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Abstract: The ability to accurately and non-invasively measure 3D mass centre positions and their
derivatives can provide rich insight into the physical demands of sports training and competition.
This study examines a method for non-invasively measuring mass centre velocities using markerless
human pose estimation and Kalman smoothing. Marker (Qualysis) and markerless (OpenPose)
motion capture data were captured synchronously for sprinting and skeleton push starts. Mass centre
positions and velocities derived from raw markerless pose estimation data contained large errors
for both sprinting and skeleton pushing (mean ± SD = 0.127 ± 0.943 and −0.197 ± 1.549 m·s−1,
respectively). Signal processing methods such as Kalman smoothing substantially reduced the mean
error (±SD) in horizontal mass centre velocities (0.041 ± 0.257 m·s−1) during sprinting but the
precision remained poor. Applying pose estimation to activities which exhibit unusual body poses
(e.g., skeleton pushing) appears to elicit more erroneous results due to poor performance of the pose
estimation algorithm. Researchers and practitioners should apply these methods with caution to
activities beyond sprinting as pose estimation algorithms may not generalise well to the activity of
interest. Retraining the model using activity specific data to produce more specialised networks is
therefore recommended.

Keywords: OpenPose; computer vision; 3D reconstruction; Kalman smoothing

1. Introduction

The accurate measurement and assessment of athletes’ movement profiles during
training and competition can provide coaches with insight into the physical demands of
competition and permit the monitoring of an athlete’s physical capabilities over both acute
and longitudinal time scales [1]. In winter Olympic sports such as skeleton and bobsleigh,
sprinting ability and the ability to load the sled with a high velocity has been associated
with high performance outcomes [2–5] and represents information that coaches can use for
talent identification and athlete monitoring.

Arguably, the current gold standard in determining the athlete’s centre of mass (CoM)
location during sprinting is through the use of marker-based motion capture [6]. Such
systems can reconstruct the location of reflective markers with sub-millimetre accuracy [7]
and when placed on the body in anatomically meaningful locations can be used to model
the CoM locations of the segments (and thereafter the whole body) with a high precision [8].
However, such methods are often limited to laboratory environments with small capture
volumes and highly controlled lighting conditions. Furthermore, the placement of markers
is time consuming and may alter technique [9]. To address these problems and allow for
field-based collection of CoM displacement and velocity information, a range of technolo-
gies have emerged including manually annotated video analysis [10,11], laser distance
measurement [12] and global or local positioning systems (GPS and LPS) technology [13].

Computer vision technologies provide an alternative approach to monitoring athlete
CoM behaviour during sporting activities. Several semi-automatic, multi-camera vision-
based tracking systems are available and in commercial use in team-based sports (e.g.,
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STATS SportVU and Signality). A key advantage of such vision-based systems is that they
are non-invasive as the athlete is not required to wear a transceiver. When validated against
marker-based motion capture (30 × 30 m outdoor volume) errors in the estimation of total
displacement were 2.7% which was comparable to both GPS and LPS errors [6]. Velocity
errors were recorded at 0.41 ± 0.08 m·s−1 and magnitudes of error were found to increase
as the speed of the tracking object increased [6]. A possible cause of error in the vision-
based systems is the method in which the CoM location is estimated. Vision-based tracking
systems typically work by detecting a player and fitting a rectangular bounding box that
encompasses the entire player regardless of their body pose [14]. Such an assumption is
often violated as performers move through a large range of body configurations during
sporting activities. To provide a more accurate representation of the performer’s CoM
location it is more appropriate to identify joint centres on the detected person and calculate
the CoM location using an inertial model.

Deep learning-based pose estimation aims to identify body landmarks from regular
2D image data and may provide a robust and non-invasive alternative to bounding-
box detection or marker-based motion capture systems to capture information such as
CoM position and velocity [9,15]. One such algorithm, OpenPose [16] uses a two-stage
convolutional neural network (CNN) to detect a sparse point model of the body. OpenPose
is simple to use, provides robust multi-person detection and unlike many pose-estimation
models also provides landmarks on the feet and hands which will further assist in the
accurate estimation of CoM location. When compared to marker-based motion capture,
OpenPose demonstrated 3D joint-centre location errors of between 20 and 40 mm [17]
for laboratory-based walking, jumping and throwing. While it is still unknown if such
magnitudes of error allow for the accurate calculation of joint kinematics, such an approach
may be accurate enough to provide a better estimation of the human mass centre than
current vision-based approaches.

Most CNNs utilise supervised-learning methods [17] using manually annotated points
(e.g., joint centres) as training examples. Typically, a model trained via supervised learning
methods will generalise well to new data that is similar to the data seen during training.
However, researchers using pose-estimation methods in movement sciences should take
care to examine the performance of CNN models on the activity in question. To demonstrate
this point, in this study we examine two running activities, regular sprinting and skeleton
pushing. It is likely that the poses seen during regular sprinting will overlap with those
contained within the training data (COCO dataset [18]). However, skeleton pushing
provides a more unusual set of poses that may not be well represented in the training data.

Researchers wishing to implement pose estimation algorithms also face further chal-
lenges including multi-person tracking, 3D camera fusion before 3D [19] and determining
optimum filtering methods for CNN derived data. Indeed, Linke et al. [6] acknowledged
that further improvements in vision-based tracking accuracy could be achieved by using
more advanced filtering methods. Such tasks are non-trivial, but when implemented
correctly may allow for the accurate and reliable reconstruction of 3D keypoints, which
in turn may permit the advancement of current athlete CoM location tracking technology.
The aim of this study was to evaluate the ability of CNN-based pose-estimation (OpenPose)
to estimate CoM velocities during two sprinting activities and examine whether advanced
filtering methods can enhance the performance of the vision-based athlete tracking system.

2. Materials and Methods

Twelve international skeleton athletes (seven males (1.81 ± 0.05 m, 83.37 ± 2.73 kg),
five females (1.71 ± 0.03 m, 70.04 ± 1.44 kg)) provided written informed consent. Each
athlete attended two testing sessions, one at the University of Bath’s outdoor push track
and a second at the University of Bath’s indoor sprints track. During the push track session,
each athlete performed three maximal effort push starts and during the sprints track session
each athlete performed six sprints.
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During both pushing and sprinting trials, motion data were captured concurrently
using marker-based and markerless motion capture systems. A 15-camera marker-based
motion capture system (Oqus, Qualysis AB, Gothenburg, Sweden) was used to acquire gold-
standard data whilst a bespoke 9-camera computer vision system (6 mm lens, 1920 × 1080-
pixel resolution, ~90◦ field of view, JAI sp5000c, JAI ltd, Denmark) captured additional
video data. At the push track, both camera systems were positioned around the track in
order to capture the pushing action between 5 m and 15 m from the starting block. At the
sprints track, both camera systems were positioned around the centre running lane in order
to capture the sprinting technique between 0 and 10 m, 10 and 20 m, and 20 and 30 m.

Motion capture systems were time-synchronised by the custom system’s master frame
grabber to achieve a frame locked sampling frequency of 200 Hz in both systems. The
Qualisys system was calibrated as per the manufacture’s specifications. The custom camera
system was calibrated using a sparse bundle adjustment algorithm to compute camera
extrinsic parameters [20] while camera intrinsic parameters were computed according to
the method described by [21]. Each motion capture system’s Euclidean space was aligned
by moving a single marker randomly through the capture volume. This marker data
provided points with which the spatial alignment could be optimised in a least-squares
sense. Validity of camera calibration scale was assessed for both camera systems by moving
two markers of known distance apart through the capture volume. Markers were tracked
by both camera systems and the Euclidean distance between them was computed and
compared to the known distance of 601.4 mm.

Forty-four individual markers and four clusters were attached to each participant to
create a full body six degrees of freedom (6DoF) model (bilateral feet, shanks and thighs,
pelvis and thorax, and bilateral upper arms lower arms, and hands). Following labelling
and gap filling of trajectories (Qualisys Track Manager v2019.3, Qualisys, Gothenburg,
Sweden) raw trajectories were low-pass filtered using a Butterworth 4th order filter with
a cut-off frequency of 12 Hz. Optimal cut-off frequencies were determined by exploiting
the properties of the autocorrelation function of white noise [22]. Finally, a 6DoF inverse
kinematics (IK) constrained model was computed using Visual 3D (v6, C-Motion Inc.,
Germantown, MD, USA). Athlete CoM locations were computed [23] for both pushing
and sprinting activities and vertical and horizontal CoM velocities were computed using a
central finite differences method. Validity of the marker-based CoM model was assessed by
fitting a second-order polynomial to the flight phase vertical trajectory data during upright
sprinting. The second derivative of each curve was computed via a finite differences
method and the result compared against the expected −9.81 m·s−2 [24].

For each field of view, 2D joint centre locations were computed using the OpenPose
body_25 model [16] (Table A1, Figure A1) for each detected person in a given camera view.
However, OpenPose is only able to provide 2D image planar coordinates and does note
associate or ‘track’ each detected perform from frame to frame. As such, an approach
based on occupancy maps was used to associate person detections between viewpoints [25].
Firstly, all the 2D feature detections of each person were reduced to a single median point
pi, v (person i in view v). The observed volume of the track was divided into vertical
columns as a grid. Next, each column is projected into each camera view (project the eight
corners of the rectangular column and deduce the smallest axis-aligned bounding box that
envelopes the projections). For each column k, a count is produced of how many camera
views the column is visible in vk, and for how many views the projected column contains
the median point of a person mk. Each column is given an occupancy score ok = mk

vk
.

Columns with larger occupancy scores have a higher probability of being at the location
of a real person and columns with low visibility can be excluded. Treating the grid of
occupancy scores as an image allows for easy identification of peaks in the occupancy
map representing individual people. By recording which median points contributed to
each column’s scores, per-camera observations are neatly grouped across cameras simply
by identifying columns with peak occupancy. Reconstructing a person in 3D can then be
achieved by reconstructing each feature in 3D. For example, consider an elbow joint centre
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observed from the set of 2D detections D. Each detection di, v ∈ D is back projected using
the calibration [20,21] of the relevant camera to produce a ray in space rv = Pv(di,v) (let
Pv(x) be a function computing inverse projection and accounting for non-linearities such
as lens distortions). A least squares solution can solve for the “intersection” of the 3D
rays (closest 3D point to each ray) [26]. However, to account for errors (e.g., mislabelling
by the detector or mis-grouping caused by relative position of persons and cameras) a
RANSAC [27] process is used to determine the set of inlier rays by using pairs of rays to
propose solutions and finding the proposal with which the largest set of rays is consistent.
The final 3D position of the feature is taken as the “intersection” of the inliers.

To assess the effects of signal filtering on 3D-fused OpenPose joint centre trajectories,
the 3D joint centre coordinates were filtered using two methods. Firstly, a low-pass filter
(Butterworth 4th order, cut-off 12 Hz) was implemented as this method is commonly used
on marker-based motion capture data. Again, optimal cut-offs were determined using the
method described by [22]. Secondly, an optimal fixed-interval Kalman smoother [28] was
implemented. The Kalman smoother performs a bi-directional pass to determine an optimal
state estimation of a given key point trajectory. Hyperparameters including measurement
noise and transition noise were optimised using a grid-search and cross-validation. Finally,
using raw, low-pass filtered and Kalman smoothed data, athlete CoM locations were
computed for both pushing and sprinting activities using the model described by de
Leva [23]. Vertical and horizontal CoM velocities were computed using a central finite
differences method.

Agreement between marker and markerless methods was assessed via Bland–Altman
analysis and linear regression models. Bland–Altman analysis permits the delineation of
systematic (bias) and random (standard deviation of bias) differences between measures
with 95% limits of agreement (LoA) [29]. Additionally, we computed linear regression
models which provide reliable and sensitive means to compare between biomechanical
waveforms [30].

3. Results

Mean calibration scale accuracy was 0.91 ± 0.76 mm for the marker-based system
and 0.74 ± 0.68 mm for the markerless system. Mean CoM vertical acceleration during
flight was −9.87 ± 0.42 m·s−2 (example provided in Figure A2). Representative examples
of OpenPose derived and marker derived CoM trajectories in the sagittal plane during
sprinting are shown in Figure 1. Additionally, OpenPose derived CoM position under
various filtering conditions are also provided. Representative vertical and horizontal CoM
velocities during sprinting are shown in Figure 2. Additional examples demonstrating
high and low quality OpenPose joint centres detections during sprinting are provided in
the Appendix A (Figure A3).

Mean differences (bias) and the SD between OpenPose derived CoM locations and
marker derived CoM locations during sprinting remained comparable between unfiltered,
low-pass filtered and Kalman smoothed results (Table 1). For the vertical CoM velocity,
low-pass filtering and Kalman smoothing demonstrated no improvements in the estimation
of CoM vertical velocity (Table 2) but did elicit moderate reductions in SD and modest
increases in R2. However, large reductions in mean difference, SD and limits of agreement
and large improvements in R2 were observed for horizontal CoM velocity with the Kalman
smoother being most effective at reducing error during sprinting (Table 2, Figure 3). Full
Bland–Altman and linear regression results as provided in the Appendix A for sprinting
CoM positions (Figures A5 and A6) and sprinting CoM velocities (Figure A9).
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Figure 1. Example individual trial demonstrating sagittal plane CoM positions for criterion (cyan), unfiltered (green),
low-pass filtered (red) and Kalman smoothed (blue) data during sprinting. Shaded areas depict the left foot (red shading)
and right foot (green shading) stance phase. Footfall events were computed from marker-based foot kinematics [31].
OpenPose joint centre reconstructions (top) at touch-down and toe-off events are overlaid for context.
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Figure 2. Upper-Example individual trial demonstrating vertical CoM velocities for criterion (cyan), unfiltered (green),
low-pass filtered (red) and Kalman smoothed (blue) data as a function of horizontal CoM position during sprinting. Lower
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kinematics [31]. OpenPose joint centre reconstructions (top) at touch-down and toe-off events are overlaid for context.
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Table 1. Between system comparison of CoM position during sprinting.

CoM Position Component Mean Difference (Bias) (m) ±SD 95% LoA R2

Unfiltered Horizontal 0.005 0.021 −0.037–0.046 0.58
Unfiltered Vertical 0.006 0.028 −0.090–0.103 0.84
Low-Pass Horizontal 0.005 0.020 −0.034–0.044 0.64
Low-Pass Vertical 0.007 0.027 −0.089–0.102 0.85
Kalman Horizontal 0.001 0.016 −0.030–0.032 0.73
Kalman Vertical 0.009 0.032 −0.084–0.101 0.85

Table 2. Between system comparison of CoM velocity during sprinting.

CoM Velocity Component Mean Difference (Bias) (m·s−1) ±SD 95% LoA R2

Unfiltered Horizontal 0.127 0.943 −1.722–1.974 0.63
Unfiltered Vertical 0.133 0.648 −1.139–1.405 0.14
Low-Pass Horizontal 0.087 0.381 −0.659–0.833 0.91
Low-Pass Vertical 0.161 0.501 −0.821–1.142 0.19
Kalman Horizontal 0.041 0.257 −0.464–0.547 0.96
Kalman Vertical 0.162 0.483 −0.785–1.109 0.20
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CoM horizontal velocity during sprinting.

Representative examples of OpenPose derived and marker derived CoM trajectories in
the sagittal plane during skeleton pushing are shown in Figure 4. Additionally, OpenPose
derived CoM position under various filtering conditions are also provided. Representative
vertical and horizontal CoM velocities during sprinting are shown in Figure 5. Additional
examples demonstrating high and low quality OpenPose joint centres detections during
pushing are provided in the Appendix A (Figure A4).
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Figure 5. Upper-Example individual trial demonstrating vertical CoM velocities for criterion (cyan), unfiltered (green),
low-pass filtered (red) and Kalman smoothed (blue) data as a function of horizontal CoM position during sprinting. Lower-
Example individual trial demonstrating horizontal CoM velocities for criterion (cyan), unfiltered (green), low-pass filtered
(red) and Kalman smoothed (blue) data as a function of horizontal CoM position during pushing. Shaded areas depict the
left foot (red shading) and right foot (green shading) stance phase. Footfall events were computed from marker-based foot
kinematics [31]. OpenPose joint centre reconstructions (top) at touch-down and toe-off events are overlaid for context.

Mean differences (bias) between OpenPose derived CoM locations and marker derived
CoM locations during pushing remained comparable between unfiltered, low-pass filtered
and Kalman smoothed results (Table 3) although filtering substantially improved the
SD and limits of agreement for horizontal position. Both horizontal and vertical CoM
velocity differences were high for unfiltered OpenPose data but greatly improved in
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performance under low-pass filtering and Kalman smoothing (Table 4). Full Bland–Altman
and linear regression results as provided in the Appendix for pushing CoM positions
(Figures A7 and A8) and sprinting CoM velocities (Figures A10 and A11).

Table 3. Between system comparison of CoM position during pushing.

CoM Position Component Mean Difference (Bias) (m) ±SD 95% LoA R2

Unfiltered Horizontal 0.072 1.549 −0.637–0.786 0.08
Unfiltered Vertical 0.037 0.016 0.005–0.069 0.71
Low-Pass Horizontal 0.372 0.391 −0.334–1.077 0.05
Low-Pass Vertical 0.034 0.014 0.005–0.063 0.77
Kalman Horizontal 0.371 0.370 −0.332–1.074 0.05
Kalman Vertical 0.047 0.023 0.001–0.092 0.41

Table 4. Between system comparison of CoM velocity during pushing.

CoM Velocity Component Mean Difference (Bias) (m·s−1) ±SD 95% LoA R2

Unfiltered Horizontal −0.197 1.549 −3.235–2.841 0.01
Unfiltered Vertical −0.136 0.798 −1.702–1.429 0.35
Low-Pass Horizontal 0.075 0.391 −0.692–0.842 0.40
Low-Pass Vertical 0.027 0.369 −0.697–0.752 0.46
Kalman Horizontal 0.020 0.370 −0.706–0.746 0.46
Kalman Vertical 0.020 0.235 −0.421–0.461 0.58

4. Discussion

The non-invasive, accurate and reliable measurement of CoM behaviour provides a
rich data source for coaches assessing a range of movement characteristics. In this study,
CNN-based pose estimation (OpenPose) and advanced signal processing techniques were
used to evaluate a non-invasive method capable of capturing CoM behaviour.

For the sprinting activity, OpenPose derived CoM positions were generally predicted
to within 5 cm of the criterion CoM position but with a tendency to systematically over
and underestimate the vertical oscillations of the CoM during the gait cycle (Figure 1).
Furthermore, horizontal and vertical CoM velocities derived from unfiltered OpenPose joint
centre trajectories exhibited large mean errors and standard deviations (0.127 ± 0.943 m·s−1

and 0.133 ± 1.405 m·s−1—Table 2) when compared to data derived from marker-based
motion capture. Both the motion capture systems demonstrated high reconstruction
accuracy (mean < 1 mm) and acceptable marker derived CoM accuracy. As such markerless
CoM errors were primarily attributed to the 2D pose estimator where joint centre errors
of >40 mm have been reported [17] which could indeed account for the CoM position
differences that were observed in this study. Moreover, high frequency keypoint jitter,
which often arises when a joint centre is predicted with low confidence and as such
the predicted location jumps around by a small amount between frames likely further
contributed to position and velocity errors (examples in Appendix A Figure A3). The
misidentification of a joint centre or erroneous contra-lateral switching of entire limbs
was also observed during data processing and as such may have contributed artefact to
the CoM position and velocity estimation. In this study we attempted to attenuate such
errors by fusing the 2D points early in our 3D reconstruction pipeline in order to allow for
the identification and correction of erroneous joint centre detections and limb switching.
Nonetheless, the large magnitudes of error in CoM velocity and pose estimation associated
artefacts demonstrate that researchers and practitioners should use unfiltered OpenPose
data with caution.

Very large magnitudes of error were observed for horizontal and vertical CoM
position and velocity during the skeleton pushing activity (−0.197 ± 1.549 m·s−1 and
−0.136 ± 0.798 m·s−1—Table 4) for unfiltered OpenPose data and align with the findings
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of previous work where large errors were reported for step averaged values [32]. In addi-
tion to the sources of error highlighted for the sprinting activity, during the pushing activity,
OpenPose was often unable to correctly identify the majority of joint centre locations (ex-
amples in Appendix A Figure A4). As such the 3D reconstructed joint centres did not
accurately represent the skeleton athlete’s joint configurations leading to extremely large
errors in CoM position and velocity estimations. CNN-based pose estimation algorithms
such as OpenPose are trained on tens of thousands of labelled images [18]. However, a
known limitation of such supervised deep learning methods is their ability to generalise
beyond the poses that are represented in the training data set [33]. While the poses ex-
hibited during sprinting may have been reasonably well represented during the training
of OpenPose, it appears that the unusual body poses exhibited during skeleton pushing
were not as well represented during training and as such OpenPose struggled to correctly
detect joint centre locations in these image sequences. This point is also demonstrated by
Seethapathi et al. [34] where pose estimation algorithms perform poorly when applied to
gymnastics sequences. This raises an important consideration for researchers and practi-
tioners wishing to apply pose estimation methods to sporting activities that do not feature
in the training data.

The presence of artefact in a signal is commonplace in many biological waveforms.
As such many methods have emerged that permit the smoothing of raw signals with
the aim of reducing the presence of noise. The magnitudes of error observed in the
unfiltered OpenPose data suggests that the use of signal processing techniques is required
to reduce the presence of signal artefact, not unlike data recorded using marker-based
motion capture. Filtering the position data did little to improve overall CoM location
performance in either activity but had a substantial effect on the calculation of CoM
velocity where the differentiation process amplified error in the signal. For example,
a further consequence of high frequency keypoint jitter was observed in the small but
sudden changes it caused to CoM position. When the CoM position was differentiated
these small but high frequency artefacts were amplified and presented as large errors in
CoM velocity. In this study we addressed this problem with signal processing techniques,
however, an alternative approach could be to implement pose estimation methods that
use image sequences rather than just a single image to predict keypoint locations and
as such can learn both spatial and temporal information about keypoint locations. Such
methods (e.g., Pose Flow [35], Spatio-Temporal Affinity Fields [36]) may be able to produce
a more temporally smooth signal that is more robust to errors caused by keypoint jitter
and switching that were encountered using OpenPose in this study. Indeed, several
studies using OpenPose data have reported heavily filtering the joint centre trajectories
using either a Butterworth low-pass filter (cut-off frequency-2 Hz [17]) or a weighted
moving average filter [37]. Butterworth low-pass filters are widely used by biomechanics
researchers [38] and demonstrated the ability to reduce the magnitudes of error in the
OpenPose data in this study (Tables 2 and 4, Figure 2). However, the Butterworth low-pass
filter did demonstrate sensitivities to large outliers for example, Figure 2 (lower) between
approximately 1.5 and 2 m on the x-axis. In contrast, Kalman smoothing proved more
robust to large outliers and in most cases reduced measurement errors most effectively
(Tables 2 and 4). While rarely used in biomechanics research, Kalman filtering methods are
popular in computer vision applications for object tracking tasks [39]. When treated with a
Kalman smoother, OpenPose derived CoM horizontal velocity demonstrated comparable
accuracy to other non-invasive field-based measures of sprinting performance. For the
measurement of horizontal CoM velocity, laser distance measurement has reported errors
of up to 0.41 m·s−1 [12], semi-automatic multiple-camera video technology has reported
errors of 0.41 ± 0.18 m·s−1 [6] and GPS errors of 0.28 ± 0.07 m·s−1 [6] when compared
to errors of −0.041 ± 0.257 m·s−1 (Table 2) from this study. However, researchers using
pose estimation methods such as OpenPose are encouraged to err on the side of caution as
in practice the large limits of agreement (low precision) reported here reduce the ability
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of such methods to detect small and potentially meaningful changes in sprinting and
pushing performance.

Using OpenPose has the potential to provide reasonable estimations of CoM posi-
tion and velocity during sprinting. There is however a limit to the denoising capabili-
ties of Butterworth low-pass filters or Kalman smoothers, for example, during pushing
(Figures 4 and 5). The majority of measurement errors that were observed in this study are
assumed to originate from the inaccurate or erroneous detection of joint centres by Open-
Pose. Seethapathi et al. [34] highlights that pose estimation methods present enormous
potential for movement sciences such as biomechanics but also acknowledge that better
pose estimation algorithms are required for such applications. Further study is required
to better understand the accuracy of joint centre detection by pose estimation algorithms
but in the meantime, there are several steps that future work should consider. For sports
such as skeleton where unusual body poses may fall beyond the generalisability of cur-
rent pose estimation algorithms, networks can be retrained and specialised via transfer
learning [40,41] to improve performance on a specific task. Open-source libraries such as
DeepLabCut [42] provide an effective way to achieve this with the potential to improve
joint centre estimation performance. However, more broadly, for pose estimation methods
to become more effective, there is a need for large, open-access, high quality biomechanics
data sets [34] which can be used to train the next generation of pose estimation algorithms.

Despite the limitations presented by pose-estimation algorithms in this study, pose esti-
mation is a rapidly advancing field that provides huge potential to capture CoM behaviour
in a real-world environment and in a non-invasive manner. The approach presented in this
study is capable of integrating the latest pose estimation models to enhance CoM location
estimation and could be scaled up to capture data in larger volumes with multiple athletes.
In the near future such approaches will likely outperform currently used technologies such
as laser distance measurement and vision-based local positioning systems.

5. Conclusions

In this study we demonstrate that OpenPose derived CoM positions and velocities
have the potential to provide an accurate non-invasive alternative to current technologies.
However, limitations in precision may reduce the ability to detect small and potentially
meaningful changes in sprinting and pushing performance. This approach was compared
against marker-based motion capture and demonstrated improved performance when
data were treated with a Kalman smoother. However, large errors due to poor joint
centre localisation were observed, especially for unfiltered OpenPose data, and during less
common sporting activities such as skeleton push starts. The method presented in this
study has the potential to provide valid estimations of CoM velocities during sprinting, but
researchers and practitioners should be careful when applying pose estimation methods to
sports that contain less common body poses.
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Appendix A

The OpenPose (Cao et al., 2017) body part mapping order is given in Table A1 and
Figure A1. These points are output by the Body_25 model which is derived from the COCO
training data set (Lin et al., 2014) and Human Foot Keypoint Dataset (Cao et al., 2017).

Table A1. OpenPose Body_25 body part mapping guide.

Keypoint Number Body Part Dataset

0 Nose COCO
1 Neck COCO
2 Right Shoulder COCO
3 Right Elbow COCO
4 Right Wrist COCO
5 Left Shoulder COCO
6 Left Elbow COCO
7 Left Wrist COCO
8 Mid Hip COCO
9 Right Hip COCO
10 Right Knee COCO
11 Right Ankle COCO
12 Left Hip COCO
13 Left Knee COCO
14 Left Ankle COCO
15 Right Eye COCO
16 Left Eye COCO
17 Right Ear COCO
18 Left Ear COCO
19 Right Big Toe Human Foot Keypoint Dataset
20 Right Small Toe Human Foot Keypoint Dataset
21 Right Heel Human Foot Keypoint Dataset
22 Left Big Toe Human Foot Keypoint Dataset
23 Left Small Toe Human Foot Keypoint Dataset
24 Left Heel Human Foot Keypoint Dataset
25 Background COCO
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Sensors 2021, 21, x FOR PEER REVIEW 14 of 19 
 

 

 
Figure A4. OpenPose keypoint detection examples depicting pose estimation during pushing. Blue circles depict the 2D 
OpenPose keypoint locations with the circle fill colour representing the left (green) and right (red) sides of the body. Cubes 
depict the 3D reconstructed joint centres for the left (green) and right (red) sides of the body projected onto the 2D image 
plane. This example demonstrates that limb switching has occurred for the legs but this has largely been corrected during 
the 3D fusion process. However, further issues can been seen with the left arm where OpenPose has detected joint centres 
with limited success in multiple fields of view. 

 
Figure A5. Bland-Altman and linear regression plots demonstrating the differences between OpenPose unfiltered (top-
left), low-pass filtered (top-right) and Kalman smoothed (lower-left) CoM horizontal position against marker-based CoM 
horizontal position during sprinting. 

Figure A5. Bland-Altman and linear regression plots demonstrating the differences between OpenPose unfiltered (top-
left), low-pass filtered (top-right) and Kalman smoothed (lower-left) CoM horizontal position against marker-based CoM
horizontal position during sprinting.



Sensors 2021, 21, 2889 14 of 18
Sensors 2021, 21, x FOR PEER REVIEW 15 of 19 
 

 

 
Figure A6. Bland-Altman and linear regression plots demonstrating the differences between OpenPose unfiltered (top-
left), low-pass filtered (top-right) and Kalman smoothed (lower-left) CoM vertical position against marker-based CoM 
vertical position during sprinting. 

 
Figure A7. Bland-Altman and linear regression plots demonstrating the differences between OpenPose unfiltered (top-
left), low-pass filtered (top-right) and Kalman smoothed (lower-left) CoM horizontal position against marker-based CoM 
horizontal position during pushing. 

Figure A6. Bland-Altman and linear regression plots demonstrating the differences between OpenPose unfiltered (top-left),
low-pass filtered (top-right) and Kalman smoothed (lower-left) CoM vertical position against marker-based CoM vertical
position during sprinting.

Sensors 2021, 21, x FOR PEER REVIEW 15 of 19 
 

 

 
Figure A6. Bland-Altman and linear regression plots demonstrating the differences between OpenPose unfiltered (top-
left), low-pass filtered (top-right) and Kalman smoothed (lower-left) CoM vertical position against marker-based CoM 
vertical position during sprinting. 

 
Figure A7. Bland-Altman and linear regression plots demonstrating the differences between OpenPose unfiltered (top-
left), low-pass filtered (top-right) and Kalman smoothed (lower-left) CoM horizontal position against marker-based CoM 
horizontal position during pushing. 

Figure A7. Bland-Altman and linear regression plots demonstrating the differences between OpenPose unfiltered (top-
left), low-pass filtered (top-right) and Kalman smoothed (lower-left) CoM horizontal position against marker-based CoM
horizontal position during pushing.



Sensors 2021, 21, 2889 15 of 18
Sensors 2021, 21, x FOR PEER REVIEW 16 of 19 
 

 

 
Figure A8. Bland-Altman and linear regression plots demonstrating the differences between OpenPose unfiltered (top-
left), low-pass filtered (top-right) and Kalman smoothed (lower-left) CoM vertical position against marker-based CoM 
vertical position during pushing. 

 
Figure A9. Bland-Altman and linear regression plots demonstrating the differences between OpenPose unfiltered (top-
left), low-pass filtered (top-right) and Kalman smoothed (lower-left) CoM vertical velocity against marker-based CoM 
vertical velocity during sprinting. 

 

Figure A8. Bland-Altman and linear regression plots demonstrating the differences between OpenPose unfiltered (top-left),
low-pass filtered (top-right) and Kalman smoothed (lower-left) CoM vertical position against marker-based CoM vertical
position during pushing.

Sensors 2021, 21, x FOR PEER REVIEW 16 of 19 
 

 

 
Figure A8. Bland-Altman and linear regression plots demonstrating the differences between OpenPose unfiltered (top-
left), low-pass filtered (top-right) and Kalman smoothed (lower-left) CoM vertical position against marker-based CoM 
vertical position during pushing. 

 
Figure A9. Bland-Altman and linear regression plots demonstrating the differences between OpenPose unfiltered (top-
left), low-pass filtered (top-right) and Kalman smoothed (lower-left) CoM vertical velocity against marker-based CoM 
vertical velocity during sprinting. 

 

Figure A9. Bland-Altman and linear regression plots demonstrating the differences between OpenPose unfiltered (top-left),
low-pass filtered (top-right) and Kalman smoothed (lower-left) CoM vertical velocity against marker-based CoM vertical
velocity during sprinting.



Sensors 2021, 21, 2889 16 of 18
Sensors 2021, 21, x FOR PEER REVIEW 17 of 19 
 

 

 
Figure A10. Bland-Altman and linear regression plots demonstrating the differences between OpenPose unfiltered (top-
left), low-pass filtered (top-right) and Kalman smoothed (lower-left) CoM horizontal velocity against marker-based CoM 
horizontal velocity during pushing. 

 
Figure A11. Bland-Altman and linear regression plots demonstrating the differences between OpenPose unfiltered (top-
left), low-pass filtered (top-right) and Kalman smoothed (lower-left) CoM vertical velocity against marker-based CoM 
vertical velocity during pushing. 

References: 
1. Duffield, R.; Reid, M.; Baker, J.; Spratford, W. Accuracy and reliability of GPS devices for measurement of movement patterns 

in confined spaces for court-based sports. Journal of Science and Medicine in Sport 2010, 13, 523-525, doi:10.1016/j.jsams.2009.07.003. 
2. Zanoletti, C.; La Torre, A.; Merati, G.; Rampinini, E.; Impellizzeri, F.M. Relationship between push phase and final race time in 

skeleton performance. Journal of Strength and Conditioning Research 2006, 20, 579-583. 
3. Colyer, S.L.; Stokes, K.A.; Bilzon, J.L.J.; Cardinale, M.; Salo, A.I.T. Physical Predictors of Elite Skeleton Start Performance. 

International Journal of Sports Physiology and Performance 2017, 12, 81–89, doi:10.1123/ijspp.2015-0631. 

Figure A10. Bland-Altman and linear regression plots demonstrating the differences between OpenPose unfiltered (top-
left), low-pass filtered (top-right) and Kalman smoothed (lower-left) CoM horizontal velocity against marker-based CoM
horizontal velocity during pushing.

Sensors 2021, 21, x FOR PEER REVIEW 17 of 19 
 

 

 
Figure A10. Bland-Altman and linear regression plots demonstrating the differences between OpenPose unfiltered (top-
left), low-pass filtered (top-right) and Kalman smoothed (lower-left) CoM horizontal velocity against marker-based CoM 
horizontal velocity during pushing. 

 
Figure A11. Bland-Altman and linear regression plots demonstrating the differences between OpenPose unfiltered (top-
left), low-pass filtered (top-right) and Kalman smoothed (lower-left) CoM vertical velocity against marker-based CoM 
vertical velocity during pushing. 

References: 
1. Duffield, R.; Reid, M.; Baker, J.; Spratford, W. Accuracy and reliability of GPS devices for measurement of movement patterns 

in confined spaces for court-based sports. Journal of Science and Medicine in Sport 2010, 13, 523-525, doi:10.1016/j.jsams.2009.07.003. 
2. Zanoletti, C.; La Torre, A.; Merati, G.; Rampinini, E.; Impellizzeri, F.M. Relationship between push phase and final race time in 

skeleton performance. Journal of Strength and Conditioning Research 2006, 20, 579-583. 
3. Colyer, S.L.; Stokes, K.A.; Bilzon, J.L.J.; Cardinale, M.; Salo, A.I.T. Physical Predictors of Elite Skeleton Start Performance. 

International Journal of Sports Physiology and Performance 2017, 12, 81–89, doi:10.1123/ijspp.2015-0631. 

Figure A11. Bland-Altman and linear regression plots demonstrating the differences between OpenPose unfiltered (top-left),
low-pass filtered (top-right) and Kalman smoothed (lower-left) CoM vertical velocity against marker-based CoM vertical
velocity during pushing.



Sensors 2021, 21, 2889 17 of 18

References
1. Duffield, R.; Reid, M.; Baker, J.; Spratford, W. Accuracy and reliability of GPS devices for measurement of movement patterns in

confined spaces for court-based sports. J. Sci. Med. in Sport 2010, 13, 523–525. [CrossRef]
2. Zanoletti, C.; La Torre, A.; Merati, G.; Rampinini, E.; Impellizzeri, F.M. Relationship between push phase and final race time in

skeleton performance. J. Strength Cond. Res. 2006, 20, 579–583.
3. Colyer, S.L.; Stokes, K.A.; Bilzon, J.L.J.; Cardinale, M.; Salo, A.I.T. Physical Predictors of Elite Skeleton Start Performance. Int. J.

Sports Physiol. Perform. 2017, 12, 81–89. [CrossRef]
4. Colyer, S.L.; Stokes, K.A.; Bilzon, J.L.J.; Salo, A.I.T. Skeleton sled velocity profiles: a novel approach to understand critical aspects

of the elite athletes’ start phases. Sports Biomech. 2018, 17, 168–179. [CrossRef]
5. Colyer, S.L.; Stokes, K.A.; Bilzon, J.L.J.; Holdcroft, D.; Salo, A.I.T. The effect of altering loading distance on skeleton start

performance: Is higher pre-load velocity always beneficial? J. Sports Sci. 2018, 36, 1930–1936. [CrossRef]
6. Linke, D.; Link, D.; Lames, M. Validation of electronic performance and tracking systems EPTS under field conditions. PLoS ONE

2018, 13. [CrossRef]
7. Topley, M.; Richards, J.G. A comparison of currently available optoelectronic motion capture systems. J. Biomech. 2020, 106.

[CrossRef]
8. Napier, C.; Jiang, X.T.; MacLean, C.L.; Menon, C.; Hunt, M.A. The use of a single sacral marker method to approximate the centre

of mass trajectory during treadmill running. J. Biomech. 2020, 108. [CrossRef]
9. Colyer, S.L.; Evans, M.; Cosker, D.P.; Salo, A.I.T. A Review of the Evolution of Vision-Based Motion Analysis and the Integration

of Advanced Computer Vision Methods Towards Developing a Markerless System. Sports Med.-Open 2018, 4. [CrossRef]
10. Hay, J.G.; Miller, J.A. Techniques used in the transition from approach to takeoff in the long jump. J. Appl. Biomech. 1985, 1,

174–184. [CrossRef]
11. Mero, A.; Komi, P.V. Effects of supramaximal velocity on biomechanical variables in sprinting. J. Appl. Biomech. 1985, 1, 240–252.

[CrossRef]
12. Bezodis, N.E.; Salo, A.I.T.; Trewartha, G. Measurement Error in Estimates of Sprint Velocity from a Laser Displacement Measure-

ment Device. Int. J. Sports Med. 2012, 33, 439–444. [CrossRef]
13. Haugen, T.; Buchheit, M. Sprint running performance monitoring: methodological and practical considerations. Sports Med. 2016,

46, 641–656. [CrossRef] [PubMed]
14. Al-Ali, A.; Almaadeed, S. A review on soccer player tracking techniques based on extracted features. In Proceedings of the 2017

6th International Conference on Information and Communication Technology and Accessibility (ICTA), Muscat, Oman, 19–21
December 2017; pp. 1–6.

15. Mundermann, L.; Corazza, S.; Andriacchi, T.P. The evolution of methods for the capture of human movement leading to
markerless motion capture for biomechanical applications. J. Neuroeng. Rehabil. 2006, 3. [CrossRef]

16. Cao, Z.; Simon, T.; Wei, S.E.; Sheikh, Y.; IEEE. Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields. In Proceedings
of the 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
pp. 1302–1310.

17. Nakano, N.; Sakura, T.; Ueda, K.; Omura, L.; Kimura, A.; Iino, Y.; Fukashiro, S.; Yoshioka, S. Evaluation of 3D Markerless Motion
Capture Accuracy Using OpenPose With Multiple Video Cameras. Front. Sports Act. Living 2020, 2. [CrossRef] [PubMed]

18. Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollar, P.; Zitnick, C.L. Microsoft COCO: Common Objects in
Context; Springer: Berlin/Heidelberg, Germany, 2014; pp. 740–755. [CrossRef]

19. Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press: Cambridge, UK, 2003.
20. Triggs, B.; McLauchlan, P.F.; Hartley, R.I.; Fitzgibbon, A.W. Bundle adjustment—a modern synthesis. In Proceedings of the

International workshop on vision algorithms, Corfu, Greece, 21–22 September 1999; pp. 298–372.
21. Zhang, Z.Y. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [CrossRef]
22. Challis, J.H. A procedure for the automatic determination of filter cutoff frequency for the processing of biomechanical data. J.

Appl. Biomech. 1999, 15, 303–317. [CrossRef]
23. de Leva, P. Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J. Biomech. 1996, 29, 1223–1230. [CrossRef]
24. Salo, A.I.T.; Scarborough, S. Changes in technique within a sprint hurdle run. Sports Biomech. 2006, 5, 155–166. [CrossRef]
25. Khan, S.M.; Shah, M. Tracking multiple occluding people by localizing on multiple scene planes. IEEE Trans. Pattern Anal. Mach.

Intell. 2008, 31, 505–519. [CrossRef]
26. Slabaugh, G.; Schafer, R.; Livingston, M. Optimal ray intersection for computing 3d points from n-view correspondences. Deliv.

Rep. 2001, 1–11. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.15.6117&rep=rep1&type=pdf
(accessed on 2 October 2001).

27. Fischler, M.A.; Bolles, R.C. Random sample consensus: a paradigm for model fitting with applications to image analysis and
automated cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]

28. Rauch, H.E.; Tung, F.; Striebel, C.T. Maximum likelihood estimates of linear dynamic systems. AIAA J. 1965, 3, 1445–1450.
[CrossRef]

29. Atkinson, G.; Nevill, A.M. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine.
Sports Med. 1998, 26, 217–238. [CrossRef]

http://doi.org/10.1016/j.jsams.2009.07.003
http://doi.org/10.1123/ijspp.2015-0631
http://doi.org/10.1080/14763141.2016.1261183
http://doi.org/10.1080/02640414.2018.1426352
http://doi.org/10.1371/journal.pone.0199519
http://doi.org/10.1016/j.jbiomech.2020.109820
http://doi.org/10.1016/j.jbiomech.2020.109886
http://doi.org/10.1186/s40798-018-0139-y
http://doi.org/10.1123/ijsb.1.2.174
http://doi.org/10.1123/ijsb.1.3.240
http://doi.org/10.1055/s-0031-1301313
http://doi.org/10.1007/s40279-015-0446-0
http://www.ncbi.nlm.nih.gov/pubmed/26660758
http://doi.org/10.1186/1743-0003-3-6
http://doi.org/10.3389/fspor.2020.00050
http://www.ncbi.nlm.nih.gov/pubmed/33345042
http://doi.org/10.1007/978-3-319-10602-1_48
http://doi.org/10.1109/34.888718
http://doi.org/10.1123/jab.15.3.303
http://doi.org/10.1016/0021-9290(95)00178-6
http://doi.org/10.1080/14763140608522871
http://doi.org/10.1109/TPAMI.2008.102
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.15.6117&rep=rep1&type=pdf
http://doi.org/10.1145/358669.358692
http://doi.org/10.2514/3.3166
http://doi.org/10.2165/00007256-199826040-00002


Sensors 2021, 21, 2889 18 of 18

30. Iosa, M.; Cereatti, A.; Merlo, A.; Campanini, I.; Paolucci, S.; Cappozzo, A. Assessment of Waveform Similarity in Clinical Gait
Data: The Linear Fit Method. BioMed Res. Int. 2014, 2014. [CrossRef] [PubMed]

31. Handsaker, J.C.; Forrester, S.E.; Folland, J.P.; Black, M.I.; Allen, S.J. A kinematic algorithm to identify gait events during running
at different speeds and with different footstrike types. J. Biomech. 2016, 49, 4128–4133. [CrossRef] [PubMed]

32. Needham, L.; Evans, M.; Cosker, D.P.; Colyer, S.L. Using computer vision and deep learning methods to capture skeleton push
start performance characteristics. ISBS Proc. Arch. 2020, 38, 756.

33. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press: Cambridge, MA, USA, 2016; pp. 1–775.
34. Seethapathi, N.; Wang, S.; Saluja, R.; Blohm, G.; Kording, K.P. Movement science needs different pose tracking algorithms. arXiv

2019, arXiv:1907.10226.
35. Xiu, Y.; Li, J.; Wang, H.; Fang, Y.; Lu, C. Pose flow: Efficient online pose tracking. arXiv 2018, arXiv:1802.00977.
36. Raaj, Y.; Idrees, H.; Hidalgo, G.; Sheikh, Y.; Soc, I.C. Efficient Online Multi-Person 2D Pose Tracking with Recurrent Spatio-

Temporal Affinity Fields. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Long Beach, CA, USA, 16–20 June 2019; pp. 4615–4623.

37. Kidzinski, L.; Yang, B.; Hicks, J.L.; Rajagopal, A.; Delp, S.L.; Schwartz, M.H. Deep neural networks enable quantitative movement
analysis using single-camera videos. Nat. Commun. 2020, 11. [CrossRef]

38. Mai, P.; Willwacher, S. Effects of low-pass filter combinations on lower extremity joint moments in distance running. J. Biomech.
2019, 95. [CrossRef] [PubMed]

39. Chen, S.Y. Kalman Filter for Robot Vision: A Survey. IEEE Trans. Ind. Electron. 2012, 59, 4409–4420. [CrossRef]
40. Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? arXiv 2014, arXiv:1411.1792.
41. Mathis, A.; Biasi, T.; Schneider, S.; Yuksekgonul, M.; Rogers, B.; Bethge, M.; Mathis, M.W. Pretraining boosts out-of-domain

robustness for pose estimation. In Proceedings of the Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, Waikoloa, HI, USA, 5–9 January 2021; pp. 1859–1868.

42. Mathis, A.; Mamidanna, P.; Cury, K.M.; Abe, T.; Murthy, V.N.; Mathis, M.W.; Bethge, M. DeepLabCut: markerless pose estimation
of user-defined body parts with deep learning. Nat. Neurosci. 2018, 21, 1281–1289. [CrossRef] [PubMed]

http://doi.org/10.1155/2014/214156
http://www.ncbi.nlm.nih.gov/pubmed/25126548
http://doi.org/10.1016/j.jbiomech.2016.10.013
http://www.ncbi.nlm.nih.gov/pubmed/27814970
http://doi.org/10.1038/s41467-020-17807-z
http://doi.org/10.1016/j.jbiomech.2019.08.005
http://www.ncbi.nlm.nih.gov/pubmed/31451201
http://doi.org/10.1109/TIE.2011.2162714
http://doi.org/10.1038/s41593-018-0209-y
http://www.ncbi.nlm.nih.gov/pubmed/30127430

	Introduction 
	Materials and Methods 
	Results 
	Discussion 
	Conclusions 
	
	References

