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Abstract: With the recent advances in mobile technologies, biometric verification is being adopted
in many smart devices as a means for authenticating their owners. As biometric data leakage
may cause stringent privacy issues, many proposals have been offered to guarantee the security of
stored biometric data, i.e., biometric template. One of the most promising solutions is the use of a
remote server that stores the template in an encrypted form and performs a biometric comparison
on the ciphertext domain, using recently proposed functional encryption (FE) techniques. However,
the drawback of this approach is that considerable computation is required for the inner-pairing
product operation used for the decryption procedure of the underlying FE, which is performed in
the authentication phase. In this paper, we propose an enhanced method to accelerate the inner-
pairing product computation and apply it to expedite the decryption operation of FE and for faster
remote biometric verification. The following two important observations are the basis for our
improvement—one of the two arguments for the decryption operation does not frequently change
over authentication sessions, and we only need to evaluate the product of multiple pairings, rather
than individual pairings. From the results of our experiments, the proposed method reduces the time
required to compute an inner-pairing product by 30.7%, compared to the previous best method. With
this improvement, the time required for biometric verification is expected to decrease by up to 10.0%,
compared to a naive method.

Keywords: inner-pairing product; functional encryption; biometric verification

1. Introduction

Biometric recognition is the automated recognition of individuals based on their
biological and behavioral characteristics. Biometric recognition has two types [1]: bio-
metric identification and biometric verification. Biometric identification is a process that
searches against a biometric enrolment database to find and return the biometric reference
identifier(s) attributable to a single user. Conversely, biometric verification is a process
that confirms a biometric claim through biometric comparison. In a biometric verification
system, a user can make a biometric claim to a biometric characteristic examiner. When
a user claims that he or she is the source of a specified biometric reference, the examiner
may verify this claim by performing a biometric comparison. With the recent advances in
mobile technologies, biometric verification is being adopted in many smart devices as a
tool for authenticating their owners. This technique is used not only to unlock devices but
also permit users to run security-critical applications, such as financial services [2].

For biometric verification, the biometric data of a user should be stored first during
biometric enrolment. The stored biometric data are referred to as a biometric reference, and
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they are stored using a data structure called a biometric template [1]. However, biometric
characteristics are unique and unchangeable; this implies that leakage of these characteris-
tics may cause more critical privacy issues than the compromise of existing passwords and
personal identification numbers (PINs). Furthermore, users’ biometric templates are often
compromised, especially for mobile devices [3]. Therefore, a biometric verification method
that ensures the security of the biometric template must be developed [4,5].

Several proposals are available in the literature to secure biometric templates without
additional hardware support such as ARM Trust Zone [6] and Apple Secure Enclave [7].
First, there are methods to convert biometric data using noninvertible transforms, such
as cancelable biometrics [8,9] and fuzzy commitment [10]. However, these methods have
a problem of decreasing recognition accuracy owing to the conversion process. In ad-
dition, there are many cases where one-way transformations are analyzed and inverted
successfully [11–13].

There are also biometric key generation techniques for biometric template protec-
tion [14–16]. Using these methods, a unique and high-entropy key can be generated from
the user’s biometric input on the fly. These methods have a very desirable property that the
user’s biometric template does not need to be stored in the device. However, to achieve both
goals of providing a sufficient level of recognition rate and effectively generating biometric
keys, these methods require additional tools. For example, the electrocardiogram-based
biometric key generation method in [14] requires for helper data to be stored. According
to [16], the use of helper data is not desirable. The electroencephalography (EEG)-based
method in [15] requires high-bandwidth data with more than 60 channels. It was pointed
out in [17] that in most commercially available EEG devices, less than 20 channels are
provided. The fingerprint-based biometric key generation method in [16] requires an
additional device such as a smart card. On the contrary, if a remote server is available,
storing the biometric template on the remote server outside the device is another option
for biometric verification without the need for additional tools or performance degrada-
tion [18–21]. In these methods, the server functions as a secure repository. This approach is
also suitable when a user wants to be granted access to a particular remote service using
an authentication server (e.g., online banking). However, this approach can raise another
privacy issue because the remote server can learn the user’s biometric characteristics. In
other words, an honest-but-curious server may try to recover the user’s biometric features
using the user’s stored template. In addition, attackers who intrude into the server may
obtain the biometric features of the legitimate user. These features may be used to imper-
sonate the legitimate user in another system [19–21]. Therefore, an encryption scheme that
encrypts biometric data and makes the server examine the similarity in encrypted data is
necessary for a privacy-preserving biometric verification.

Meanwhile, functional encryption (FE) is an encryption scheme in which possessing
a secret key allows one to obtain only the result of f (x) from a ciphertext E(x), but not
learn any information about the data x, where the secret key is related to the function f
and the ciphertext E(x) is the encryption of data x. Hence, FE is considered a suitable
scheme for constructing a privacy-preserving biometric verification system [22–24]. As
FE requires considerable computation, extensive research has been conducted to make FE
more practical, particularly when the evaluated function is an inner product of a plaintext
vector x with a vector y encoded in the function f [25–29]. Kim et al. proposed a practical
inner product FE scheme with a function-hiding property, which implies that not only
x but also y remain hidden [22]. They also provided a reference code implemented in
Python and evaluated the required durations for main operations, such as key generation,
encryption, and decryption. According to their measurement, the dominant operations
took up to several seconds on a desktop PC, and this indicates that FE may guarantee a
practical level of performance. Kim et al.’s scheme is very suitable as a base scheme for
a privacy-preserving biometric verification system, but its decryption operation requires
an inner-pairing product operation [22], which is its most time-consuming part. An
inner-pairing product is the product of multiple pairings, and its inputs are two vectors
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comprising points on a certain elliptic curve [30]. There are several optimization techniques
for the inner-pairing product [31–34]. Scott suggested to share underlying operations for
multiple pairings [31] and the validity of this approach was verified in [32,33]. Costello et
al. proposed to apply precomputation to accelerate pairing operations [34].

In this paper, we propose an improved method for accelerating inner-pairing product
computation by combining the shared computation techniques and precomputation. The
experimental results indicate that the proposed method reduces the time required to
compute an inner-pairing product by up to 30.7%. To cope with the situation where the
memory is not sufficient to store all the precomputed data, we also propose an adaptive
method that can adjust the number of elements to be precomputed and stored. According
to our analysis, the performance of the proposed method can be fine-tuned adaptively
according to the storage capacity. Furthermore, we demonstrate that the proposed method
is suitable for application to a remote biometric verification system using FE, where one of
the two inputs to the inner-pairing product operation is not frequently changed. Using the
proposed method, we can assume that the performance of biometric verification will be
enhanced by 9.0–10.0%.

1.1. Related Works

In 2005, Scott proposed three ideas to optimize the inner-pairing product computation
for Tate pairing by sharing the common operations among the pairings [31]. In 2006,
Granger et al. showed that Scott’s method can also be applied to the inner-pairing product
for Ate pairing [32]. In 2015, Zavattoni et al. proposed an optimized method to compute
the products of optimal Ate pairings on the BN curve [33]. Meanwhile, in 2010, Costello
et al. proposed a precomputation method to accelerate pairing computation when one
argument of the pairing is fixed [34]. The more times the pairing is called, the more gain is
obtained in the execution time, at the small expense of memory to store the precomputed
elements. Recently, the pairing operations are being adopted as a crucial operation for
many applications, such as privacy-preserving applications [35,36] and non-interactive
zero-knowledge proofs [37,38].

There have been various research results in the literature for secure remote biometric
verification [39–48]. In 2016, Cheon et al. proposed a homomorphic encryption (HE)-
based protocol to support encrypted Hamming distance computation required for iris
recognition [40]. In the same year, Im et al. [41] proposed an HE-based protocol to sup-
port encrypted Euclidean distance computation for palm print authentication [49]. In
2018, Gunasinghe and Bertino proposed a secure face verification protocol based on zero-
knowledge proof of knowledge (ZKPK). To perform their protocol, a trusted execution
environment (TEE) should be equipped on the device. In the same year, Droandi et al. [48]
proposed a multi-party computation-based biometric matching protocol using SPDZ proto-
col [50]. Although their protocol was very fast, it required a high communication cost for
preprocessing. In 2020, Im et al. proposed a secure face verification system that guarantees
a real-time authentication performance on a smartphone [2]. They evaluated the perfor-
mance of their system with two experiments; (1) an experiment involving 30 users in a
real-world environment and (2) an experiment using the public face datasets CFP [51] and
ORL [52]. In this paper, we consider the data presented in [2] as the criteria to evaluate the
performance of the proposed method, since the result in [2] is one of the most up-to-date
practical works in the literature of privacy-preserving biometric authentication. A more
extensive survey of FE-based privacy-preserving applications can be found in [35].

1.2. Contributions

In this paper, we propose a method for accelerating inner-pairing product computation
by combining the shared computation techniques and precomputation. To be precise, our
contributions are as follows:

• We propose a new algorithm that accelerates inner-pairing product computation when
one of the two input vectors are fixed. For each element in this fixed vector, we apply
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the precomputation method that was originally proposed for a single pairing in [34].
In addition, we reduce the overall computational complexity by sharing overlapping
operations for multiple pairings, as in [31].

• To handle the situation where the memory is not sufficient to store all the precomputed
data for all vector elements, we also propose an adaptive method that can adjust
the number of precomputed elements. Therefore, the performance of the proposed
method can be fine-tuned adaptively by selectively storing the precomputed elements
according to the storage capacity.

• We demonstrate that the proposed method can significantly accelerate the FE-based
biometric verification process. In particular, we exploit the fact that the values related
to a biometric template can be precomputed when registered as the template is stored
once and repeatedly used without any change.

2. Preliminaries
2.1. Remote Biometric Verification System

In this study, we focus on biometric verification among the two types of biometric
recognition. A biometric characteristic examiner can use a remote biometric verification
system to authenticate users. Figure 1 shows the generic structure of the remote biometric
verification system [1]. For better understanding, we will explain the structure with a facial
verification system as an example. The system consists of a client for the user and a remote
server for the biometric characteristic examiner. We can consider a smartphone as a typical
example of the client. The following are the steps required to register a user’s biometric data.

1. A user presents a biometric characteristic to a biosensor in a biometric capture sub-
system, and the subsystem runs its biometric capture process to acquire a biometric
sample. For facial verification, the user’s smartphone camera takes a picture of the
user’s face. In addition to the biometric capture process, a biometric acquisition
process is performed when required. The biometric acquisition process includes
segmentation, quality control, and other preprocessing steps. For facial verifica-
tion, various image processing techniques, such as face detection, alignment and
frontalization, can be applied.

2. A client passes the biometric sample to the feature extraction module. The module
attempts to extract a biometric feature from the biometric sample. For face verification,
deep neural networks are frequently used [53,54].

3. The client performs biometric enrolment. To be precise, the client sends the extracted
biometric feature to the server, and the server stores the biometric feature as a biomet-
ric reference to a biometric enrolment database. In the database, biometric references
are managed using a data structure referred to as a biometric template.

In the authentication phase, the client performs the biometric capture and feature
extraction processes, which are the same as the first and second steps of the above biometric
registration phase. Then, the client sends the extracted biometric feature as the biometric
claim to be used for verification. The server delivers the biometric feature from the client
to its verifying module. This claimed feature is referred to as a biometric probe. The
module loads the biometric reference (i.e., the stored biometric template) of the claimant
for biometric comparison. Biometric comparison is the similarity estimation between
the biometric reference and the biometric probe. For example, if the biometric feature is
represented as a vector, the similarity can be estimated by computing either the Hamming
or Euclidean distance between the two feature vectors. Based on the result of biometric
comparison (i.e., the comparison score) and a decision policy including a threshold, whether
the biometric probe and biometric reference have the same biometric source is determined.
If this is affirmative, the server accepts the claimant as an authenticated user.
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Figure 1. Generic structure of a remote biometric verification system.

However, as explained in the introduction, the above approach can be a threat to
user’s privacy, because the server may try to recover the user’s biometric features from
the stored template. Section 2.4 will briefly explain the countermeasure against this threat
using functional encryption.

2.2. Barreto—Naehrig Curve (BN Curve)

If a non-supersingular elliptic curve over Fp contains a subgroup whose embedding
degree k is not substantially large, it is called a pairing-friendly curve. In other words,
computations in the field Fpk are feasible. Barreto and Naehrig presented a method to
construct pairing-friendly elliptic curves of prime order and embedding degree k = 12 [55],
whose curve form is E(Fp) : y2 = x3 + b, with b 6= 0. For non-zero t, they parameterized
the order n of the elliptic curve group and the characteristic p as follows:

n = 36t4 + 36t3 + 18t2 + 6t + 1 (1)

p = 36t4 + 36t3 + 24t2 + 6t + 1 (2)

The order of a point P ∈ E is the least non-zero integer r such that [r]P = ∞, where
[r]P is the sum of r terms equal to P [56]. Therefore, the fact that n is a prime implicitly
indicates that r is equal to n, and r is also prime.

2.3. Pairing
2.3.1. Cryptographic Pairing

Pairing is defined as a map e : G1 ×G2 → GT for additive groups G1, G2 and a
multiplicative group GT [57]. The orders of G1, G2, and GT are the prime number r.
The identity elements of these groups are denoted by 0G1 , 0G2 , and 1GT , respectively.
Furthermore, the pairing should have the following two properties:
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• Bilinearity For all g1 ∈ G1, g2 ∈ G2, and a, b ∈ Zr,

e([a]g1, [b]g2) = e(g1, g2)
ab. (3)

• Non-degeneracy For g1 6= 0G1 , g2 6= 0G2

e(g1, g2) 6= 1GT . (4)

In addition to the above two mathematical properties, cryptographic pairing requires
the following property [57]:

• Computability The map e can be efficiently computed.

The most efficient cryptographic pairings are constructed using an elliptic curve E,
which is defined over a finite field Fq. Specifically, G1 and G2 are subgroups of the rational
points of an elliptic curve E defined over an extension Fqk of Fq. Furthermore, GT is the
group (F∗qk ,×), where the group law is given by the field multiplication on Fqk . We define

the tuple (r,G1,G2,GT , g1, g2, e) as a bilinear environment of cryptographic pairing.
An inner-pairing product eprod is defined by the following equation for two vectors

P = (P1, P2, . . . , Pd) ∈ Gd
1 and Q = (Q1, Q2, . . . , Qd) ∈ Gd

2:

eprod(P, Q) =
d

∏
j=1

e(Pj, Qj) (5)

2.3.2. Miller’s Algorithm and Final Exponentiation

The Weil pairing was first introduced by André Weil in 1940 [58]. It plays an important
role in the theoretical study of the arithmetic of elliptic curves and Abelian varieties [58].
Miller presented an algorithm in 2004 that efficiently computes Weil pairing, which is the
first practical pairing computation method [59]. Since then, most pairings, including Weil
Pairing, have been designed based on Miller’s algorithm for efficient operation. The basic
Miller’s algorithm takes a pair of elements of the elliptic curve subgroups G1 and G2, both
of whose orders are the prime order r, and repeats a series of processes as much as the bit
length m of r. This loop is referred to a Miller loop. For any point U, V on the elliptic curve
and the element X ∈ G1, Y ∈ G2, line equation LU,V(X, Y) is defined as the equation of
the line passing through U and V, whereas tangent equation TU(X, Y) is defined as the
tangent to the point U. Miller’s algorithm includes multiplication and squaring operations
on GT , addition and multiplication operations on G1 or G2, and evaluation of the line and
tangent equations. Miller’s algorithm is used to compute not only Weil pairing but also
many other cryptographic pairings, such as the Tate pairing or Tate variant pairings [60,61].
Thus, a special operation referred to as final exponentiation is performed to force the result
of the Miller loop to be a unique value for the multiplicative group GT [57]. In other
words, final exponentiation must be performed after the Miller loop to obtain the correct
operation result.

2.3.3. Optimal Ate Pairing on the BN Curve

The Ate pairing [62,63] and its variations [64–66] are simply optimized versions of
the Tate pairing using Frobenius endomorphism [67]. In 2008, Vercauteren proposed
optimal pairings and optimized the Miller loop of Ate pairing, which uses Frobenius
endomorphism on a pairing-friendly elliptic curve [67]. In 2010, Beuchat et al. presented an
implementation for the optimal Ate pairing of [67] on the BN curve [68]. They reported that
the performance of Ate pairing is optimized by setting t of the BN curve as 262 − 254 + 244.
Algorithm 1 represents the algorithm for calculating the optimal Ate pairing [68], where
π(Q) is the Frobenius map of Q and π2(Q) = (π · π)(Q).
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Algorithm 1 Optimal Ate pairing on the BN curve.

Input: s = 6t + 2, m = the bit length of s, P ∈ G1, Q ∈ G2
Output: e(P, Q)

1: Write s in signed binary form, s = ∑m−1
i=0 s[i]2i with s[i] ∈ {−1, 0, 1}

2: T ← Q, f ← 1
3: for i← m− 2 down to 0 do
4: f ← f 2 · LT,T(P), T ← 2T
5: if s[i] = 1 then
6: f ← f · LT,Q(P), T ← T + Q
7: else if s[i] = −1 then
8: f ← f · LT,−Q(P), T ← T −Q
9: end if

10: end for
11: R← π(Q), f ← f · LT,R(P), T ← T + R
12: R← π2(Q), f ← f · LT,−R(P), T ← T − R
13: f ← f (p12−1)/r

14: return f

2.4. Function-Hiding Inner Product Encryption

Inner product encryption (IPE) is an FE whose function f is the inner product of
the input vector x with the vector y encoded in the function f . That is, IPE performs
f (x) = 〈x, y〉, by using a secret key associated with vector y and the ciphertext associated
with vector x as inputs.

Meanwhile, if the FE guarantees that the data associated with its function f remain
hidden as well as x, we confirm that an FE has a function-hiding property. For example, the
associated data may be vector y for IPE, and a privacy-preserving biometric verification
system using IPE should be equipped with the function-hiding property as the biometric
data should be securely handled both in the registration and authentication phases [69].

Hereinafter, we use ∏IPE, a function-hiding IPE with practical performance proposed
by Kim et al. [22]. For λ ∈ N, d ∈ N, and the range of the inner product S, the function-
hiding IPE is defined as ∏IPE = (IPE.Setup, IPE.KeyGen, IPE.Encrypt, IPE.Decrypt),
where each operation is defined as follows:

• IPE.Setup(1λ, S)

1. Select a bilinear environment (r,G1,G2,GT , g1, g2, e) according to the security
parameter λ.

2. Choose a matrix B← GLd(Zr), where GLd(Zr) refers to a group of d× d square
matrix, where each element belongs to the finite field Zr and an inverse matrix
exists.

3. Compute B? ← det(B) · (B−1)>.
4. Output the public parameter pp = (G1,G2,GT , r, e, S) and the master secret key

msk = (pp, g1, g2, B, B?).

• IPE.KeyGen(msk, y)

1. Choose a uniformly random element α
R←− Zr.

2. Using the master key msk and the vector y ∈ Zd
r , output the secret key sk =

(K1, K2) = ([α · det(B)]g1, [α · y · B]g1), s.t. K2 ∈ Gd
1.

• IPE.Encrypt(msk, x)

1. Choose a uniformly random element β
R←− Zr

2. Using the master key msk and the vector x ∈ Zd
r , output the ciphertext ct =

(C1, C2) = ([β]g2, [β · x · B?]g2), s.t. C2 ∈ Gd
2.

• IPE.Decrypt(pp, sk, ct)
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1. Using the public parameter pp, the secret sk = (K1, K2), and the ciphertext
ct = (C1, C2), compute D1 = e(K1, C1) and D2 = eprod(K2, C2).

2. Find a solution z for Dz
1 = D2 If this z exists, it satisfies z = 〈x, y〉. Output z if it

exists; otherwise, output ⊥, indicating that a solution does not exist.

In this study, we use ∏IPE to construct a privacy-preserving biometric verification
system. The two vectors x and y are encoded to ensure that they represent the biometric
probe and biometric reference, respectively. Furthermore, the authors of [22] suggested
methods to encode a biometric feature vector to either x or y; thus, the Hamming and the
Euclidean distance between two biometric feature vectors can be calculated using the inner
product 〈x, y〉. Using this method, we can encrypt all biometric data transmitted to the
server as well as the stored biometric template. The biometric comparison is performed on
the encrypted biometric data. However, the comparison score is output as a plain value to
ensure that the verification module can decide regarding the authenticity of the claimant.
In summary, a biometric verification system that keeps all biometric data from leaking
the biometric characteristics even during the biometric comparison can be constructed
using ∏IPE.

3. Existing Optimization Techniques for Computing Pairing

The inner-pairing product can be performed in a naive manner to calculate e(Pj, Qj)
for all j and multiply them all. We call this approach the Naive method. However, this native
method can be improved based on two directions of research. We briefly review them in
this section.

3.1. Optimal Ate Pairing Product on the BN Curve

In 2005, Scott proposed three ideas to optimize the Naive method for Tate pairing [31].

1. In the case of a modular multiplicative inverse operation, a simultaneous inversion
operation [70] can be applied.

2. During the computation of Miller’s algorithm, the squaring operation on GT (e.g., in
line 4 of Algorithm 1) can be shared.

3. The final exponentiation operation can be shared.

In 2006, Robert Granger et al. reported that the performance of inner-pairing product
computation for Ate pairings can be improved by applying the second and third ideas [32].
In 2015, Eric Zavattoni et al. implemented an optimized method to compute the products
of optimal Ate pairings on the BN curve, which we call the Product method in this paper [33].

Algorithm 2 demonstrates how the Product method is computed in the bilinear
environment of Section 2.3.3.

3.2. Fixed Argument Pairings

In 2010, Costello et al. proposed a method to compute a pairing using precomputation
when one argument of the pairing is fixed [34]. Algorithm 3 demonstrates the application
of precomputation to Q for the optimal Ate pairing, adopting the method in [34] when
Q ∈ G2 is fixed. Algorithm 4 presents the pairing computation procedure when P and
Q′ are given as inputs, where Q′ is a precomputed tuple based on Q. The main idea of
this precomputation-based method is that the line and the tangent equation in the Miller
loop of the optimal Ate pairing can be precomputed with only Q without P to obtain the
gradient λ and constant c of the equations. π can also be computed in advance with only
Q. Thus, it is also included in precomputation.

During online computation of the pairing, the precomputed Q′, rather than Q, is ap-
plied to the linear equation, tangent equation, and π. The Fixed-Q method refers to an
inner-pairing product method that replaces the individual pairing of the Naive method to
the online computation of Fixed-Q pairing.
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Algorithm 2 Products of optimal Ate pairings on the BN curve (Product method).

Input: s = 6t + 2, m = the bit length of s, Pj ∈ G1, Qj ∈ G2, where j is 1, ..., d
Output: eprod(P, Q)

1: Write s in signed binary form, s = ∑m−1
i=0 s[i]2i with s[i] ∈ {−1, 0, 1}

2: f ← 1
3: for j← 1 to n do
4: Tj ← Qj
5: end for
6: for i← m− 2 down to 0 do
7: f ← f 2

8: for j← 1 to d do
9: f ← f · LTj ,Tj(Pj), Tj ← [2]Tj

10: if s[i] = 1 then
11: f ← f · LTj ,Qj(Pj), Tj ← Tj + Qj

12: else if s[i] = −1 then
13: f ← f · LTj ,−Qj(Pj), Tj ← Tj −Qj
14: end if
15: end for
16: end for
17: for j← 1 to d do
18: R← π(Qj), f ← f · LTj ,R(Pj), Tj ← Tj + R
19: R← π2(Qj), f ← f · LTj ,−R(Pj), Tj ← Tj − R
20: end for
21: f ← f (p12−1)/r

22: return f

Algorithm 3 Fixed-Q precomputation.

Input: s = 6t + 2, m = the bit length of s, Q ∈ G2
Output: Q′ = (GDBL, GADD, πQ, π2

Q)

1: Write s in signed binary form, s = ∑m−1
i=0 s[i]2i with s[i] ∈ {−1, 0, 1}

2: T ← Q, GDBL ← {∅}, GADD ← {∅}
3: for i← m− 2 down to 0 do
4: Compute λ and c, such that yQ + λxQ + c is the line tangent to T
5: T ← [2]T
6: Append (λ, c) to GDBL
7: if s[i] = 1 then
8: Compute λ and c, such that yQ + λxQ + c is the line joining T and Q
9: T ← T + Q

10: Append (λ, c) to GADD
11: else if s[i] = −1 then
12: Compute λ and c, such that y−Q + λx−Q + c is the line joining T and −Q
13: T ← T −Q
14: Append (λ, c) to GADD
15: end if
16: end for
17: R← π(Q)
18: Compute λ and c, such that yR + λxR + c is the line joining T and R
19: πQ ← (λ, c)
20: R← −π2(Q)
21: Compute λ and c, such that yR + λxR + c is the line joining T and R
22: π2

Q ← (λ, c)
23: Q′ ← (GDBL, GADD, πQ, π2

Q)
24: return Q′
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Algorithm 4 Fixed-Q pairing.

Input: s = 6t + 2, m = the bit length of s, P ∈ G1, Q′ = (GDBL, GADD, πQ, π2
Q) (the

precomputation tuple for Q, where Q ∈ G2)
Output: e(P, Q)

1: Write s in signed binary form, s = ∑m−1
i=0 s[i]2i with s[i] ∈ {−1, 0, 1}

2: f ← 1, cnt← 1
3: for i← m− 2 down to 0 do
4: λ, c← GDBL[i]
5: Compute g← (yP + λxP + c)
6: f ← f 2 · g
7: if s[i] 6= 0 then
8: λ, c← GADD[cnt]
9: Compute g← (yP + λxP + c)

10: cnt← cnt + 1
11: f ← f · g
12: end if
13: end for
14: λ, c← πQ
15: Compute g← (yP + λxP + c)
16: f ← f · g
17: λ, c← π2

Q
18: Compute g← (yP + λxP + c)
19: f ← f · g
20: f ← f (p12−1)/r

21: return f

4. Proposed Method

In this section, we present our proposed method to efficiently compute an inner-
pairing product. The proposed method combines two previous approaches and adopts
both precomputation and shared computation techniques. We call our method the Fixed-
Q Product method. This method is a revised version of the method presented in the
preliminary version of this paper [71] and the Master’s Thesis of the first author [72].

Algorithm 5 presents the detailed procedure of the Fixed-Q Product method. In the
input of the Fixed-Q Product method, Q′ is used instead of Q, unlike the Product method.
In other words, all elements of Q in Algorithm 2 are now used to obtain Q′ using the
Fixed-Q precomputation (Algorithm 3) in advance.

We initialize a few variables in lines 1–5 of Algorithm 5 prior to performing the
Miller loop. The parameter s is expanded as a signed binary form. The variable f for
accumulating the products of the pairings is set to 1, and all elements of the array cnt for
GADD are initialized to 1.

After initialization, the Miller loop runs in lines 6–20 of Algorithm 5. Unlike in a single
pairing, the Miller loop has the form of a nested loop as it computes multiple pairings.
In the case of the Naive method, the inside loop should have been executed many times,
depending on the number of inputs d. The nested loop structure of Algorithm 5 is the same
as that of the Product method to share the squaring operation. In other words, the code
of lines 7–19 is repeated by the length of s by using i. In each iteration of this outer loop,
lines 9–18 are repeated based on the number of inputs d using j in the inside loop. Through
application of this nested loop, the proposed method can improve the performance of
the Fixed-Q method similar to how the Product method improves the Naive method.
Furthermore, we can describe the effect of our method in the aspect of the amount of online
computation. In other words, unlike the Product method, the proposed method performs
the Fixed-Q pairing using Q′j in the code of lines 9–18. To support this improvement, each
array element cnt[j] plays the role of the variable cnt of Algorithm 4.
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Algorithm 5 Fixed-Q Product method.

Input: s = 6t + 2, m = the bit length of s, P = {(P1, ..., Pd) | Pj ∈ G1}, Q′ = {(Q′1, ..., Q′d) |
Q′j is the precomputation tuple for Qj ∈ G2}

Output: eprod(P, Q)

1: Write s in signed binary form, s = ∑m−1
i=0 s[i]2i with s[i] ∈ {−1, 0, 1}

2: f ← 1
3: for j← 1 to d do
4: cnt[j]← 1
5: end for
6: for i← m− 2 down to 0 do
7: f ← f 2

8: for j← 1 to d do
9: GDBL, GADD ← Q′j

10: λ, c← GDBL[i]
11: Compute g← (yP + λxP + c)
12: f ← f · g
13: if s[i] 6= 0 then
14: λ, c← GADD[cnt[j]]
15: Compute g← (yP + λxP + c)
16: cnt[j]← cnt[j] + 1
17: f ← f · g
18: end if
19: end for
20: end for
21: for j← 1 to d do
22: π′Q, (π′)2

Q ← Q′j
23: λ, c← π′Q
24: Compute g← (yP + λxP + c)
25: f ← f · g
26: λ, c← (π′)2

Q
27: Compute g← (yP + λxP + c)
28: f ← f · g
29: end for
30: f ← f (p12−1)/r

31: return f

The Frobenius map and final exponentiation should be applied to the optimal Ate
pairing after the Miller loop. As the operation of the Frobenius map is only related to Q, all
the Frobenius maps of individual pairings can be included in the Fixed-Q precomputation.
Therefore, we apply the precomputed Frobenius maps to the proposed method by using
π′Q and (π′)2

Q from Q′j in lines 21–29. As mentioned in Section 3.1, the final exponentiation
is a shareable operation. Thus, the final exponentiation can be performed only once after
the Miller loop (in line 30).

It should be noted that the speedup of the proposed method is obtained at the expense
of additional memory to store Q′. The exact amount of memory required to store the d
tuples Q′1, ..., Q′d of Q′ will be analyzed in the next section. To handle the situation where the
memory budget is very tight, we propose an adaptive method that adjusts the number of
precomputed tuples according to the storage capacity. Algorithm 6 is this modified version
for the situation where only the memory for k(≤ d) precomputed tuples is available.
Without loss of generality, we assume that only the precomputed tuples Q′1, ..., Q′k are
given. Therefore, Algorithm 6 takes as input these tuples as well as Qk+1, . . . , Qd, the field
elements for the non-precomputed portion. Algorithm 6 can be viewed as the combination
of Algorithm 5 and Algorithm 2. Its main loop is the same as that of Algorithm 5. However,
it has lines 6–8, lines 23–30, and lines 41–44, i.e., the routines to handle the operations
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corresponding to non-precomputed elements. By adjusting the parameter k, the algorithm
can be adapted to the current memory capacity. That is, Algorithm 6 has a time-memory
trade-off. The relation between the number of precomputed tuples and the speed will be
precisely analyzed in the next section.

Algorithm 6 Adaptive method.

Input: s = 6t + 2, m = the bit length of s, P = {(P1, ..., Pd) | Pj ∈ G1}, Q′′ =

{(Q′1, ..., Q′k, Qk+1, ..., Qd) | Q′j is the precomputation tuple for Qj ∈ G2, 1 < k ≤ d}
Output: eprod(P, Q)

1: Write s in signed binary form, s = ∑m−1
i=0 s[i]2i with s[i] ∈ {−1, 0, 1}

2: f ← 1
3: for j← 1 to k do
4: cnt[j]← 1
5: end for
6: for j← k + 1 to d do
7: Tj ← Qj
8: end for
9: for i← m− 2 down to 0 do

10: f ← f 2

11: for j← 1 to k do
12: GDBL, GADD ← Q′j
13: λ, c← GDBL[i]
14: Compute g← (yP + λxP + c)
15: f ← f · g
16: if s[i] 6= 0 then
17: λ, c← GADD[cnt[j]]
18: Compute g← (yP + λxP + c)
19: cnt[j]← cnt[j] + 1
20: f ← f · g
21: end if
22: end for
23: for j← k + 1 to d do
24: f ← f · LTj ,Tj (Pj), Tj ← [2]Tj
25: if s[i] = 1 then
26: f ← f · LTj ,Qj (Pj), Tj ← Tj + Qj
27: else if s[i] = −1 then
28: f ← f · LTj ,−Qj (Pj), Tj ← Tj −Qj
29: end if
30: end for
31: end for
32: for j← 1 to k do
33: π′Q, (π′)2

Q ← Q′j
34: λ, c← π′Q
35: Compute g← (yP + λxP + c)
36: f ← f · g
37: λ, c← (π′)2

Q
38: Compute g← (yP + λxP + c)
39: f ← f · g
40: end for
41: for j← k + 1 to d do
42: R← π(Qj), f ← f · LTj ,R(Pj), Tj ← Tj + R
43: R← π2(Qj), f ← f · LTj ,−R(Pj), Tj ← Tj − R
44: end for
45: f ← f (p12−1)/r

46: return f
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5. Performance Analysis
5.1. Theoretical Analysis

In this subsection, we analyze the expected amount of computation and storage
required for the Naive, Product, Fixed-Q, and the proposed Fixed-Q Product methods.
First, we denote the total amount of computation required for the basic optimal Ate
pairing algorithm (Algorithm 1) and the Fixed-Q pairing algorithm (Algorithm 4) as Cbasic
and C f ixed, respectively. As explained in Section 3.2, C f ixed is significantly smaller than
Cbasic. We also denote the amount of computation required for a squaring operation on
GT and the final exponentiation as Csqr and C f in, respectively. Subsequently, the amount
of computation required to compute an inner-pairing product (5) of two d-dimensional
vectors can be expressed as follows:

• Naive method
Cbasic × d (6)

• Product method
(Cbasic − Csqr − C f in)× d + Csqr + C f in (7)

• Fixed-Q method
C f ixed × d (8)

• Fixed-Q Product method (proposed)

(C f ixed − Csqr − C f in)× d + Csqr + C f in (9)

Noticeably, the computational costs of all methods are represented as linear functions
in d. However, comparing (6) and (7), we can observe that the term Csqr + C f in was
moved from the slope to the constant intercept part, thus, significantly reducing the slope.
The same relation holds between (8) and (9). In particular, the cost reduction of the proposed
method over the Fixed-Q method (and that of the Product method over the Naive method)
is (d− 1)(Csqr + C f in). Consequently, the proposed method is expected to be the fastest
among the four methods when d ≥ 2.

The amount of computation for the Fixed-Q method and the proposed method is
reduced at the expense of memory to store the precomputed elements. In other words,
a time-memory trade-off occurs. To estimate the additional memory required for storing the
precomputed elements, we expressed the bit length of the data structure Q′ that represents
the precomputation table. Q′ is a tuple composed of (GDBL, GADD, πQ, π2

Q). According
to Algorithm 3, GDBL and GADD are the arrays with their elements in Fp × Fp. Whenever
the code of line 6 in Algorithm 3 is run, the number of elements in the GDBL array is, thus,
increased by one, and this line is repeated by m− 1 times. Thereafter, GDBL will contain
m− 1 elements in Fp × Fp. The codes of line 10 and 14 also increase the length of GADD by
one. However, these lines are executed only when the corresponding element s[i] in the
signed binary representation of s is non-zero. For given t = 262 − 252 + 244, the number of
non-zero terms in the signed binary representation of s is exactly seven. Therefore, GADD
will finally contain seven elements in Fp × Fp. Finally, the codes of lines 19 and 22 are
executed once for πQ and π2

Q. Therefore, πQ, π2
Q ∈ Fp × Fp. As m, the bit length of

s = 6t + 2, is 65, we can observe that Q′ ∈ (Fp × Fp)(m−1)+7+2 = (Fp × Fp)73, and the bit
length of Q′ can be expressed as 73× 2× l = 146l, where l denotes the bit length of prime
p. In other words, 146l bits are additionally required to store the precomputed data Q′

in Algorithm 3 and use it in Algorithm 4. For Algorithm 5, we need d tables Q′1, . . . , Q′d,
requiring 146dl bits of the precomputation storage.

5.2. Experimental Results

To verify the performance improvement, we implemented the proposed method as
well as the three previous methods, and then we compared their performance in terms of
execution time and memory usage. This experiment was conducted on a desktop PC with
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an Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz, 16GB memory, and Ubuntu Desktop 16.04
LTS. The program was written in C++. In particular, GMP 6.1.2 [73], MCL 1.05 [74], and
NTL 11.3.2 [75] libraries were applied for algebraic operations.

According to the theoretical analysis in Section 5.1, the amount of computation for
each method can be expressed as a linear equation in the number d of the input pairs.
The slope of the linear equation and the value of the y-intercept can be estimated by
measuring the execution times of the component operations. Therefore, we measured
the durations required for a squaring operation and final exponentiation and as those for
pairing operations. Table 1 presents the result of this measurement. The figures in Table 1
are the average of the execution times in 10,000 executions with a random input for each
operation, and the unit of execution time is 106 CPU clocks (Mclk).

Table 1. Execution times of the operations constituting an inner-pairing product.

Operation Name Execution Time (Mclk)

Squaring on GT 0.008
Final exponentiation 0.629

Basic optimal Ate pairing (Algorithm 1) 1.595
Fixed-Q pairing (Algorithm 4) 1.411

Using the measured data, we estimated the slopes and y-intercepts in the linear
Equations (6)–(9) in the previous subsection. The cost of the squaring operation Csqr can be
estimated as m×(the execution time for a single squaring operation), where m (i.e., the bit
length of s = 6t + 2) is calculated as 65 given that t = 262 − 254 + 244 for the optimal Ate
pairing. Consequently, we obtained the following expressions for the execution times of
the four inner-pairing product methods, which are also summarized in Table 2:

• Naive method:
CNaive = 1.595d (10)

• Product method:

CProd = (1.595− 0.008× 65− 0.629)d + 0.008× 65 + 0.629 = 0.464d + 1.131 (11)

• Fixed-Q method:
CFixedQ = 1.411d (12)

• Fixed-Q Product method (proposed):

CFixedQProd = (1.411− 0.008× 65− 0.629)d + 0.008× 65 + 0.629 = 0.280d + 1.131 (13)

Table 2. Execution times of the inner-pairing product computation for various methods.

Methods Expected Cost Measured Cost

Naive Cbasic × d 1.595d
Product (Cbasic − Csqr − C f in)× d + Csqr + C f in 0.464d + 1.131
Fixed-Q C f ixed × d 1.411d
Proposed (C f ixed − Csqr − C f in)× d + Csqr + C f in 0.280d + 1.131

We also verified the validity of the expressions given above by directly measuring
the execution times of the inner-pairing product computation. Furthermore, we measured
these execution times, increasing d from 10 to 1000 by 10. For each combination, we
measured the execution time of each method 1000 times. Figure 2 presents the average
execution times of the four inner product methods. Certainly, the execution times of the
four methods increase almost linearly with d. Figure 3 presents the relative ratio of the
execution time of each method to that of the Naive method. We can observe that the
ratio remains as a constant for each method, except the region for small d, where the
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influences of constant terms in (7) and (9) are non-negligible. Please note that the amounts
of computation in the Naive and Fixed-Q methods (Equations (6) and (8)) are proportional
to d, but those in the Product and Fixed-Q Product methods are not exactly proportional to
d. However, when d gets sufficiently large, the constant terms in (7) and (9) almost do not
affect the overall performance, and (7) and (9) become almost proportional to d. For this
region with sufficiently large d, the relative ratio of the execution time is essentially the
ratio of the slopes. For example, the ratio of the Fixed-Q Product method over the Naive
method is approximately (C f ixed − Csqr − C f in)/(Cbasic) for large d, whereas it is originally
((C f ixed − Csqr − C f in)d + (Csqr + C f in))/(Cbasicd). This explains the slightly bent portions
in the curves for the Product and Fixed-Q Product methods in Figure 3.

Figure 2. Performance comparison according to the dimension of input for each method.

In other words, four horizontal lines are almost parallel to the d-axis. The constant
ratios are 0.881, 0.381, and 0.264 for the Fixed-Q, Product, and proposed methods, respec-
tively. This implies that the proposed method improves the performance of the Naive,
Fixed-Q, and Product methods by 3.8, 3.3, and 1.4 times, respectively. If we compare
the proposed method with the best previous method, Product, we see that the proposed
method reduces the execution time of the Product method by 1− 0.264/0.381 ≈ 30.7%.

Figure 3. Comparison of the performance ratio of other methods to compute inner-pairing products
compared to the Naive method.

The amount of storage space required for each method was also measured and an-
alyzed. The software module used in this study uses a 256-bit data type to express an
element in Fp. Each element in G1 is a point on an elliptic curve defined over Fp. Therefore,
it is composed of two elements in Fp to represent x and y coordinates. Each element in G2



Sensors 2021, 21, 2859 16 of 23

is a point on an elliptic curve defined over an extension field. Therefore, it is composed of
four elements in Fp. Subsequently, the sizes of the data structures to handle the elements
in G1 and G2 are 512(= 2× 256) and 1024(= 4× 256) bits, respectively. The data structure
for a precomputation table Q′ consumes 146× 256 = 37, 376 bits. When an inner-pairing
product is computed with two d-dimensional vectors using the proposed method, 37, 376d
bits are required for the precomputation table. For example, considering that d = 130,
which is a typical value for our biometric verification application, this amount corresponds
to only 0.6 MB. As explained in Section 4, only a subset of precomputed elements may be
computed if the storage is not sufficient. Figure 4 demonstrates the time-memory trade-off
of Algorithm 6 for various values of k when d = 130. The x-axis represents the amount of
available memory. k varies from 0 to 130. When k = 130, approximately 0.6 MB is required.
As the graph shows, the execution time of Algorithm 6 linearly decreases according to the
increase in the amount of memory.

Figure 4. Time-memory trade-off of the adaptive method.

Finally, we verify whether the Fixed-Q and Fixed-Q Product methods consume addi-
tional communication bandwidth for the transmission of the precomputation tables. When
the inner-pairing product operation is applied to privacy-preserving remote biometric
verification, this operation is performed by the receiver (i.e., by the remote authentication
server) to conduct IPE.Decrypt with two input vectors P = (P1, P2, . . . , Pd) ∈ Gd

1 and Q =
(Q1, Q2, . . . , Qd) ∈ Gd

2. The second vector, Q, is related to the stored biometric template.
Therefore, it is transmitted in the registration phase, and the required precomputation can
be conducted on the server side. In other words, Algorithm 3 is performed for each element
in Q by the server. Therefore, additional communication bandwidth is not required.

6. Application

As explained in Section 2.4, if FE is applied to a remote biometric verification system,
the client may encrypt and securely transmit the user’s biometric data, the server may
store the encrypted biometric template, and the biometric comparison may be performed
while all biometric data remain encrypted. In this section, we construct a simple facial
verification system using ∏IPE and describe how the FE can be applied to a remote biomet-
ric verification system, following the idea presented in [22]. We also demonstrate that the
proposed method significantly improves the facial verification performance. For biometric
comparison, the server uses Euclidean distance as the metric for the similarity between
two feature vectors, which is the most widely used approach in biometric authentication.
Furthermore, a vector encoding method proposed by Kim [22] is adopted to perform this
comparison in the ciphertext domain. When two d-dimensional feature vectors x and y
are given as a biometric reference and biometric probe, respectively, the similarity score is
defined as ‖x− y‖2 (i.e., the square of the Euclidean distance between x and y). To compute
‖x− y‖2 using ∏IPE, the following three operations are defined:
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• EncodeX(msk, x)

1. Construct a (d + 2)-dimensional vector x′ = (‖x‖2,−2x1,−2x2, . . . ,−2xd, 1)
from x = (x1, . . . , xd).

2. Output ct = IPE.Encrypt(msk, x′).

• EncodeY(msk, y)

1. Construct a (d + 2)-dimensional vector y′ = (1, y1, y2, . . . , yd, ‖y‖2) from y =
(y1, . . . , yd).

2. Output sk = IPE.KeyGen(msk, y′).

• Euclid(pp, sk, ct)

1. Calculate z = IPE.Decrypt(pp, sk, ct).
2. Output z. (z satisfies z = 〈x′, y′〉 = (‖x‖2 − 2x1y1 − 2x2y2 − · · · − 2xdyd +

‖y‖2) = (‖x‖2 − 2〈x, y〉+ ‖y‖2) = ‖x− y‖2).

In our biometric verification system, IPE.Encrypt (i.e., EncodeX) will be used to pro-
tect the biometric template in the registration phase. Meanwhile, IPE.KeyGen (i.e., EncodeY)
will be used to protect the biometric probe of the claimant in the authentication phase.
We might have used the IPE functions in other ways (i.e., IPE.KeyGen for registration
and IPE.Encrypt for authentication). However, we made the above choice owing to the
following reason: the stored biometric template does not change frequently after reg-
istration, whereas the biometric probe for authentication changes every session. Thus,
applying precomputation to the stored template is suitable. According to Algorithm 5, the
precomputation is only applicable to the second argument of eprod(P, Q), that is, Q, whose
elements are from G2. According to the description of ∏IPE in Section 2.4, this Q should
be C2, which is computed by IPE.Encrypt.

Figure 5 shows the simple facial verification system that uses the above three opera-
tions. EncodeX and EncodeY are performed by the client. Meanwhile, Euclid is performed
by the server and includes an inner-pairing product for IPE.Decrypt. In other words, if the
inner-pairing product can be accelerated, we can also improve the performance of Euclid.

Figure 5. Simple facial verification system that uses ∏IPE with the proposed method.

As shown in Figure 5, the client transmits a user’s encrypted feature vector as a
biometric reference to the server, and then the server stores the encrypted vector as a
biometric template in the registration phase. Using the proposed method, the server can
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perform the Fixed-Q precomputation on all the elements of the biometric template and use
the precomputed data to accelerate the inner-pairing product computation in Euclid.

To estimate the effect of the proposed method in the performance of a remote biometric
verification system, we emulated a remote facial verification system where the client
comprises an image processing module that processes the face image and produces a
feature vector, and a cryptographic module for the EncodeX and EncodeY operations. The
server performs the biometric comparison using a cryptographic module implementing
the Euclid operation. We did not actually implement the image processing module, but
emulated the one provided in [2]. We brought a part of the experimental results for
image processing time in [2], and actually measured the durations for ∏IPE operations.
Combining both data, we estimated the overall time for biometric verification. To measure
the times for ∏IPE operations, we used the same mobile device and PC as used in [2].
Table 3 presents our experimental results. The face image processing column covers the
entire image processing procedure, i.e., from biometric capture and acquisition process
and feature extraction. In [2], four datasets were provided—Auto, Guide, CFP, and ORL.
Each dataset uses 128-dimensional feature vectors in common. Therefore, we measured
the performance of EncodeY with 128-dimensional feature vectors. However, we did not
compare the performance of EncodeX as it is called only once for registration. In particular,
we measured the performance of Euclid by dividing it into two parts, Pairing and DLP.
Pairing is the part that consists of a single pairing operation for D1 and eprod for D2 in
IPE.Decrypt. For comparison, we measured the performance of the inner-pairing product,
eprod, using the proposed and Naive methods. DLP is the part that finds a solution to the
discrete logarithm problem Dz

1 = D2. The total execution time for authentication comprises
face image processing, EncodeY, and Euclid, and presents the data when the Naive method
and the proposed method are applied. The last column provides the ratio of reduced time
over the Naive method (i.e., (1− Total (proposed)

Total (Naive) )× 100%). From Table 3, the proposed Fixed-

Q Product method reduces the time for Euclid operation by
(

1− 15.66+120.30
58.86+120.30

)
× 100% =

24.1% compared to the Naive method, and the overall authentication time is also expected
to be reduced by 9.0–10.0%. Regarding the required memory, note that approximately
0.6 MB of precomputation memory should be available to fully exploit Algorithm 5 when a
128-dimensional feature vector is used, i.e., d = 130. If multiple users are registered to the
authentication server, the amount of required memory will be proportional to the number
of registered users. For example, 600 MB is required to store the precomputation data for
1000 users. However, if we use Algorithm 6, we may permit more users, slightly degrading
the authentication speed.

Table 3. Performance improvement in the facial verification system using the proposed method compared to the Naive
method (times in ms).

Biometric
Dataset

Face Image
Processing [2] EncodeY

Euclid Total
(Naive)

Total
(Proposed) RatioPairing

(Naive)
Pairing

(Proposed)
DLP

Auto 193.27

106.47 58.86 15.66 120.30

478.90 435.70 9.0 %
Guide 157.47 443.10 399.90 9.7%
CFP 150.15 435.78 392.58 9.9%
ORL 147.33 432.96 389.76 10.0%

Security Analysis

To show that our FE-based facial verification system manages and processes the
biometric information in a secure and privacy-compliant manner, we evaluate our sys-
tem based on the requirements of biometric information protection, i.e., irreversibility,
unlinkability, renewability, and performance [76,77].
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• Irreversibility: the irreversibility of our system depends on the security of ΠIPE. Please
note that the template is not stored in the client device. Therefore, the only concern is
the possibility of template recovery on the server side. However, the ΠIPE guarantees
that the server cannot learn any information about the stored ciphertext, except its
inner product with another ciphertext. Therefore, the encrypted biometric information
is protected by ΠIPE.

• Unlinkability: Our procedure for template encryption, i.e., IPE.Encrypt, involves a
uniformly random component β. Consequently, it may produce completely different
ciphertexts even when the same biometric information is encrypted. Therefore, it is
not possible to link two or more biometric templates encrypted using ΠIPE.

• Renewability: Every call to the template encryption procedure IPE.Encrypt generates
a completely different ciphertext even for the same user using a random parameter β.
Therefore, it can create multiple, independently transformed biometric templates.

• Performance: According to the ISO/IEC 19795-1 standard [77], we consider the bio-
metric accuracy as a criterion of performance. It is straightforward that the accuracy
of the proposed system is exactly the same as that of the underlying biometric veri-
fication system, because the proposed system does not revise the feature extraction
process. It only encrypts the extracted features. Therefore, the biometric similarity
score computed from ct = EncodeX(msk, x) and sk = EncodeY(msk, y) is exactly the
same as that computed from the original x and y.

Finally, we remark that the biometric information is still protected even when the pre-
computation on the biometric template is applied to the system. According to Algorithm 3,
precomputation is performed only using s, m, and Q, where s and m are publicly known
parameters. Q (Qj in later algorithms) is an element in the encrypted biometric template vec-
tor. Therefore, when the server performs Algorithm 3 for precomputation, it does not obtain
any additional information about the feature value encoded in the template. Consequently,
whether the server performs the precomputation or not does not affect the security of the
system. The same holds for the case where the server is compromised by an attacker.

7. Discussion

In this paper, we proposed a method to accelerate the inner-pairing product operation
for secure biometric verification. The proposed Fixed-Q Product method is a method
that optimizes inner-pairing product computation by applying precomputation. We also
applied the new inner-pairing product method to design a secure biometric verification
system. To verify the feasibility of the proposed method, we emulated a simple facial
verification system comprising a client and a server. Our analysis results indicate that the
new inner-pairing product method accelerates biometric authentication. However, the pro-
posed method has a time-memory trade-off. The reduction in the amount of computation
for the proposed method is obtained at the expense of memory to store the precomputed
elements. Although the new method requires more memory than the previous methods,
the amount of the additional memory is not considerable. Moreover, there are no changes
in the bandwidth requirement for communication as the precomputation is performed on
the server side. Furthermore, we also provide the adaptive method where the amount
of precomputed elements is parameterized. Therefore, a server can choose to apply the
proposed method by itself while a client is not aware of it. In other words, selectively
tuning the performance of the system is possible.

We remark that noise may affect the security and performance of a biometric authen-
tication system [78]. Therefore, we consider the effect of noise on the proposed method.
First, note that the proposed system does not revise the feature extraction procedure, but
it only encrypts the extracted features. Therefore, the noise-robustness of the underlying
system is maintained even after applying our method, if only the integrity of a transmitted
or stored ciphertext is guaranteed. On the contrary, if a ciphertext is modified, the server
will be able to notice this change immediately, because the modification of even a single bit
will make the data invalid. The probability that a modified element becomes a valid field
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element constituting a ciphertext is almost zero. In summary, the proposed method does
not affect the noise-robustness of a biometric authentication system.

Finally, the proposed method is suitable not only for remote biometric verification
systems but also for any FE-based privacy-preserving applications where the evaluated
function is an inner product and one of the two inputs of the inner product is entered
offline [35,36]. Furthermore, the proposed method can be applied not only to FE-based
systems but also to the other systems involving inner-pairing products, such as non-
interactive zero-knowledge proofs [37,38].
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