowadays, with the popularity of Internet of Everything (IoE) applications [1], smart
homes [2] have become more and more intelligent and convenient, which has also promoted
the rapid growth of new mobile applications with high latency requirements, such as
intelligent lighting control systems and so on. These mobile applications typically require
real-time responsiveness and a lot of computing resources. It is no doubt that this results in
higher requirements for smart devices in smart homes. However, due to the constraints of
the base hardware and their physical size, the computing resources of smart devices are
generally limited [3] and cannot meet the requirements of these applications. Therefore, the
technology of edge cloud computing (ECC) [4–6] is considered an effective and promising
way to handle the challenges between the smart devices with limited resources and the
mobile application with high demand. Different from the traditional cloud computing [7,8],
ECC is more suitable for dealing with the sensitive tasks with low latency. It can distribute
the management and calculation of the services in a smart home, which can greatly improve
the operating efficiency.

In recent years, the offloading problem in an ECC system [9,10] has attracted much
attention. Computational offloading migrates tasks from the local device to the edge cloud
for computing, typically from devices with limited computing resources to resource-rich
cloud processors [11]. Moreover, the single-user terminal multi-edge cloud processor
offloading frame has gradually been unable to meet the rapid increase of smart devices. As
a result, a lot of research on multi-user devices and multi-edge processors has emerged.
An online algorithm for joint radio and resource management in the multi-user edge cloud
was proposed in [12] to achieve the goal of minimizing the power consumption of local

Sensors 2021, 21, 2347. https://doi.org/10.3390/s21072347 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s21072347
https://doi.org/10.3390/s21072347
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21072347
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/7/2347?type=check_update&version=2

Sensors 2021, 21, 2347 2 of 16

devices and cloud servers. Chen et al. [13] studied a multi-user computing offloading
scheme in the case of multi-channel wireless interference in the edge cloud system.

In the computational offloading of multiple smart devices and multiple edge pro-
cessors, there are many algorithms on how to obtain the offloading decision-making of
task [14,15]. An effective offloading method to minimize the computational delay of tasks
was proposed [16]. A transmission power scheduling method was presented in [17] by
optimizing the energy consumption of tasks. However, they all ignore that there may
be a large number of tasks waiting to be processed on the local smart device or edge
cloud processor, which cannot meet the low latency requirements of a large number of
sensitive tasks in the system. In addition, some studies have considered the waiting delay.
Li et al. [18] considered the waiting delay and proposed a computational offloading game
to save computing resources and response time. Geng et al. [19] studied a computational
offloading strategy, which also took into account the waiting delay. Meng et al. [20]
shown an offloading method based on Markov decision process (MDP). But none of them
specifically optimize the delay from the perspective of optimizing the task backlog.

To solve the above problems, we consider the combination of the stochastic optimiza-
tion method [21] and the back-pressure algorithm [22] in a busy queue system where
sensitive tasks arrive randomly. The system includes multiple local smart device queues
and multiple edge processor queues. The sensitive tasks are those tasks that have deadlines
and low latency requirements. We used the Lyapunov drift optimization theory [21] to
minimize the queue length of tasks in each time slot. This method can realize the stability
computation at each time interval, and optimize the computing delay while ensuring the
stability of the system. In addition, we propose an offloading algorithm for sensitive tasks,
termed back-pressure algorithm-based computational offloading strategy for minimizing
delay (BMDCO), to obtain the offloading decision of tasks and the number of tasks that
can be offloaded. The BMDCO algorithm optimizes the computational delay of sensitive
tasks by taking into account not only the delay of tasks, but also the backlog of task queues.
The major contributions of this paper are summarized as follows:

• We constructed a system including local queues and edge queues and define the
Lyapunov drift optimization problem to minimize the average queue length in each
time slot, which ensures the stability of all queues.

• We present the back-pressure algorithm-based computational offloading strategy for
minimizing delay, which can determine the task offloading decision and offloading
number by computing the task delay and using the back-pressure algorithm, while
also being subject to the time allowance of the task.

• We provide the theoretical analysis of the BMDCO algorithm stability, and the simula-
tion results are given to show the stability of the BMDCO algorithm and demonstrate
that the performance of this algorithm outperforms other comparison alternatives.

The rest of the content is organized as follows. Section 2 describes the related work
and Section 3 introduces the system model, the queue dynamics, and the problem formula-
tion. In Section 4, we introduce and analyze the details and performance of the BMDCO
algorithm. The numerical results of this strategy are given in Section 5, and Section 6
presents the conclusion of this paper.

2. Related Work

Recently, how to design an efficient offloading scheme is still a challenging research
problem. In recent years, a great deal of research work has emerged on the offloading
of edge cloud computing [23–25]. Moreover, Sundar et al. [26] proposed an individual
time allocation heuristic algorithm based on a greedy algorithm to obtain the offloading
decision of each task and minimize the cost. Zhang et al. [27] studied an energy-delay
optimization service model. Similarly, Mao et al. [28] and Kuang et al. [29] studied a
single-user edge cloud computing system with multiple tasks, with the goal of minimizing
the trade-off between latency and energy consumption by combining optimal scheduling,
offloading decisions, and transmission power allocation. Due to the rapid increase of

Sensors 2021, 21, 2347 3 of 16

smart devices and higher application requirements, the offloading frame of multi-user
device multi-edge processor [30–32] has gradually replaced the mode of single-user device
multi-edge processor. Guo et al. [30] studied the offloading strategy of collaborative
computing between cloud and edge cloud under the framework of hybrid fiber-wireless
access network. Chen et al. [31] modeled the offloading problem of computing tasks for a
multi-user multi-task system in mobile edge cloud, and obtained the offloading decision
of tasks by using the Lyapunov theory. A method of resource allocation in ECC was
studied [32], which used the stochastic optimization technology to minimize the cost and
improve the capability of the server at the same time.

However, a large number of current offloading strategies are designed by minimizing
computing delay or energy consumption. The authors of [33] developed a dynamic
offloading and resource scheduling scheme with efficient energy consumption, which
can reduce the energy consumption of tasks, shorten the computing delay of tasks, and
satisfy the requirement of task dependency. To solve the low delay requirement of tasks,
Liu et al. [34] presented a new system design that used the extreme value theory to
reduce the power consumption and balance the allocated resources. An iterative heuristic
algorithm was presented in [35] to reduce the computational delay problem of the tasks
in the system. Zhang et al. [36] researched an energy-aware task offloading method to
jointly optimize resource allocation and communication in the case of delay sensitivity.
Liu et al. [37] studied an offloading method weighing energy consumption and execution
delay in mobile cloud computing with the assistance of cloud computing.

Among the research work mentioned above, some did not consider the task backlog,
and some just converted the task backlog into the computational delay of the task. There
has been no research on offloading methods specifically considered from the perspective of
the task backlog. In this paper, we consider a system containing multiple local smart device
queues and multiple edge cloud processor queues and use the stochastic optimization
method. By minimizing the Lyapunov drift optimization problem, the queue backlog of
tasks in each time slot is minimized, while ensuring the stability of all queues.

So far, there has been some research works [38–40] about the stochastic optimization
technique and the Lyapunov method. In order to minimize the computation cost of tasks,
Meng et al. [20] have shown an offloading method based on the Markov decision process
(MDP). This method used the queues but only considered the cascading relationships
between queues. Chen et al. [41] studied an online offloading framework for peer nodes in
a small cellular network based on Lyapunov technology, so as to achieve the objective of
minimize the energy consumption of the network and maximize the network performance.
A method of allocating cloud resources considering user demands was proposed [42], and
modeled user requirements used the stochastic optimization method, which ensured the
uncertainty of cloud requirements and minimized the total cost. An offloading method
based on the Lyapunov optimization theory was presented in the edge cloud system [43] to
get the offloading decision. Merluzzi et al. [44] studied a dynamic offloading algorithm for
joint optimization of radio and computing resources in a task queue system. This algorithm
was based on stochastic optimization technique to obtain the offloading decisions and
ensure a certain excess probability.

The above-mentioned literature all use the queue theory and verify that the stochastic
optimization method can reach good performance; however, they still need to improve in
the aspect of delay optimization. In this paper, we combine the Lyapunov drift with the
back-pressure algorithm to jointly optimize the computational delay of the task. The back-
pressure algorithm can drive the offloading of tasks on the local queue through calculating
the task backlog difference between the local smart device queue and the edge processor
queue, which can effectively reduce the delay. But it is currently mostly used in network
routing, and there is little research on edge computing [45]. We apply the back-pressure
algorithm to the computational offloading in ECC for the first time. Therefore, we propose a
computational offloading strategy for minimizing delay based on back-pressure algorithm,

Sensors 2021, 21, 2347 4 of 16

which can obtain the offloading decision and the number of offloading tasks, and reduce
the computing delay of tasks.

3. System Model and Problem Formulation

In this section, we focus on the detailed analysis of the proposed queue system model
in the paper. It mainly includes two parts: network model and queue dynamics. Besides,
we also construct the definition of the optimization problem of this queue system.

3.1. System Model

In this paper, we consider a queue system with random busy task arrivals containing
multiple smart devices and multiple edge processors. The system model considered in this
paper is shown in Figure 1. To better describe the model, we assume that the local smart
devices of the system are all connected to alternating current (AC). The local smart devices
refer to the user devices with different execution speeds that have many sensitive tasks,
require high latency, and have limited computing power. For convenience, we also refer to
local smart devices as local devices or smart devices. The base station m associated with
the edge processor in edge cloud computing system is denoted as the setM. Three types
of base stations are considered here, namely LTE eNB, eLTE eNB, and NR gNB, which have
different processing rates. And we assume that the remote cloud has infinite computing
power, which can execute multiple tasks at once. The computing delay of the task in the
remote cloud is negligible.

 Policy

eLTE eNB

NR gNB

LTE eNB

Mobile Edge Cloud

Mobile Edge Cloud

Mobile Edge Cloud

Remote Cloud

NR

NR gNB

2

l
Q (t)

1

l
Q (t)

3
mH (t)

4
mH (t)

2
mH (t)

1
mH (t)

Figure 1. The system model diagram.

3.1.1. Local Smart Device and Tasks

Let L be the set of L local smart devices. The computing tasks are identified as N
task nodes, denoted as N . In this paper, the tasks on the smart device can be executed
locally named local computing or offloading from the smart device to the edge processor
for execution called edge computing. We assume that the transmit power of the local smart
device is fixed, and the computing tasks on the device cannot be divided into subtasks for
execution. We consider that the task i on the smart device must be completed before its
deadline Fi. In this system, we define the time t as the slot with duration τ, and let T be
the set of T indexes of the time slots.

In this paper, we define the task offloading decision for each task i to indicate where
the task is executed. Denote the task offloading decision variable as yi

lm(t) ∈ {0, 1}, where
t ∈ T , i ∈ N , l ∈ L, m ∈ M. Specifically, if yi

lm(t) = 0, the task i will be computed on the
local smart device l in slot t, and otherwise, the task i will be offloaded to the gNB m for
execution. Note that one task cannot be executed simultaneously on both local device and
edge processor.

Sensors 2021, 21, 2347 5 of 16

3.1.2. Local Computing Model

For the first case, the task on the local device is computed locally. We represent f i
l as

the CPU cycle frequency of the device when task i is executed on the local smart device l.
According to dynamic voltage and frequency scaling techniques (DVFS), we can change
the computing rate of the local device by adjusting the CPU cycle frequency [46]. Hence,
we define the local computing rate of the task i in the time slot t as

vi
l(t) = α(t) f i

l , (1)

where α(t) is the scaling factor between the packet size of a task and the floating point
computation. Assuming that the tasks in this queue system all have the same size, we define
the number of CPU cycles require to compute each task as fi. Then the local computing
delay of the task i is

ti
l =

fi

vi
l(t)

. (2)

Notice that since we assume that the device in this system are connected to AC, energy
consumption is temporarily not considered in this paper.

3.1.3. Edge Computing Model

In the second case, the task is offloaded to the edge cloud for computation. It includes
two processes: the transmission process on the offloading link from the local smart device
to the edge processor and the computing process on the edge processor in edge cloud.

First, we define hi
lm(t) as the channel gain in time slot t that the task i is offloaded

from the local smart device l to the edge processor m, and ρi(t) is the transmission power
in slot t of the task i. The transmission rate of the task i offloaded from the local device l to
the edge processor m in time slot t can be represented as

vi
lm(t) = ω log2

(
1 +

ρi(t)hi
lm(t)

σ

)
, (3)

where ω is the channel bandwidth and σ is the additive white Gaussian noise (AWGN)
power of the channel used by task i. We further denote the maximum rate of channel
transmission in the system as vmax

lm (t). Moreover, since the task size is the same, we define
the amount of data for each task as Di. Then, the transmission delay for the task i is

ti
lm =

Di

vi
lm(t)

. (4)

In addition, we denote f i
m as the computation capability of the edge processor m. The

computing rate of task i on the edge processor m in slot t is

vi
m(t) = α(t) f i

m. (5)

Then, the computational delay of offloaded task i on the edge processor m is

ti
m =

fi

vi
m(t)

. (6)

3.2. Queue Dynamics

In this paper, we define that the tasks on both the local smart device and the edge
processor are in the queue. Figure 1 shows that the queue system model for computational
offloading. Assuming that the smart device and the edge processor can only execute one
task at a time, and other tasks are waiting in their respective queues in this model. Then
use the offloading algorithm to determine whether the computing task is executed locally

Sensors 2021, 21, 2347 6 of 16

or offloaded to the edge cloud to improve the performance of user. A detailed description
of the queue construction in the model is given below.

Let Qi
l(t) ∈ [0, ∞) and Hi

m(t) ∈ [0, ∞) be the queues of task i on the local device l
and edge processor m in time slot t, respectively, which are used to store the tasks that the
device or processor needs to compute. Define Ai

l(t) as the randomly arriving tasks to be
executed on the local device l in slot t. We assume that it is independent and identically
distributed (i.i.d) in every time slot, with mean E[Ai

l(t)] = λi
l , where λi

l is the average
arrival rate of task i on the local device l. As a consequence, the dynamics of the task queue
on the local device in adjacent time slots is given by

Qi
l(t + 1) =

[
Qi

l(t)− vi
l(t)−

M

∑
m=1

yi
lm(t)v

i
lm(t)

]+
+ Ai

l(t), (7)

where [·]+ = max{·, 0} and the first term of Equation (7) represents the remaining unexe-
cuted tasks in the local device queue currently. This term is defined as the length of the
local queue minus the sum of tasks that can be computed locally and tasks that will be
offloaded to the edge cloud.

In addition, we express the dynamics of the queue on the each edge processor as

Hi
m(t + 1) =

[
Hi

m(t)− vi
m(t)

]+
+

L

∑
l=1

yi
lm(t)v

i
lm(t) + Ai

m(t), (8)

where Ai
m(t) is denoted as the randomly arriving tasks on the edge processor in slot t,

with mean E[Ai
m(t)] = λi

m. The first term of Equation (8) is the uncomputed tasks on edge
processor queue in slot t. The second term represents the task of offloading from the local
smart device to the edge processor. The sum of the last two items shows all newly arrived
tasks on the edge cloud in the slot t.

There is a coupling relationship between the local device queue dynamics in Equation (7)
and the edge processor queue in Equation (8), that is, the departure of the task on the
local device queue is the arrival of one of the edge processor queues. In order to make
the system more realistic, we define the newly arrived tasks Ai

m(t) on the edge cloud to
represent the tasks to be processed by the edge processor itself. Due to the high frequency
of the processor, we think it will not affect this relationship. The relationship can also be
expressed equally in the following equation, which is defined as:

Qi
tot(t) = Qi

l(t) + Hi
m(t), (9)

in which Qi
tot(t) signifies the total number of the tasks in slot t. What this means is that the

total number of tasks in time slot t is equal to the sum of the tasks on the local device and
the edge processor.

3.3. Problem Formulation

In this section, we define the optimization problem of the queue model. In the first
place, we construct a quadratic Lyapunov function about queues Qi

l(t) and Hi
m(t) according

to the Lyapunov optimization theory, which combines the queues on all local smart devices
and the queues on each edge processors in the system. Denote the Lyapunov function
as follows:

V(t) =
1
2

L

∑
l=1

N

∑
i=1

[Qi
l(t)]

2 +
1
2

M

∑
m=1

N

∑
i=1

[Hi
m(t)]

2, (10)

where Equation (10) is a strictly increasing function. Then we define the Lyapunov drift
function as

∆(t) = E[V(t + 1)−V(t)|Z(t)], (11)

where Z(t) = (Qi
l(t); Hi

m(t)) is a vector of the queues on the local devices and the edge
processors in time slot t. By minimizing Equation (11), we can minimize the queue backlog

Sensors 2021, 21, 2347 7 of 16

of tasks in each slot, while ensuring the stability of all queues. Therefore, we give the
definition of Lyapunov drift optimization problem, which can be expressed as

max
yi

lm(t)

L

∑
l=1

N

∑
i=1

Qi
l(t)
(

vi
l(t) +

M

∑
m=1

yi
lm(t)v

i
lm(t)− Ai

l(t)
)

+
M

∑
m=1

N

∑
i=1

Hi
m(t)

(
vi

m(t)−
L

∑
l=1

yi
lm(t)v

i
lm(t)− Ai

m(t)
)

,

(12)

subject to
(a) yi

lm(t) ∈ {0, 1};
(b) Qi

tot(t) ≤ Qmax(t);

(c) vi
lm(t) ≤ vmax

lm (t);

(d) ti
l , ti

lm + ti
m ≤ Fi;

in which Qmax(t) is the maximum number of tasks that a queue can accept. The meanings
of these constraints are as follows: Constraint (a) ensures that the offloading decision
variable for the task is either 0 or 1. (b) guarantees that the total number of tasks in a queue
over slot t does not exceed the maximum number accepted by each queue in the queue
system. (c) indicates that the transmission rate of the task cannot surpass the maximum
channel transmission rate of this system. In the end, constraint (d) represents that whether
the task is executed locally or processed in the edge cloud, its completion time must be
within its deadline.

Equation (12) is derived by minimizing the Lyapunov drift ∆(t). We can minimize the
average queue length of tasks in each time slot t by solving the optimization problem, while
achieving queue stability. The derivation process of the drift optimization problem (12)
is shown in Appendix A. In order to obtain the offloading decision and the number of
offloaded for the sensitive tasks, we propose a computational offloading strategy based
on back-pressure algorithm for minimize the delay under the condition of ensuring the
stability of all queues and minimizing the average queue backlog.

4. Back-Pressure Algorithm-Based Offloading Strategy of Minimizing Delay

The proposed strategy is based on minimizing the computational delay of tasks. It is
mainly aimed at sensitive tasks with deadlines in the smart home. In order to better describe
this algorithm, we first describe its main steps in detail in the first section. Next, we further
illustrate the performance of this proposed algorithm and give the theoretical analysis.

4.1. Algorithm Development

In this queue system, the offloading decision of the task i must meet its deadline Fi.
To prevent the system from offloading all tasks to the edge cloud for execution to meet
the task completion deadline, the strategy takes into account not only the computational
delay for the execution of the task, but also the queue backlog. To this end, we propose the
BMDCO algorithm. The details of this algorithm are shown in Algorithm 1, and the major
steps of the algorithm are shown as follows:

4.1.1. Possible Offloading Task Set

For the tasks that have deadlines in the queue system, our objective was acquire the
appropriate decision to minimize the computational delay of it. In this step, we separately
computed the delay when the task is executed locally or offloaded to the edge cloud
processing; Then, we compared the results. If the execution delay of the task on the edge
cloud is less than that on the local smart device, we put it into the set S, where S is the set
of tasks that may be offloaded.

Sensors 2021, 21, 2347 8 of 16

Algorithm 1 BMDCO Algorithm

1: Input: N, L, M, τ, t, T, Di, fi, Fi, Qi
l(0), Hi

m(0).
2: Output: Task offloading decision {yi

lm(t)} and task offloading number
{yi

lm(t)v
i
lm(t)τ}.

3: Initialize target queue system;
4: while t = 0 to T do
5: for i = 1 to N do
6: Compute ti

l from (2);
7: Compute ti

lm + ti
m from (4), (6);

8: if ti
lm + ti

m < ti
l then

9: i ∈ S;
10: else
11: yi

lm(t) = 0 {Execute i on the local device};
12: end if
13: for i ∈ S do
14: Compute Wi

d(t) from (13);
15: Find i∗ from (14);
16: for i∗ ∈ S∗ do
17: yi∗

lm(t) = 1 {Execute i∗ on the edge cloud};
18: Obtain the task offloading number;
19: end for
20: end for
21: if (ti

l + waiti
l(t)) > Fi‖(ti

lm + ti
m + waiti

m(t)) > Fi then
22: Execute the fallback option;
23: return
24: end if
25: end for
26: Update queues Qi

l(t) and Hi
m(t) according to (7) and (8) in each time slot,

respectively.
27: end while

4.1.2. Offloading Task Set

After step 1, the goal of this step was to determine the computational offloading
decision for the task with deadlines. In this paper, we use the back-pressure algorithm
to get the decision. Specifically, for the queue of tasks in set S, we define Wi

d(t) as the
length difference of queues between the local queue and the edge queue in the time slot t,
expressed as

Wi
d(t) = Qi

l(t)− Hi
m(t). (13)

Instead of making the offloading decisions directly based on local queue information
or the random arrival rate of tasks, the back-pressure algorithm [22] is used as an effective
method to reduce the delay. Then we define

i∗ = arg max
i∈S

Wi
d(t), (14)

where i∗ ∈ S∗ is the task to offload to the edge cloud for computing and S∗ is the set of
offloaded task. In step 2, the final offloading decision of the task and the edge processor m
to which it will be offloaded can be determined. We can get the number of tasks that can be
offloaded based on the offloading decision.

Sensors 2021, 21, 2347 9 of 16

After computing the delay of the task, this step also considers the backlog of tasks
of queues in the system to make a more appropriate decision for the task, while also
minimizing the computational delay.

4.1.3. Feasibility Check

In the end, for all the tasks to be executed in this system, we define their completion
time as the sum of the execution delay and the waiting delay on the local device or edge
processor. For the task i, we denote its waiting delay on the local device l and edge
processor m in slot t as waiti

l(t) and waiti
m(t). It is computed by dividing the queue length

of the task i by its corresponding execution rate. Then, we check whether the completion
time of task meets its deadline Fi. If so, we execute the corresponding task offloading
decision to compute locally or offload to the edge cloud, otherwise the policy cannot make
a feasible offloading decision, at which point we execute the fallback option. The fallback
option refers to offloading the task directly to the remote cloud for execution. Although
the remote cloud is expensive to execute, it has high-speed access and infinite computing
power to ensure that the task deadline is met, so this option is feasible.

4.2. Performance of the BMDCO Algorithm

Theorem 1. Queues stability.

We assume the performance of this algorithm is proportional to the optimal solution
by 1

1+θ , the corresponding capacity region will be reduced by 1
1+θ λmI, where λm is the

maximum arrival rate for all i ∈ N, l ∈ L. Then, the average queue lengths satisfy

lim
T→∞

1
T

T

∑
t=1

M

∑
m=1

N

∑
i=1

Hi
m(t)

≤ lim
T→∞

1
T

T

∑
t=1

L

∑
l=1

N

∑
i=1

Qi
l(t)

≤ (1 + θ)B1

ε− 1
1+θ λm

,

(15)

where ε is a small positive constant. Theorem 1 represents the stability of queues in the
system, and the proof of it is shown in Appendix B.

The instability of queues will increase the latency of tasks in computational offloading,
and may result in the failure of the computing task with low delay requirements. Therefore,
the queues stability is analyzed by deducing that all local queues and edge queues in the
queue system are less than a certain value, i.e., they are all have upper bounds, which proves
the stability of the BMDCO algorithm. In addition, because of the coupling relationship
between the local queue and the edge queue, the departure of a task on a local device
queue equals the arrival of the task on an edge queue. So, in Theorem 1, the queue length
of the edge queue is not greater than that of the local device queue.

5. Numerical Results

In this section, We evaluate the performance of the BMDCO algorithm through nu-
merical simulation. We conducted the simulation experiment on a desktop with MATLAB
R2016b, 8 GB RAM, Intel i5 3.20 GHz CPU, and Windows 10 operating system. In our sim-
ulation, the smart devices are randomly distributed and each device has its available edge
processor, which is evenly distributed, and the remote public cloud is 10 km away from
it. We assume that the random arrival of tasks follows the Poisson distribution, and the
average arrival rate is the same for all devices and processors, denoted as λ. We consider
the arrival of 100 computing tasks on each device and set the task size is 500 bits, and the
number of CPU cycles required to compute a task is 50 Mcycles. We set the task completion
deadline Fi is 5 s. The CPU frequency of local devices are 0.5, 1.0, 1.2, 1.5, 1.8, 2.0, 2.5, and

Sensors 2021, 21, 2347 10 of 16

3.0 GHz, and assume that edge processors all have the same computation capacity for easy
comparison. To make the system realistic, we set the scaling factor α(t) = 0.95. The noise
power is σ = −174 dBM/Hz [20] and the bandwidth is 5 MHz. The channel gain is 0.1 and
the transmission power is 4 mW. The maximum transmission rate of the channel is defined
as vmax

lm (t) = 1010 bit/s. We define that the initial value of tasks on the local queue and
the edge queue is the same, which is represented by Q, and set Qmax(t) to be a sufficiently
large value. The remaining variables are given in the following detailed analysis.

5.1. Performance Analysis

The stability of the BMDCO algorithm is proved by deducing the upper bound of all
queues in this queue system, as shown in Figure 2, which includes the stability of local
queues and edge queues. In Figure 2, we consider 100 tasks and the average task arrival
rate obeys the Poisson distribution of parameter λ = 6. We set L = 20, M = 3, τ = 60 ms,
and the computation capacity of the edge processors is 35 GHz. The frequency of local
device is selected from the given frequency value. The initial value of task queues Q = 1000
and the number of iterations is T = 500.

0 100 200 300 400 500
0

200

400

600

800

1000

A
v
er
ag
e
L
o
ca
l
Q
u
eu
e
L
en
g
th

t

BMDCO

(a) stability of local queue length

0 100 200 300 400 500
0

500

1000

1500

2000

A
v
er
ag
e
E
d
g
e
Q
u
eu
e
L
en
g
th

t

BMDCO

(b) stability of edge queue length

Figure 2. Stability of queue length.

In Figure 2a, the result shows the stability of local task queue. When t is from 0 to
430, the average queue backlog of local devices shows a rapid and smooth decline, and
there is a little flattening at t = 150. The reason for this phenomenon is that, when the
task on the local device arrives, the local device determines the execution location of these
tasks according to the offloading decision. At this time, the local device and the edge
processor have sufficient computing resources, which leads to the rapid reduction of the
task backlog in the local queue; however, when the local device needs to offload a large
number of tasks to the edge cloud, there is a small flattening due to the capacity limit of the
transmission channel or the large number of tasks already existing on the edge queue. The
queue backlog starts to approach around 28 after t = 430 and fluctuates within a certain
range, which confirms the stability of local queue.

Figure 2b demonstrates the stability of the edge task queue in this queue system. The
graph presents a trend of first increasing and then decreasing. When t is from 0 to 150,
a large number of tasks on the local device are offloaded to the edge cloud, and it also
has many tasks to be calculated, so the backlog of tasks in the edge queue is increasing.
After t = 150, the task backlog of edge queue begins to show a downward trend. This is
because the edge processor has enough computing resources to reach a balance with the
local queue after computing a large number of tasks offloaded from the local, which causes
a reduction in the backlog of tasks in this queue. Finally, the queue length tends to be flat
within certain limits when t = 430, which verifies the edge queue stability.

Sensors 2021, 21, 2347 11 of 16

5.2. Performance Comparison

We compare the performance of the BMDCO algorithm with the following five alternatives:

• Only Local Execution (LE): Tasks are only executed on the local device, and only local
state information is considered.

• Only Edge Cloud Execution (ECE): The algorithm offloads all tasks to the edge
processor for computing and determines the offloading decision by considering the
information of transmission channel and edge cloud.

• Random Computational Offloading (RCO): This algorithm uses the queue method,
and the task offloading matrix is randomly generated to determine where the task
is performed.

• Back-pressure Algorithm-based Computational Offloading (BPCO) [45]: This method
considers a queuing system, and determines the task offloading decision by using
the back-pressure algorithm to calculate the task backlog difference between the local
queue and the edge queue.

• Closed-form Delay-optimal Computational Offloading (CDCO) [20]: This strategy
takes into account the queue model and determines the offloading decision of tasks
by minimizing the average energy cost.

In this section, we mainly compare the average local queue backlog between the
proposed BMDCO algorithm and the other five methods under the following situations:
(1) Average Arrival Rate, (2) Time Slot, (3) Initial Value of Queue, (4) Number of Local
Device, (5) Number of Edge Cloud, and (6) Frequency of Edge Cloud. The performance
comparison is shown in Figure 3. The results show that the performance of BMDCO is
better than the other alternatives, because we not only consider the computational delay
but also consider the task backlog difference between local queue and edge queue. The
detailed performance description for each case is described as follows.

2 4 6 8 10
0

500

1000

1500

2000

2500

A
v
er
ag
e
L
o
ca
l
Q
u
eu
e
L
en
g
th

Average Arrival Rate

LE

ECE

RCO

BPCO

CDCO

BMDCO

(a) τ = 60, Q = 1000

0.02 0.04 0.06 0.08 0.10
0

500

1000

1500

2000

A
v
er
ag
e
L
o
ca
l
Q
u
eu
e
L
en
g
th

Time Slot

LE

ECE

RCO

BPCO

CDCO

BMDCO

(b) λ = 6, Q = 1000

600 800 1000 1200 1400
0

200

400

600

800

1000

1200

1400

1600

1800

2000

A
v
er
ag
e
L
o
ca
l
Q
u
eu
e
L
en
g
th

Initial Value of Queue

LE

ECE

RCO

BPCO

CDCO

BMDCO

(c) λ = 6, τ = 60

10 15 20 25 30
200

400

600

800

1000

1200

1400

1600

A
v
er
ag
e
L
o
ca
l
Q
u
eu
e
L
en
g
th

Number of Local Device

LE

ECE

RCO

BPCO

CDCO

BMDCO

(d) M = 3, fm = 35

1 2 3 4 5
200

400

600

800

1000

1200

1400

1600

A
v
er
ag
e
L
o
ca
l
Q
u
eu
e
L
en
g
th

Number of Edge Cloud

LE

ECE

RCO

BPCO

CDCO

BMDCO

(e) L = 20, fm = 35

25 30 35 40 45
200

400

600

800

1000

1200

1400

1600

A
v
er
ag
e
L
o
ca
l
Q
u
eu
e
L
en
g
th

Frequency of Edge Cloud

LE

ECE

RCO

BPCO

CDCO

BMDCO

(f) L = 20, M = 3

Figure 3. Performance comparison graph.

Sensors 2021, 21, 2347 12 of 16

In Figure 3a–c, we consider that there are 100 tasks per local device and the edge
processor has a CPU frequency of 35 GHz; we set L = 20 and M = 3. To facilitate numerical
comparison, we take the number of iterations T = 200. These three diagrams show the
change of the local queue backlog as the task arrival rate, the length of the time slot, and
the initial value of the queue change. In Figure 3a, we set τ = 60 ms and Q = 1000. It is
observed that, as the task arrival rate increases, the queue length of the BMDCO algorithm
also increases due to constraints such as transmission channels, but when λ is larger, it is
obviously better than other methods. Figure 3b describes the change of the average local
queue backlog as the time slot changes when λ = 6 and Q = 1000. With the increase of
time slot τ, this method calculates the most tasks, so the local queue backlog is the smallest.
Figure 3c presents the change when the initial value of the queue is changed. When other
conditions are the same, increase the initial value of all queues in the system, and we can
find that the growth of the BMDCO algorithm is the slowest.

Figure 3d–f illustrate the changes of average local task backlog in the case of different
number of local devices, different number of edge clouds, and different processing capac-
ities of edge processors. When the definitions of other variables are the same, Figure 3d
investigates the relationship between the number of local devices and the backlog of local
queues. This figure shows that the ECE method has the same average local queue length
because tasks are only processed on the edge cloud. With the increase of local equipment,
the average queue backlog of the proposed BMDCO algorithm is smaller than the other
methods. Figure 3e depicts the performance of local queue backlog under different edge
cloud numbers. It shows that the CDCO algorithm is almost unaffected, because the goal
of it is to minimize system energy consumption. It only calculates the energy consumption
of the local and transmission process, and the energy consumption of the edge cloud
processor is not considered. The LE algorithm is also unaffected because it only computes
locally. From this graph, we observe that BMDCO algorithm is superior to other methods.
In Figure 3f, we demonstrate the changes in the task backlog of local queue under different
edge cloud processing capabilities. It can be seen that the performance of LE, RCO, and
CDCO is not directly related to the change of edge cloud computing capabilities. Due
to a certain transmission capacity, the performance of the ECE method is less affected.
Compared to the BPCO algorithm, the proposed algorithm can reach better performance.

5.3. Summary

We study the stability of the algorithm and evaluate its performance. In the perfor-
mance analysis, it can be verified that the queues in the proposed BMDCO method are
all upper bound by adjusting the number of iterations. The specific analysis is performed
through the local queue and the edge queue, respectively. In the second subsection, we
respectively compare the performance of this algorithm with other five alternatives in
terms of time slot, average arrival rate of tasks, size of initial queue value, number of local
devices, number of edge cloud processors, and the frequency of edge cloud processing. It
can be seen from the simulation results that the average local queue backlog of the BMDCO
algorithm is smaller than other methods in these aspects, which verifies that this algorithm
can effectively reduce the computational delay of tasks and improve the performance of
local intelligent devices.

6. Conclusions

The over-concentration of services in smart homes will lead to the decrease of its
operating efficiency, and the distributed processing of its computing can effectively meet the
needs of users. Therefore, we use computational offloading techniques in edge computing
to reduce the computational delay and improve the response rate. In this paper, we studied
the problem of offloading decision-making in a busy queue system in which tasks arrive
randomly. Then, we used the Lyapunov optimization method to minimize the average
queue length of all queues in the system and realize the stability of the queues. Furthermore,
we presented the BMDCO algorithm, which can obtain the task decision and offloading

Sensors 2021, 21, 2347 13 of 16

number while minimizing the computational delay of the sensitive task with deadlines.
At the same time, we proved the stability of the BMDCO algorithm through theoretical
analysis. The simulation results verified the boundedness of the queue and showed that
the proposed strategy has better performance than other conventional methods and can
effectively reduce user delay. In next work, we will also consider the energy consumption
of the task as one of the major constraints in the problem formulation.

Author Contributions: Y.W.: conceptualization and theoretical analysis; L.W.: resources and formal
analysis; R.Z.: methodology and supervision; X.Z.: validation and review; M.L.: investigation and
software. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
(NSFC) under Grants No. 62002102 and No. 62072121, and in part by the Scientific and Techno-
logical Innovation Team of Colleges and Universities in Henan Province under Grants No. 20IRT-
STHN018, and in part by the Key Technologies R and D Program of Henan Province under Grants
No. 202102210169.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The study did not report any data.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Lyapunov Drift Optimization Problem

According to Equation (7) and Lemma 7 in [22], we get an inequality about the local
device queue Qi

l(t) as follows:

1
2

[(
Qi

l(t + 1)
)2 −

(
Qi

l(t)
)2
]
≤ B1 −Qi

l(t)
(

vi
l(t) +

M

∑
m=1

yi
lm(t)v

i
lm(t)− Ai

l(t)
)

, (A1)

where B1 = 1
2

[(
vi

l(t)+∑M
m=1 yi

lm(t)v
i
lm(t)

)2
+
(

Ai
l(t)
)2
]
. In the same way, from Equation (8),

we can obtain

1
2

[(
Hi

m(t + 1)
)2 −

(
Hi

m(t)
)2
]
≤ B2 − Hi

m(t)
(

vi
m(t)−

L

∑
l=1

yi
lm(t)v

i
lm(t)− Ai

m(t)
)

, (A2)

where B2 = 1
2

[(
vi

m(t)
)2

+
(

∑L
l=1 yi

lm(t)v
i
lm(t) + Ai

m(t)
)2
]
.

According to the above two conclusion, we sum Equations (A1) and (A2) and take the
expectation over i ∈ {1, . . . , N}, l ∈ {1, . . . , L} and m ∈ {1, . . . , M}, which can obtain the
Lyapunov drift as follows:

∆(t) ≤ B−E
[L

∑
l=1

N

∑
i=1

Qi
l(t)
(

vi
l(t) +

M

∑
m=1

yi
lm(t)v

i
lm(t)− Ai

l(t)
)]

−E
[M

∑
m=1

N

∑
i=1

Hi
m(t)

(
vi

m(t)−
L

∑
l=1

yi
lm(t)v

i
lm(t)− Ai

m(t)
)]

,

(A3)

in which B is a finite constant and B = ∑L
l=1 ∑N

i=1 E[B1] + ∑M
m=1 ∑N

i=1 E[B2]. Minimizing
the Lyapunov drift function ∆(t) is equivalent to maximizing Equation (12).

Sensors 2021, 21, 2347 14 of 16

Appendix B. Proof of Theorem 1

Let yi∗
lm(t), vi∗

l (t), vi∗
lm(t) represent the optimal solution of Equation (12). According to

Equation (A1), we obtain

B1 + Qi
l(t)Ai

l(t) ≤ Qi
l(t)
(

vi∗
l (t) +

M

∑
m=1

yi∗
lm(t)v

i∗
lm(t)

)
. (A4)

Noted that if every average arrival rates satisfy Equation (A4), all average arrival rates
satisfy the queue stability region R. For any task arrival rate in R, the average execution
rate should not be less than λi

l plus ε. So we can obtain the Lyapunov drift as:

E
[

L

∑
l=1

N

∑
i=1

(Qi
l(t + 1))2

]
−E

[
L

∑
l=1

N

∑
i=1

(Qi
l(t))

2

]

≤ 2B1 +
L

∑
l=1

N

∑
i=1

2E[Qi
l(t)]λ

i
l −

L

∑
l=1

N

∑
i=1

2E[Qi
l(t)](λ

i
l + ε)

≤ 2B1 − 2ε
L

∑
l=1

N

∑
i=1

E[Qi
l(t)].

(A5)

Then, summing over i ∈ {1, . . . , N} and taking the limit of T, we have

lim
T→∞

1
T

T

∑
t=1

L

∑
l=1

N

∑
i=1

E[Qi
l(t)] ≤

B1

ε
. (A6)

If the performance of the algorithm proposed in the paper is proportional to the
optimal solution by 1

1+θ , then

L

∑
l=1

N

∑
i=1

Qi
l(t)
(

vi∗
l (t) +

M

∑
m=1

yi∗
lm(t)v

i∗
lm(t)

)

≤ (1 + θ)
L

∑
l=1

N

∑
i=1

Qi
l(t)
(

vi
l(t) +

M

∑
m=1

yi
lm(t)v

i
lm(t)

)
.

(A7)

Substituting Equation (A7) into Equation (A4) and taking the expectation, we have

B1

1 + θ
+

∑L
l=1 ∑N

i=1 E[Qi
l(t)]λ

i
l

1 + θ
≤

L

∑
l=1

N

∑
i=1

Qi
l(t)
(

vi
l(t) +

M

∑
m=1

yi
lm(t)v

i
lm(t)

)
. (A8)

Due to the capacity region of the proposed algorithm reduced by 1
1+θ λm, that is

R′ = R− 1
1+θ λmI, and the parameter B

′
1 = (1 + θ)B1. Hence, the average queue length of

the local queue should satisfy

lim
T→∞

1
T

T

∑
t=1

L

∑
l=1

N

∑
i=1

E[Qi
l(t)] ≤

(1 + θ)B1

ε− 1
1+θ λm

. (A9)

In this queue system, due to the coupling between the local device queue and the edge
processor queue, so the number of tasks in the local device queue is no less than the edge
queue. Therefore, we obtain

E
[T

∑
t=1

M

∑
m=1

N

∑
i=1

Hi
m(t)

]
≤ E

[T

∑
t=1

L

∑
l=1

N

∑
i=1

Qi
l(t)
]

. (A10)

Sensors 2021, 21, 2347 15 of 16

From Equations (A9) and (A10), we get the Theorem 1, i.e.,

lim
T→∞

1
T

T

∑
t=1

M

∑
m=1

N

∑
i=1

E[Hi
m(t)] ≤ lim

T→∞

1
T

T

∑
t=1

L

∑
l=1

N

∑
i=1

E[Qi
l(t)] ≤

(1 + θ)B1

ε− 1
1+θ λm

. (A11)

References
1. Song, F.; Zhu, M.; Zhou, Y.; You, I.; Zhang, H. Smart collaborative tracking for ubiquitous power iot in edge-cloud interplay

domain. IEEE Internet Things J. 2020, 7, 6046–6055. [CrossRef]
2. Zhang, J.; Zhou, Z.; Li, S.; Gan, L.; Zhang, X.; Qi, L. Hybrid computation offloading for smart home automation in mobile cloud

computing. Pers. Ubiquitous Comput. 2018, 22, 121–134. [CrossRef]
3. Farrugia, S. Mobile Cloud Computing Techniques for Extending Computation and Resources in Mobile Devices. In Proceedings

of the IEEE International Conference on Mobile Cloud Computing, Oxford, UK, 29 March–1 April 2016; pp. 1–10.
4. Shi, W.; Zhang, X. Edge Computing: State-of-the-Art and Future Directions. IEEE J. Comput. Res. Dev. 2019, 56, 69–89.
5. Cheng, N.; Xu, W.; Shi, W.; Zhou, Y.; Lu, N.; Zhou, H.; Shen, X. Air-ground integrated mobile edge networks: architecture,

challenges and opportunities. IEEE Commun. Mag. 2018, 56, 26–32. [CrossRef]
6. Bagchi, S.; Siddiqui, M.B.; Wood, P. Dependability in edge computing. Commun. ACM 2020, 63, 58–66. [CrossRef]
7. Bokhari, M.U.; Shallal, Q.; Tamandani, Y.K. Cloud computing service models: A comparative study. In Proceedings of the IEEE

International Conference on Computing for Sustainable Global Development, New Delhi, India, 16–18 March 2016.
8. Al-Dhuraibi, Y.; Paraiso, F.; Djarallah, N.; Merle, P. Elasticity in cloud computing: state of the art and research challenges. IEEE

Trans. Serv. Comput. 2018, 11, 430–447. [CrossRef]
9. Wang, J.; Pan, J.; Esposito, F.; Calyam, P.; Yang, Z.; Mohapatra, P. Edge Cloud Offloading Algorithms: Issues, Methods, and

Perspectives. ACM Comput. Surv. 2019, 52, 1–23. [CrossRef]
10. Mach, P.; Becvar, Z. Mobile Edge Computing: A Survey on Architecture and Computation Offloading. IEEE Commun. Surv. Tutor.

2017, 19, 1628–1656. [CrossRef]
11. Zhang, W.; Wen, Y.; Wu, J.; Li, H. Toward a unified elastic computing platform for smartphones with cloud support. IEEE Netw.

2013, 27, 34–40. [CrossRef]
12. Mao, Y.; Zhang, J.; Song, S.; Letaief, K.B. Stochastic Joint Radio and Computational Resource Management for Multi-User

Mobile-Edge Computing Systems. IEEE Trans. Wirel. Commun. 2017, 16, 5994–6009. [CrossRef]
13. Chen, X.; Jiao, L.; Li, W.; Fu, X. Efficient Multi-User Computation Offloading for Mobile-Edge Cloud Computing. IEEE/ACM

Trans. Netw. 2016, 24, 2795–2808. [CrossRef]
14. Zhang, M.; Zhou, Y.; Quan, W.; Zhu, J.; Zheng, R.; Wu, Q. Online Learning for IoT Optimization: A Frank-Wolfe Adam-Based

Algorithm. IEEE Internet Things J. 2020, 7, 8228–8237. [CrossRef]
15. Cui, X.; Shan, N.; Li, Y. A Multilevel Optimization Framework for Computation Offloading in Mobile Edge Computing. IEEE/ACM

Trans. Netw. 2020, 2020, 4124791.
16. Josilo, S.; Dán, G. Wireless and Computing Resource Allocation for Selfish Computation Offloading in Edge Computing. In Pro-

ceedings of the IEEE Conference on Computer Communications, INFOCOM, Paris, France, 29 April–2 May 2019; pp. 2467–2475.
17. Shan, F.; Luo, J.; Jin, J.; Wu, W. Offloading Delay Constrained Transparent Computing Tasks With Energy-Efficient Transmission

Power Scheduling in Wireless IoT Environment. IEEE Internet Things J. 2019, 6, 4411–4422. [CrossRef]
18. Li, M.; Wu, Q.; Zhu, J.; Zheng, R.; Zhang, M. A Computing Offloading Game for Mobile Devices and Edge Cloud Servers. Wirel.

Commun. Mob. Comput. 2018, 2018, 2179316. [CrossRef]
19. Geng, Y.; Yang, Y.; Cao, G. Energy-Efficient Computation Offloading for Multicore-Based Mobile Devices. In Proceedings of the

IEEE Conference on Computer Communications, INFOCOM, Honolulu, HI, USA, 16–19 April 2018; pp. 46–54.
20. Meng, X.; Wang, W.; Wang, Y.; Lau, V.K.N.; Zhang, Z. Closed-Form Delay-Optimal Computation Offloading in Mobile Edge

Computing Systems. IEEE Trans. Wirel. Commun. 2019, 18, 4653–4667. [CrossRef]
21. Neely, M.J.; Michael, J. Stochastic Network Optimization with Application to Communication and Queueing Systems; Morgan and

Claypool Publishers: San Rafael, CA, USA, 2010.
22. Li, C.P.; Modiano, E. Receiver-Based Flow Control for Networks in Overload. IEEE/ACM Trans. Netw. 2015, 23, 616–630.

[CrossRef]
23. Liu, M.; Cui, T.; Schuh, H.; Krishnamurthy, A.; Peter, A.; Gupta, K. Offloading distributed applications onto smartNICs using

iPipe. In Proceedings of the ACM Special Interest Group on Data Communication SIGCOMM, Beijing, China, 19–23 August 2019;
pp. 318–333.

24. Neto, J.L.D.; Yu, S.Y.; Macedo, D.F.; Nogueira, J.M.S.; Langar, R.; Secci, S. Uloof: A user level online offloading framework for
mobile edge computing. IEEE Trans. Mobile Comput. 2018, 17, 2660–2674. [CrossRef]

25. Xu, J.; Chen, L.; Zhou, P. Joint Service Caching and Task Offloading for Mobile Edge Computing in Dense Networks. In Proceed-
ings of the IEEE Conference on Computer Communications, INFOCOM, Honolulu, HI, USA, 16–19 April 2018; pp. 207–215.

26. Sundar, S.; Liang, B. Offloading Dependent Tasks with Communication Delay and Deadline Constraint. In Proceedings of the
IEEE/ACM Transactions on Networking, Honolulu, HI, USA, 16–19 April 2018; pp. 37–45.

http://doi.org/10.1109/JIOT.2019.2958097
http://dx.doi.org/10.1007/s00779-017-1095-0
http://dx.doi.org/10.1109/MCOM.2018.1701092
http://dx.doi.org/10.1145/3362068
http://dx.doi.org/10.1109/TSC.2017.2711009
http://dx.doi.org/10.1145/3284387
http://dx.doi.org/10.1109/COMST.2017.2682318
http://dx.doi.org/10.1109/MNET.2013.6616113
http://dx.doi.org/10.1109/TWC.2017.2717986
http://dx.doi.org/10.1109/TNET.2015.2487344
http://dx.doi.org/10.1109/JIOT.2020.2984011
http://dx.doi.org/10.1109/JIOT.2018.2883903
http://dx.doi.org/10.1155/2018/2179316
http://dx.doi.org/10.1109/TWC.2019.2926465
http://dx.doi.org/10.1109/TNET.2014.2302445
http://dx.doi.org/10.1109/TMC.2018.2815015

Sensors 2021, 21, 2347 16 of 16

27. Zhang, W.; Zhang, Z.; Zeadlally, S.; Chao, H.C.; Leung, V.C.M. MASM: A Multiple-Algorithm Service Model for Energy-Delay
Optimization in Edge Artificial Intelligence. IEEE Trans. Ind. Inform. 2019, 15, 4216–4224. [CrossRef]

28. Mao, Y.; Zhang, J.; Letaief, K.B. Joint Task Offloading Scheduling and Transmit Power Allocation for Mobile-Edge Computing
Systems. In Proceedings of the IEEE Wireless Communications and Networking Conference, WCNC, San Francisco, CA, USA,
19–22 March 2017; pp. 1–6.

29. Kuang, Z.; Li, L.; Gao, J.; Zhao, L.; Liu, A. Partial Offloading Scheduling and Power Allocation for Mobile Edge Computing
Systems. IEEE Internet Things J. 2019, 6, 6774–6785. [CrossRef]

30. Guo, H.; Liu, J. Collaborative Computation Offloading for Multi-Access Edge Computing over Fiber-Wireless Networks. IEEE
Trans. Veh. Technol. 2018, 67, 4514–4526. [CrossRef]

31. Chen, W.; Wang, D.; Li, K. Multi-User Multi-Task Computation Offloading in Green Mobile Edge Cloud Computing. IEEE Trans.
Serv. Comput. 2019, 12, 726–738. [CrossRef]

32. Du, W.; Lei, T.; He, Q.; Liu, W.; Lei, Q.; Zhao, H.; Wang, W. Service Capacity Enhanced Task Offloading and Resource Allocation
in Multi-Server Edge Computing Environment. IEEE Int. Conf. Web Serv. ICWS 2019, 83–90.

33. Guo, S.; Liu, J.; Yang, Y.; Xiao, B.; Li, Z. Energy-Efficient Dynamic Computation Offloading and Cooperative Task Scheduling in
Mobile Cloud Computing. IEEE Trans. Mob. Comput. 2019, 18, 319–333. [CrossRef]

34. Liu, C.F.; Bennis, M.; Debbah, M.; Poor, H.V. Dynamic Task Offloading and Resource Allocation for Ultra-Reliable Low-Latency
Edge Computing. IEEE Trans. Commun. 2019, 67, 4132–4150. [CrossRef]

35. Ning, Z.; Dong, P.; Kong, X.; Xia, F. A Cooperative Partial Computation Offloading Scheme for Mobile Edge Computing Enabled
Internet of Things. IEEE Internet Things J. 2019, 6, 4804–4814. [CrossRef]

36. Zhang, J.; Hu, X.; Ning, Z.; Ngai, C.H.; Zhou, L.; Wei, J. Energy-Latency Tradeoff for Energy-Aware Offloading in Mobile Edge
Computing Networks. IEEE Internet Things J. 2018, 5, 2633–2645. [CrossRef]

37. Liu, L.; Guo, X.; Chang, Z.; Ristaniemi, T. Joint optimization of energy and delay for computation offloading in cloudlet-assisted
mobile cloud computing. Wirel. Netw. 2019, 25, 2027–2040. [CrossRef]

38. Liu, C.F.; Bennis, M.; Poor, H.V. Latency and Reliability-Aware Task Offloading and Resource Allocation for Mobile Edge
Computing. In Proceedings of the IEEE Globecom Workshops, Singapore, 4–8 December 2017; pp. 1–7.

39. Guo, Y.; Pan, M.; Gong, Y.; Fang, Y. Dynamic Multi-Tenant Coordination for Sustainable Colocation Data Centers. IEEE Trans.
Cloud Comput. 2019, 7, 733–743. [CrossRef]

40. Zheng, R.; Liu, K.; Zhu, J.; Zhang, M.; Wu, Q. Stochastic resource scheduling via bilayer dynamic Markov decision process in
mobile cloud networks. Comput. Commun. 2019, 145, 234–242. [CrossRef]

41. Chen, L.; Zhou, S.; Xu, J. Computation Peer Offloading for Energy-Constrained Mobile Edge Computing in Small-Cell Networks.
IEEE/ACM Trans. Netw. 2018, 26, 1619–1632. [CrossRef]

42. Mireslami, S.; Rakai, L.; Wang, M.; Far, B.H. Dynamic Cloud Resource Allocation Considering Demand Uncertainty. IEEE Trans.
Cloud Comput. 2019. [CrossRef]

43. Mao, Y.; Zhang, J.; Letaief, K.B. Dynamic Computation Offloading for Mobile-Edge Computing With Energy Harvesting Devices.
IEEE J. Sel. Areas Commun. 2016, 34, 3590–3605. [CrossRef]

44. Merluzzi, M.; Lorenzo, P.D.; Barbarossa, S. Latency-Constrained Dynamic Computation Offloading with Energy Harvesting IoT
Devices. In Proceedings of the IEEE Conference on Computer Communications Workshops, INFOCOM, Paris, France, 29 April–2
May 2019; pp. 750–755.

45. Destounis, A.; Paschos, G.S.; Koutsopoulos, I. Streaming big data meets backpressure in distributed network computation.
In Proceedings of the IEEE International Conference on Computer Communications, INFOCOM, San Francisco, CA, USA,
10–14 April 2016; pp. 1–9.

46. Safari, M.; Khorsand, R. PL-DVFS: combining Power-aware List-based scheduling algorithm with DVFS technique for real-time
tasks in Cloud Computing. J. Supercomput. 2018, 74, 5578–5600. [CrossRef]

http://dx.doi.org/10.1109/TII.2019.2897001
http://dx.doi.org/10.1109/JIOT.2019.2911455
http://dx.doi.org/10.1109/TVT.2018.2790421
http://dx.doi.org/10.1109/TSC.2018.2826544
http://dx.doi.org/10.1109/TMC.2018.2831230
http://dx.doi.org/10.1109/TCOMM.2019.2898573
http://dx.doi.org/10.1109/JIOT.2018.2868616
http://dx.doi.org/10.1109/JIOT.2017.2786343
http://dx.doi.org/10.1007/s11276-018-1794-0
http://dx.doi.org/10.1109/TCC.2017.2698033
http://dx.doi.org/10.1016/j.comcom.2019.07.004
http://dx.doi.org/10.1109/TNET.2018.2841758
http://dx.doi.org/10.1109/TCC.2019.2897304
http://dx.doi.org/10.1109/JSAC.2016.2611964
http://dx.doi.org/10.1007/s11227-018-2498-z

	Introduction
	Related Work
	System Model and Problem Formulation
	System Model
	Local Smart Device and Tasks
	Local Computing Model
	Edge Computing Model

	Queue Dynamics
	Problem Formulation

	Back-Pressure Algorithm-Based Offloading Strategy of Minimizing Delay
	Algorithm Development
	Possible Offloading Task Set
	Offloading Task Set
	Feasibility Check

	Performance of the BMDCO Algorithm

	Numerical Results
	Performance Analysis
	Performance Comparison
	Summary

	Conclusions
	Lyapunov Drift Optimization Problem
	Proof of Theorem 1
	References

